Hydrochemical, Isotopic, and Geophysical Studies Applied to the Evaluation of Groundwater Salinization Processes in Quaternary Beach Ridges in a Semiarid Coastal Area of Northern Patagonia, Argentina
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Geomorphological and Hydrolithological Characterization
3.2. Geophysical Data
3.3. Hydrochemistry and Stable Isotopes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandenbohede, A.; Lebbe, L. Groundwater chemistry patterns in the phreatic aquifer of the central Belgian coastal plain. Appl. Geochem. 2011, 27, 22–36. [Google Scholar] [CrossRef]
- Semeniuk, V. Coastal forms and Quaternary processes along the arid Pilbara coast of northwestern Australia. Palaeogeogr. Palaeoclim. Palaeoecol. 1996, 123, 49–84. [Google Scholar] [CrossRef]
- Vann, S.; Puttiwongrak, A.; Suteerasak, T.; Koedsin, W. Delineation of Seawater Intrusion Using Geo-Electrical Survey in a Coastal Aquifer of Kamala Beach, Phuket, Thailand. Water 2020, 12, 506. [Google Scholar] [CrossRef] [Green Version]
- Ahlhorn, F. Hydrology of (Shallow) Coastal Regions. In Integrated Coastal Zone Management; Springer Vieweg: Wiesbaden, Germany, 2018; pp. 49–62. [Google Scholar]
- Lee, J.-Y.; Raza, M.; Park, Y.-C. Current status and management for the sustainable groundwater resources in Korea. Episodes 2018, 41, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.H.; Easley, D.H. Fresh-water lens formation in an unconfined barrier-island aquifer. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1–22. [Google Scholar] [CrossRef]
- Ruppel, C.; Schultz, G.; Kruse, S. Anomalous Fresh Water Lens Morphology on a Strip Barrier Island. Ground Water 2000, 38, 872–881. [Google Scholar] [CrossRef]
- Stuyfzand, P.J. Observations and analytical modeling of freshwater and rainwater lenses in coastal dune systems. J. Coast. Conserv. 2017, 21, 577–593. [Google Scholar] [CrossRef]
- Greggio, N.; Giambastiani, B.M.S.; Balugani, E.; Amaini, C.; Antonellini, M. High-Resolution Electrical Resistivity Tomography (ERT) to Characterize the Spatial Extension of Freshwater Lenses in a Salinized Coastal Aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Bear, J. Hydraulics of Groundwater; Dover Publications, INC.: Mineola, NY, USA, 1979. [Google Scholar]
- de Louw, P.; Eeman, S.; Essink, G.O.; Vermue, E.; Post, V. Rainwater lens dynamics and mixing between infiltrating rainwater and upward saline groundwater seepage beneath a tile-drained agricultural field. J. Hydrol. 2013, 501, 133–145. [Google Scholar] [CrossRef]
- Morgan, L.K.; Werner, A.D. Seawater intrusion vulnerability indicators for freshwater lenses in strip islands. J. Hydrol. 2014, 508, 322–327. [Google Scholar] [CrossRef]
- Carol, E.; García, L.; Borzi, G. Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina. J. S. Am. Earth Sci. 2015, 60, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Da Lio, C.; Carol, E.; Kruse, E.; Teatini, P.; Tosi, L. Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: An assessment of vulnerability. Sci. Total Environ. 2015, 533, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Post, V.E.; Groen, J.; Kooi, H.; Person, M.; Ge, S.; Edmunds, W.M. Offshore fresh groundwater reserves as a global phenomenon. Nat. Cell Biol. 2013, 504, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Mastrocicco, M.; Colombani, N. The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Antonellini, M.; Mollema, P.N. Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. Ecol. Eng. 2010, 36, 1201–1211. [Google Scholar] [CrossRef]
- Custodio, E. Aquifères côtières de l’Europe: Une vision generale. Hydrogeol. J. 2010, 18, 269–280. [Google Scholar] [CrossRef]
- Pinna, M.S.; Cogoni, D.; Fenu, G.; Bacchetta, G. The conservation status and anthropogenic impacts assessments of Mediterranean coastal dunes. Estuarine Coast. Shelf Sci. 2015, 167, 25–31. [Google Scholar] [CrossRef]
- Cellone, F.; Tosi, L.; Carol, E. Estimating the freshwater-lens reserve in the coastal plain of the middle Río de la Plata Estuary (Argentina). Sci. Total Environ. 2018, 630, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Giambastiani, B.; Kidanemariam, A.; Dagnew, A.; Antonellini, M. Evolution of Salinity and Water Table Level of the Phreatic Coastal Aquifer of the Emilia Romagna Region (Italy). Water 2021, 13, 372. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- de Louw, P.G.B.; Eeman, S.; Siemon, B.; Voortman, B.R.; Gunnink, J.; van Baaren, E.S.; Essink, G.H.P.O. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrol. Earth Syst. Sci. 2011, 15, 3659–3678. [Google Scholar] [CrossRef] [Green Version]
- Vincent, A.; Violette, S. Why seawater intrusion has not yet occurred in the Kaluvelli-Pondicherry basin, Tamil Nadu, India. Hydrogeol. J. 2017, 25, 1893–1907. [Google Scholar] [CrossRef] [Green Version]
- Meisler, H.; Leahy, P.P.; Knobel, L.L. Effect of Eustatic Sea-Level Changes on Saltwater-Freshwater in the Northern Atlantic Coastal Plain; U.S. Geological Survey Water-Supply Paper: Alexandria, VA, USA, 1984; Volume 2255, 28p.
- Delsman, J.R.; Hu-A-Ng, K.R.M.; Vos, P.C.; de Louw, P.G.B.; Essink, G.H.P.O.; Stuyfzand, P.J.; Bierkens, M.F.P. Paleo-modeling of coastal saltwater intrusion during the Holocene: An application to the Netherlands. Hydrol. Earth Syst. Sci. 2014, 18, 3891–3905. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.L.; Larsen, F.; Pham, Q.N.; Christiansen, A.V.; Tran, N.; Vu, V.H.; Tran, L.V.; Hoang, V.H.; Hinsby, K. Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in Red River flood plain aquifers, Vietnam. Hydrogeol. J. 2012, 20, 1295–1313. [Google Scholar] [CrossRef]
- Larsen, F.; Tran, L.V.; Van Hoang, H.; Tran, L.T.; Vest Christiansen, A.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Li, H.; Huang, M.; Hou, M.; Li, Z.; She, D.; Si, B. Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. J. Hydrol. 2019, 578, 124042. [Google Scholar] [CrossRef]
- Kammoun, S.; Trabelsi, R.; Re, V.; Zouari, K. Coastal Aquifer Salinization in Semi-Arid Regions: The Case of Grombalia (Tunisia). Water 2021, 13, 129. [Google Scholar] [CrossRef]
- Clark, I. Groundwater Geochemistry and Isotopes; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Bagheri, R.; Nosrati, A.; Jafari, H.; Eggenkamp, H.; Mozafari, M. Overexploitation hazards and salinization risks in crucial declining aquifers, chemo-isotopic approaches. J. Hazard. Mater. 2019, 369, 150–163. [Google Scholar] [CrossRef]
- Nassir, S.S.A.; Loke, M.H.; Lee, C.-Y.; Nawawi, M.N.M. Salt-water intrusion mapping by geoelectrical imaging surveys. Geophys. Prospect. 2000, 48, 647–661. [Google Scholar] [CrossRef]
- Hayley, K.; Bentley, L.R.; Gharibi, M. Time-lapse electrical resistivity monitoring of salt-affected soil and groundwater. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Zarroca, M.; Bach, J.; Linares, R.; Pellicer, X.M. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). J. Hydrol. 2011, 409, 407–422. [Google Scholar] [CrossRef]
- Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol. J. 2012, 20, 617–658. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.; Najm, M.A.; El-Fadel, M. Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environ. Model. Softw. 2014, 57, 13–26. [Google Scholar] [CrossRef]
- Amiri, V.; Nakhaei, M.; Lak, R.; Kholghi, M. Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environ. Sci. Pollut. Res. 2016, 23, 16738–16760. [Google Scholar] [CrossRef] [PubMed]
- Mirzavand, M.; Ghasemieh, H.; Sadatinejad, S.J.; Bagheri, R. An overview on source, mechanism and investigation approaches in groundwater salinization studies. Int. J. Environ. Sci. Technol. 2020, 17, 2463–2476. [Google Scholar] [CrossRef]
- Sae-Ju, J.; Chotpantarat, S.; Thitimakorn, T. Hydrochemical, geophysical and multivariate statistical investigation of the seawater intrusion in the coastal aquifer at Phetchaburi Province, Thailand. J. Asian Earth Sci. 2020, 191, 104165. [Google Scholar] [CrossRef]
- Alvarez, M.P.; Trovatto, M.; Hernández, M.; González, N. Groundwater flow model, recharge estimation and sustainability in an arid region of Patagonia, Argentina. Environ. Earth Sci. 2012, 66, 2097–2108. [Google Scholar] [CrossRef]
- Arzac, R.G.; Diaz, J.L. Tres Modelos Hidrogeologicos de la Patagonia Extrandina Provincia de Santa Cruz—República Argentina. Águas Subterráneas. 1990. Available online: https://aguassubterraneas.abas.org/asubterraneas/article/view/24538 (accessed on 20 September 2021).
- Rutter, N.; Schnack, E.J.; Del Rio, J.; Fasano, J.L.; Isla, F.; Radtke, U. Correlation and dating of Quaternary littoral zones along the Patagonian coast, Argentina. Quat. Sci. Rev. 1989, 8, 213–234. [Google Scholar] [CrossRef]
- Rostami, K.; Peltier, W.; Mangini, A. Quaternary marine terraces, sea-level changes and uplift history of Patagonia, Argentina: Comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quat. Sci. Rev. 2000, 19, 1495–1525. [Google Scholar] [CrossRef]
- Pedoja, K.; Regard, V.; Husson, L.; Martinod, J.; Guillaume, B.; Fucks, E.; Iglesias, M.; Weill, P. Uplift of quaternary shorelines in eastern Patagonia: Darwin revisited. Geomorphology 2011, 127, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Isla, F. Coastal barriers from Argentina: Buenos Aires, Patagonia and Tierra del Fuego. Quat. Environ. Geosci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Rutter, N.; Radtke, U.; Schnack, E. Comparison of ESR and amino acid data in correlating and dating quaternary shorelines along the Patagonian coast, Argentina. J. Coast. Res. 1990, 6, 391–394. [Google Scholar]
- Fucks, E.; Charó, M.; Pisano, F. Aspectos estratigráficos y geomorfológicos del sector oriental patagónico bonaerense. Rev. Soc. Geol. Esp. 2012, 25, 29–44. [Google Scholar]
- Misseri, L.; Cellone, F.; Bouza, P.; Alvarez, M.P.; Carol, E. Geohidrología de un sector de la marisma de Bahía San Blas. Rev. Soc. Geol. Esp. 2020, 5, 500–509. [Google Scholar] [CrossRef]
- Instituto Geográfico Nacional (IGN). Available online: https://www.ign.gob.ar/NuestrasActividades/Geodesia/ModeloDigitalElevaciones/Introduccion (accessed on 25 June 2021).
- Zohdy, A. A new method for the automatic interpretation of Sclumberger and Wenner sounding curve. Geophysics 1989, 54, 245–253. [Google Scholar] [CrossRef]
- Maillet, R. The fundamental equations of electrical prospecting. Geophysics 1947, 12, 529–556. [Google Scholar] [CrossRef]
- Johansen, H.K. An interactive computer/graphic-display-terminal system for interpretation of resistivity soundings. Geophys. Prospect. 1975, 23, 449–458. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Water-Resources Investigations Report 99-4259; USGS Publications Warehouse: Washington, DC, USA, 1999; Volume 99, pp. 1–312.
- Gonfiantini, R. Standards for stable isotope measurements in natural compounds. Nat. Cell Biol. 1978, 271, 534–536. [Google Scholar] [CrossRef]
- Giménez-Forcada, E. Dynamic of Sea Water Interface using Hydrochemical Facies Evolution Diagram. Ground Water 2010, 48, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Martínez, D.E.; Quiroz, O.M.; Dapeña, C.; Glok-Galli, M.; Massone, H.E.; Ferrante, A. Caracterización isotópica e hidroquímica de las precipitaciones en el sector sur de Tandilia. In Proceedings of the VII Congreso Argentino de Hidrogeología y V Seminario Hispano-Latinoamericano sobre Temas Actuales de la Hidrología Subterránea, Calidad y Contaminación de Agua Subterránea, Salta, Argentina, 21 October 2011; pp. 369–376. [Google Scholar]
- Alvarez, M.D.P.; Funes, D.; Dapeña, C.; Bouza, P.J. Origin and hydrochemical characteristics of groundwater in the Northeastern Patagonia, Argentina: The relationship with geomorphology and soils. Environ. Earth Sci. 2020, 79, 1–14. [Google Scholar] [CrossRef]
- Bouza, P.J. Paleosuelos en cordones litorales de la Formación Caleta Valdés, Pleistoceno superior, NE del Chubut. RAGA 2014, 71, 1–10. [Google Scholar]
- Bouza, P.J. Génesis de las acumulaciones de carbonatos en Aridisoles Nordpatagónicos: Su significado paleopedológico. RAGA 2012, 69, 298–313. [Google Scholar]
- Tanner, L.H. Continental carbonates as indicators of paleoclimate. In Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications; En Alonso-Zarza, A.M., Tanner, L.H., Eds.; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 179–214. [Google Scholar]
- Hillel, D.; Baker, R.S. A descriptive theory of fingering during infiltration into layered soils. Soil Sci. 1988, 146, 51–56. [Google Scholar] [CrossRef]
- Samani, Z.; Cheraghi, A.; Willardson, L. Water Movement in Horizontally Layered Soils. J. Irrig. Drain. Eng. 1989, 115, 449–456. [Google Scholar] [CrossRef]
- Stuart, D.M.; Dixon, R.M. Water Movement and Caliche Formation in Layered Arid and Semiarid Soils. Soil Sci. Soc. Am. J. 1973, 37, 323–324. [Google Scholar] [CrossRef]
- Kooi, H.; Groen, J. Geological processes and the management of groundwater resources in coastal areas. Neth. J. Geosci. 2003, 82, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, S.K.; Clark, J.F.; Bennett, M.; Richardson, E.; Stute, M. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise. Nat. Geosci. 2010, 3, 683–687. [Google Scholar] [CrossRef]
- Lee, S.; Currell, M.; Cendón, D. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance. Sci. Total Environ. 2016, 544, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Logan, W.S.; Auge, M.P.; Panarello, H.O. Bicarbonate, Sulfate, and Chloride Water in a Shallow, Clastic-Dominated Coastal Flow System, Argentina. Ground Water 1999, 37, 287–295. [Google Scholar] [CrossRef]
- Santucci, L.; Carol, E.; Kruse, E. Quaternary marine ingressions as indicated by hydrogeochemical evidence in the semi-confined aquifer of the littoral of the Río de la Plata, Argentina. Quat. Res. 2017, 88, 160–167. [Google Scholar] [CrossRef]
- Santucci, L.; Carol, E.; Kruse, E. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina). Sci. Total Environ. 2016, 566–567, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- El Yaouti, F.; El Mandour, A.; Khattach, D.; Benavente, J.; Kaufmann, O. Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Appl. Geochem. 2009, 24, 16–31. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J. Hydrol. 2012, 438–439, 112–124. [Google Scholar] [CrossRef]
- Vallejos, A.; Sola, F.; Yechieli, Y.; Pulido-Bosch, A. Influence of the paleogeographic evolution on the groundwater salinity in a coastal aquifer. Cabo de Gata aquifer, SE Spain. J. Hydrol. 2018, 557, 55–66. [Google Scholar] [CrossRef]
- Gao, M.S.; Zheng, Y.M.; Liu, S.; Wang, S.T.; Kong, X.H.; Zhao, J.M.; Guo, F. Palaeogeographic condition for origin of underground brine in southern coast of Laizhou Bay, Bohai Sea. Geol. Rev. 2015, 61, 393–400. [Google Scholar]
- Liu, S.; Tang, Z.; Gao, M.; Hou, G. Evolutionary process of saline-water intrusion in Holocene and Late Pleistocene groundwater in southern Laizhou Bay. Sci. Total Environ. 2017, 607–608, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Walraevens, K.; Van Camp, M.; Lermytte, J.; Van Der Kemp, W.J.M.; Loosli, H.H. Pleistocene and Holocene groundwaters in the freshening Ledo-Paniselian aquifer in Flanders, Belgium. Geol. Soc. London Spéc. Publ. 2001, 189, 49–70. [Google Scholar] [CrossRef]
- Gleeson, T.; VanderSteen, J.; Sophocleous, M.A.; Taniguchi, M.; Alley, W.M.; Allen, D.; Zhou, Y. Groundwater sustainability strategies. Nat. Geosci. 2010, 3, 378–379. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Merchán, D.; Rosner, M.; Meixner, A.; Ledesma-Ruiz, R. Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci. Total Environ. 2017, 587–588, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Motevalli, A.; Moradi, H.R.; Javadi, S. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Van de Plassche, O. Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Cong-Thi, D.; Dieu, L.; Thibaut, R.; Paepen, M.; Ho, H.; Nguyen, F.; Hermans, T. Imaging the Structure and the Saltwater Intrusion Extent of the Luy River Coastal Aquifer (Binh Thuan, Vietnam) Using Electrical Resistivity Tomography. Water 2021, 13, 1743. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carol, E.; Perdomo, S.; Álvarez, M.d.P.; Tanjal, C.; Bouza, P. Hydrochemical, Isotopic, and Geophysical Studies Applied to the Evaluation of Groundwater Salinization Processes in Quaternary Beach Ridges in a Semiarid Coastal Area of Northern Patagonia, Argentina. Water 2021, 13, 3509. https://doi.org/10.3390/w13243509
Carol E, Perdomo S, Álvarez MdP, Tanjal C, Bouza P. Hydrochemical, Isotopic, and Geophysical Studies Applied to the Evaluation of Groundwater Salinization Processes in Quaternary Beach Ridges in a Semiarid Coastal Area of Northern Patagonia, Argentina. Water. 2021; 13(24):3509. https://doi.org/10.3390/w13243509
Chicago/Turabian StyleCarol, Eleonora, Santiago Perdomo, María del Pilar Álvarez, Carolina Tanjal, and Pablo Bouza. 2021. "Hydrochemical, Isotopic, and Geophysical Studies Applied to the Evaluation of Groundwater Salinization Processes in Quaternary Beach Ridges in a Semiarid Coastal Area of Northern Patagonia, Argentina" Water 13, no. 24: 3509. https://doi.org/10.3390/w13243509
APA StyleCarol, E., Perdomo, S., Álvarez, M. d. P., Tanjal, C., & Bouza, P. (2021). Hydrochemical, Isotopic, and Geophysical Studies Applied to the Evaluation of Groundwater Salinization Processes in Quaternary Beach Ridges in a Semiarid Coastal Area of Northern Patagonia, Argentina. Water, 13(24), 3509. https://doi.org/10.3390/w13243509