Dominated Taxonomic and Phylogenetic Turnover but Functional Nestedness of Wetland Bird Beta Diversity in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bird Community Data in Wetlands in North China
2.2. Functional Traits and Phylogeny
2.3. Environmental Variables
2.4. Statistics
3. Results
3.1. Threatened Status of These Bird Species
3.2. Comparisons of Taxonomic, Functional, and Phylogenetic Turnover against Their Nestedness Component
3.3. Associations between Different Beta Diversity Component and Explanatory Variables
4. Discussion
4.1. Diverse Bird Species Found in These Lakes
4.2. Higher Taxonomic and Phylogenetic Turnover but Lower Functional Turnover
4.3. Better Explained Taxonomic and Phylogenetic Turnover
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reid, J.A.; Carlson, K.A.; Creed, F.I.; Eliason, J.E.; Gell, A.P.; Johnson, T.J.P.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, H.A.; Bunn, E.S.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the curve of global freshwater biodiversity loss-an emergency recovery plan. Bio. Sci. 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.J.; Destouni, G.; Duke-Sylvester, M.S.; Magurran, E.A.; Oberdorff, T.; Reis, E.R.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Strayer, L.D.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Fricke, R.; Eschmeyer, W.; Laan, R.V.D. Catalog of Fishes: Genera, Species, References; California Academy of Sciences: San Francisco, CA, USA, 2019. [Google Scholar]
- Mitsch, J.W.; Bernal, B.; Nahlik, M.A.; Mander, U.; Zhang, L.; Anderson, J.C.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Almond, R.E.A.; Grooten, M.; Petersen, T. Living Planet Report 2020-Bending the Curve of Biodiversity Loss; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Li, N.; Huang, X.; Yan, Q.; Zhang, W.; Wang, Z. Save China’s Blue-crowned Laughingthrush. Science 2021, 373, 171. [Google Scholar] [CrossRef]
- Gardner, R.C.; Finlayson, C. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People. Ramsar Conv. Secr. 2018, 9, 89. [Google Scholar]
- Ricciardi, A.; Rasmussen, J.B. Extinction rates of North American freshwater fauna. Conserv. Biol. 1999, 13, 1220–1222. [Google Scholar] [CrossRef]
- Collen, B.; Whitton, F.; Dyer, E.E.; Baillie, E.M.J.; Cumberlidge, N.; Darwall, R.T.W.; Pollock, C.; Richman, N.; Soulsby, A.; Böhm, M. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 2014, 23, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Jeelani, N.; Yang, W.; Xia, L.; Zhu, H.L.; An, S. Ecosystem threats and management strategies for wetlands in China. Mar. Freshw. Res. 2020, 71, 1557–1563. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in china: A new product resulting from object-based and hierarchical classification of landsat 8 oli images. ISPRS J. Photogramm. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, C.D.L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Li, F.; Yan, Y.; Zhang, J.; Zhang, Q.; Niu, J. Taxonomic, functional, and phylogenetic beta diversity in the Inner Mongolia grassland. Glob. Ecol. Conserv. 2021, 28, e01634. [Google Scholar] [CrossRef]
- Swenson, G.N. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE 2011, 6, e21264. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Yang, G.; Wang, N.; Feng, G.; Yang, F.; Svenning, J.C.; Yang, J. Taxonomic, phylogenetic and functional homogenization of bird communities due to land use change. Biol. Conserv. 2019, 236, 37–43. [Google Scholar] [CrossRef]
- Jiang, Z.G.; Jiang, J.P.; Wang, Y.Z.; Zhang, E.; Zhang, Y.Y.; Li, L.L.; Xie, F.; Cai, B.; Cao, L.; Zheng, G.; et al. Red list of China’s vertebrates. Biodiv. Sci. 2016, 24, 500–551, (In Chinese with English Abstract). [Google Scholar]
- Editorial Committee of China Vegetation. Vegetation of China; Science Press: Beijing, China, 1980. [Google Scholar]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Jetz, W.; Thomas, H.G.; Joy, B.J.; Redding, W.D.; Hartmann, K.; Mooers, O.A. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 2014, 24, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.; Heled, J.; Kuehnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Currie, D.J.; Mittelbach, G.G.; Cornell, H.V.; Field, R.; Guegan, J.F.; Hawkins, B.A.; Kaufman, D.M.; Kerr, J.T.; Oberdorff, T.; O’Brien, E.; et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 2004, 7, 1121–1134. [Google Scholar] [CrossRef]
- Chi, X.L.; Tang, Z.Y.; Fang, J.Y. Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographical and environmental distance. Basic Appl. Ecol. 2014, 15, 416–425. [Google Scholar] [CrossRef]
- Baselga, A. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 2013, 4, 552–557. [Google Scholar] [CrossRef]
- Zheng, G. A Checklist on the Classification and Distribution of the Birds of China, 2nd ed.; Science Press: Beijing, China, 2011. [Google Scholar]
- Gibbs, J.P. Wetland Loss and Biodiversity Conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Naka, L.N.; Laranjeiras, T.O.; Rodrigues, L.G.; Plaskievicz, A.; Pinto, F.; Gonçalves-Souza, T. Climate as a major driver of avian diversity in riparian Amazonian habitats along an environmental gradient. J. Biogeogr. 2020, 47, 2328–2340. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Zhang, B.; Cui, P.; Feng, G.; Svenning, J.C. Decomposing multiple β-diversity reveals non-random assembly of the waterbird communities across anthropogenic subsidence wetlands. Divers. Distrib. 2021, 1–12. [Google Scholar] [CrossRef]
- Shen, G.; Yu, M.; Hu, X.; Mi, X.; Ren, H.; Sun, I.F.; Ma, K. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology 2009, 90, 3033–3041. [Google Scholar] [CrossRef] [Green Version]
- Daniel, J.; Gleason, J.E.; Cottenie, K.; Rooney, R.C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 2019, 128, 1158–1169. [Google Scholar] [CrossRef]
Taxonomic | Functional | Phylogenetic | ||||
---|---|---|---|---|---|---|
Turnover | Nestedness | Turnover | Nestedness | Turnover | Nestedness | |
MAT | 0.44 ** | −0.08 * | −0.04 | 0.07 | 0.38 ** | 0.01 |
MAP | 0.52 ** | −0.12 ** | 0.05 | 0.10 * | 0.45 ** | 0.03 |
Dispersal | 0.42 ** | −0.12 ** | 0.01 | 0 | 0.33 ** | −0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Liu, Z.; Yang, G.; Feng, G. Dominated Taxonomic and Phylogenetic Turnover but Functional Nestedness of Wetland Bird Beta Diversity in North China. Land 2022, 11, 1090. https://doi.org/10.3390/land11071090
Yang F, Liu Z, Yang G, Feng G. Dominated Taxonomic and Phylogenetic Turnover but Functional Nestedness of Wetland Bird Beta Diversity in North China. Land. 2022; 11(7):1090. https://doi.org/10.3390/land11071090
Chicago/Turabian StyleYang, Fan, Zhuoen Liu, Guisheng Yang, and Gang Feng. 2022. "Dominated Taxonomic and Phylogenetic Turnover but Functional Nestedness of Wetland Bird Beta Diversity in North China" Land 11, no. 7: 1090. https://doi.org/10.3390/land11071090
APA StyleYang, F., Liu, Z., Yang, G., & Feng, G. (2022). Dominated Taxonomic and Phylogenetic Turnover but Functional Nestedness of Wetland Bird Beta Diversity in North China. Land, 11(7), 1090. https://doi.org/10.3390/land11071090