Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An Application in the Lower Deduru Oya (River), Sri Lanka
Abstract
:1. Introduction
Remote Sensing Applications in the Fluvial Context
2. Study Area
3. Data and Methods
3.1. Landsat Satellite Data Acquisition
3.2. Extraction of Water Mask
- NDVI—normalized difference vegetation index
- MNDWI—modified normalized difference water index
- EVI—enhanced vegetation Index
3.3. River Centreline Delineation
3.4. Estimating Planform Geometry
3.5. Estimation of Centreline Migration
4. Results and Discussion
4.1. River Planform
4.2. River Centerline Variation
4.3. River Centerline Migration
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sylvester, Z.; Durkin, P.; Covault, J.A.; Sharman, G.R. High curvatures drive river meandering. Geology 2019, 47, e486. [Google Scholar] [CrossRef]
- Constantine, J.A.; Dunne, T.; Ahmed, J.; Legleiter, C.; Lazarus, E.D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 2014, 7, 899–903. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.; Parker, G.; Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 1981, 112, 363–377. [Google Scholar] [CrossRef]
- Hooke, J.M.; Yorke, L. Channel bar dynamics on multi-decadal timescales in an active meandering river. Earth Surf. Process. Landf. 2011, 36, 1910–1928. [Google Scholar] [CrossRef]
- Seminara, G. Meanders. J. Fluid Mech. 2006, 554, 271–297. [Google Scholar] [CrossRef]
- Asahi, K.; Shimizu, Y.; Nelson, J.; Parker, G. Numerical simulation of river meandering with self-evolving banks. J. Geophys. Res. Earth Surf. 2013, 118, 2208–2229. [Google Scholar] [CrossRef]
- Monegaglia, F. Meandering Rivers Morphodynamics–Integrating Nonlinear Modeling and Remote Sensing. Ph.D. Thesis, University of London, London, UK, 2017; p. 250. Available online: http://qmro.qmul.ac.uk/xmlui/handle/123456789/33927 (accessed on 15 May 2022).
- Monegaglia, F.; Zolezzi, G.; Güneralp, I.; Henshaw, A.J.; Tubino, M. Automated extraction of meandering river morphodynamics from multitemporal remotely sensed data. Environ. Model. Softw. 2018, 105, 171–186. [Google Scholar] [CrossRef]
- Surasinghe, T.; Kariyawasam, R.; Sudasinghe, H.; Karunarathna, S. Challenges in Biodiversity Conservation in a Highly Modified Tropical River Basin in Sri Lanka. Water 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, G.; Illango, A.; Manage, P. Prevalence and Quantitative Analysis of Antibiotic Resistance Genes (ARGs) in Surface and Groundwater in Meandering Part of the Kelani River Basin in Sri Lanka. Water Air Soil Pollut. 2021, 232, 351. [Google Scholar] [CrossRef]
- Jayapadma, J.; Souma, K.; Ishidaira, H.; Magome, J.; Wickramaarachchi, T. The Effect of Incorporation of Embankment Information for Flood Simulation of the Gin River, Sri Lanka. J. Disaster Res. 2022, 17, 475–486. [Google Scholar] [CrossRef]
- Mahagamage, M.; Pathirage, M.; Manage, P. Contamination Status of Salmonella spp., Shigella spp. and Campylobacter spp. in Surface and Groundwater of the Kelani River Basin 2020, Sri Lanka. Water 2020, 12, 2187. [Google Scholar] [CrossRef]
- Jayasuriya, A. A new forest vegetation type in Sri Lanka: Dry Canal-associated Evergreen Forest. Ceylon J. Sci. 2019, 48, 375–381. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Yu, T.; Huang, X.; Gu, X. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Fathololoumi, S.; Vaezi, A.; Alavipanah, S.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & satellite synergies for optical remote sensing applications: A literature review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Perera, H.; Fernando, S.; Gunathilake, M.; Sirisena, T.; Rathnayake, U. Evaluation of Satellite Rainfall Products over the Mahaweli River Basin in Sri Lanka. Adv. Meteorol. 2022, 2022, 1926854. [Google Scholar] [CrossRef]
- Makumbura, R.; Samarasinghe, J.; Rathnayake, U. Multidecadal Land Use Patterns and Land Surface Temperature Variation in Sri Lanka. Appl. Environ. Soil Sci. 2022, 2022, 2796637. [Google Scholar] [CrossRef]
- Gilvear, D.; Bryant, R. Analysis of remotely sensed data for fluvial geomorphology and river science. In Tools in Fluvial Geomorphology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 103–132. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdiscip. Rev. Water 2021, 8, e21496. [Google Scholar] [CrossRef]
- Rowland, J.C.; Shelef, E.; Pope, P.A.; Muss, J.; Gangodagamage, C.; Brumby, S.P.; Wilson, C.J. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 2016, 184, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Isikdogan, F.; Bovik, A.; Passalacqua, P. RivaMap: An automated river analysis and mapping engine. Remote Sens. Environ. 2017, 202, 88–97. [Google Scholar] [CrossRef]
- Boruah, S.; Gilvear, D.; Hunter, P.; Sharma, N. Quantifying channel planform and physical habitat dynamics on a large braided river using satellite data—the Brahmaputra, India. River Res. Appl. 2008, 24, 650–660. [Google Scholar] [CrossRef]
- Wickramaarachchi, T.N. Preliminary assessment of surface water resources-a study from Deduru Oya Basin of Sri Lanka. In APHW Proceeding; Suntec International Convvention and Exhibition Center: Singapore, 2004. [Google Scholar]
- Jayasena, H.; Chandrajith, R.; Gangadhara, K. Water Management in Ancient Tank Cascade Systems (TCS) in Sri Lanka: Evidence for Systematic Tank Distribution. J. Geol. Soc. Sri Lanka 2011, 14, 29–34. [Google Scholar]
- PGSomaratne, K.J.; Perera, L.R.; Ariyaratne, B.R.; Bandaragoda, D.J.; Makin, I.W. Developing Effective Institutions for Water Resources Management: A Case Study in the Deduru Oya Basin, Sri Lanka; Working Paper 58; IWMI: Colombo, Sri Lanka, 2003; p. 104. Available online: http://www.iwmi.cgiar.org/publications/iwmi-working-papers/iwmi-working-paper-58/ (accessed on 30 May 2022).
- Boothroyd, R.; Nones, M.; Guerrero, M. Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to Support River Management Applications. Front. Environ. Sci. 2021, 9, 657354. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in water surface area during 1989–2017 in the Huai River Basin using Landsat data and Google earth engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; David Hambright, K. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, A. Webplotdigitizer: Version 4.5. 2021. Available online: https://automeris.io/WebPlotDigitizer (accessed on 15 June 2022).
- Deb, M.; Das, D.; Uddin, M. Evaluation of Meandering Characteristics Using RS & GIS of Manu River. J. Water Resour. Prot. 2012, 04, 163–171. [Google Scholar] [CrossRef]
- Lagasse, P.F. Handbook for Predicting Stream Meander Migration; National Cooperative Highway Research Program; Transportation Research Board, National Research Council: Washington, DC, USA, 2004. [Google Scholar]
- Dey, A.; Bhattacharya, R.K. Monitoring of River Center Line and Width-A Study on River Brahmaputra. J. Indian Soc. Remote Sens. 2014, 42, 475–482. [Google Scholar] [CrossRef]
- Hamilton, S.K.; Kellndorfer, J.; Lehner, B.; Tobler, M. Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 2007, 89, 23–38. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Y.; Liu, X.; Huang, H.Q.; Huang, L.; Deng, C. Meandering-anabranching river channel change in response to flow-sediment regulation: Data analysis and model validation. J. Hydrol. 2019, 579, 124209. [Google Scholar] [CrossRef]
Landsat Data | Resolution | Available Period | Number of Bands |
---|---|---|---|
Landsat 1–5 MSS | 60 m | 1972–2012 | 04 |
Landsat 4–5 TM | 30 m | 1982–2012 | 07 |
Landsat 7 ETM+ | 30 m | 1999 to present | 08 |
Landsat 8 OLI and TIRS | 30 m | April 2013 to present | 11 |
Landsat 9 OLI | 30 m | February 2022 to present | 11 |
Year | Landsat Data Type | Extracted Date |
---|---|---|
1989 | Landsat 5 TM | 2 December 1989 |
1994 | Landsat 5 TM | 11 September 1994 |
2001 | Landsat 5 TM | 14 September 2001 |
2005 | Landsat 5 TM | 17 March 2005 |
2008 | Landsat 5 TM | 4 November 2008 |
2021 | Landsat 8 OLI | 23 October 2020 |
Bend ID | Location Coordinates | Meander Length (m) | Sinuosity | Type of Bend Migration | |
---|---|---|---|---|---|
Starting Point | Endpoint | ||||
1 | (369,891, 840,926) | (370,469, 841,322) | 1147 | 1.67 | Diagonal cutoff by chute |
2 | (370,469, 841,322) | (371,392, 841,643) | 1074 | 1.12 | Rotation |
3 | (371,392, 841,643) | (372,085, 841,713) | 970 | 1.26 | Extension |
4 | (372,085, 841,713) | (372,744, 842,194) | 1747 | 2.14 | Extension |
5 | (373,439, 842,829) | (374,175, 842,607) | 958 | 1.28 | Extension |
6 | (374,175, 842,607) | (374,658, 842,408) | 602 | 1.14 | Conversion to compound loop |
7 | (376,310, 843,127) | (378,050, 843,167) | 2137 | 1.22 | Extension |
8 | (378,050, 843,167) | (380,069, 843,259) | 2937 | 1.48 | Extension |
9 | (381,376, 845,347) | (381,803, 846,241) | 2052 | 2.16 | Translation |
10 | (381,803, 846,241) | (381,770, 847,127) | 1239 | 1.42 | Conversion to compound loop |
11 | (382,838, 849,184) | (383,484, 849,056) | 793 | 1.13 | Extension |
12 | (383,484, 849,056) | (383,897, 848,928) | 581 | 1.39 | Extension |
13 | (385,793, 849,733) | (386,464, 850,102) | 948 | 1.74 | Translation |
14 | (388,671, 851,246) | (389,186, 851,590) | 1304 | 1.75 | Rotation |
15 | (389,427, 851,590) | (389,864, 851,679) | 850 | 1.41 | Extension |
16 | (395,413, 853,972) | (397,947, 854,106) | 3136 | 1.23 | Neck cutoff by chute |
17 | (405,221, 853,671) | (406,338, 853,766) | 1361 | 1.18 | Extension |
18 | (417,035, 854,669) | (417,950, 854,127) | 1277 | 1.17 | Translation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basnayaka, V.; Samarasinghe, J.T.; Gunathilake, M.B.; Muttil, N.; Hettiarachchi, D.C.; Abeynayaka, A.; Rathnayake, U. Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An Application in the Lower Deduru Oya (River), Sri Lanka. Land 2022, 11, 1091. https://doi.org/10.3390/land11071091
Basnayaka V, Samarasinghe JT, Gunathilake MB, Muttil N, Hettiarachchi DC, Abeynayaka A, Rathnayake U. Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An Application in the Lower Deduru Oya (River), Sri Lanka. Land. 2022; 11(7):1091. https://doi.org/10.3390/land11071091
Chicago/Turabian StyleBasnayaka, Vindhya, Jayanga T. Samarasinghe, Miyuru B. Gunathilake, Nitin Muttil, Dileepa C. Hettiarachchi, Amila Abeynayaka, and Upaka Rathnayake. 2022. "Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An Application in the Lower Deduru Oya (River), Sri Lanka" Land 11, no. 7: 1091. https://doi.org/10.3390/land11071091
APA StyleBasnayaka, V., Samarasinghe, J. T., Gunathilake, M. B., Muttil, N., Hettiarachchi, D. C., Abeynayaka, A., & Rathnayake, U. (2022). Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An Application in the Lower Deduru Oya (River), Sri Lanka. Land, 11(7), 1091. https://doi.org/10.3390/land11071091