Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources and Processing
2.3. Data Analysis
3. Results
3.1. Identification of Typical Climate Types in the Past 30 Years
3.2. Characteristics of Vegetation Changes in Core Areas
3.3. Correlation between Vegetation Changes and Climate in Core Areas
3.4. Change Trend of Correlation Coefficients between Vegetation and Climate Factors in Core Areas
4. Discussion
4.1. Necessity of Analysis of Typical Climate Type Areas (Core Areas)
4.2. Vegetation Characteristics of Different Stages in CAs
4.3. Main Climate Driving Types in CAs
4.4. Staged Response of Vegetation to Climate Change in CAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Core Area Screening Principles of Climate Change in Southwest China
- ①
- Considering the spatial distribution and size of different climate change sub-regions, the core area in this study was uniformly defined as 20 grids, and each grid was 0.25° × 0.25° (about 25 km × 25 km).
- ②
- In the T+*-P− and T+*-P+ areas, the changing trend of temperature was mainly |K|, and the range of |K| of precipitation was appropriately scaled.
- ③
- When the overlapped significant regions and the regions with a high degree of climate impact were small, the distribution regions with a high degree of climate impact were the priority, and the core areas were selected by combining the two rules.
- ④
- The core area initially screened out in IV and V areas were closely connected with the middle part of their contact boundary, so a specific area was re-screened out after merging IV and V areas as the core area of the two areas.
Appendix B
Climate Change Types | Temperature | Precipitation |
---|---|---|
T+*-P+* | Significantly increased | Significantly increased |
T+*-P− | Significantly increased | Decreased but not to a significant level |
T+*-P+ | Significantly increased | Increased but not to a significant level |
NSC | Increased but not to a significant | Increased but not to a significant |
Indicators | Classification | Criteria | Grade Evaluation |
---|---|---|---|
Variability | Low | S (CV) < 0.95 | 1 |
High | S (CV) > 0.95 | 2 | |
Probability | Small | Pd < 0.95 | 1 |
Large | Pd > 0.95 | 2 | |
Slight | — | 4 | |
Effect degree | Mild | — | 5 |
Moderate | — | 6 | |
Intensive | — | 7 |
Climate Change Types | Vegetation Zones | Sub-Regions of Climate Change Types |
---|---|---|
T+*-P+* | I | T+*-P+*-I |
T+*-P− | I | T+*-P−-I |
II | T+*-P−-II | |
III | T+*-P−-III | |
IV | T+*-P−-IV | |
V | T+*-P−-V | |
VI | T+*-P−-VI | |
T+*-P+ | I | T+*-P+-I |
II | T+*-P+-II | |
III | T+*-P+-III | |
IV | T+*-P+-IV | |
V | T+*-P+-V | |
VI | T+*-P+-VI | |
NSC | VI | NSC-VI |
References
- Li, P.; Peng, C.; Wang, M.; Luo, Y.; Li, M.; Zhang, K.; Zhang, D.; Zhu, Q. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 2018, 637–638, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Piao, S.L.; Nan, H.; Huntingford, C.; Zeng, N.; Zeng, Z.; Chen, A. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Zeng, N.; Zeng, Z.Z.; Wang, Y.P. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.L.; Wang, X.H.; Park, T.; Tømmervik, H.; Nemani, R.R.; Myneni, R.B. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth. Environ. 2020, 1, 14–27. [Google Scholar]
- Lamchin, M.; Lee, W.K.; Jeon, S.W.; Wang, S.W.; Lim, C.H.; Song, C.; Sung, M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Lamchin, M.; Wang, W.; Lim, C.; Ochir, A.; Ukrainski, P.; Gebru, B.; Choi, Y.; Woo, S.; Lee, W. Understanding global spatio-temporal trends and the relationship between vegetation greenness and climate factors by land cover during 1982–2014. Glob. Ecol. Conserv. 2020, 24, e01299. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Zhang, Y.; Gao, B. NDVI-Based Greening of Alpine Steppe and Its Relationships with Climatic Change and Grazing Intensity in the Southwestern Tibetan Plateau. Land 2022, 11, 975. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.C.; Xiang, F.F.; Qin, W.M.; Jiang, W.X. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- de Jong, R.; Schaepman, M.E.; Furrer, R.; de Bruin, S.; Verburg, P.H. Spatial relationship between climatologies and changes in global vegetation activity. Glob. Chang. Biol. 2013, 19, 1953–1964. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Wu, S.; Chen, J.; Lü, M. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, L.; Liu, X.; Li, X.; Xu, Z. Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai-Tibet Plateau. Remote Sens. 2019, 11, 2421. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Alexandridis, V. Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
- Zindros, A.; Radoglou, K.; Milios, E.; Kitikidou, K. Tree line shift in the Olympus Mountain (Greece) and climate change. Forests 2020, 11, 985. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Wang, M.B.; Williamson, S.N.; Yang, D.Q. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Ganjurjav, H.; Gornish, E.S.; Hu, G.Z.; Schwartz, M.W.; Wan, Y.; Li, Y.; Gao, Q. Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2020, 287, 107943. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J.I.E. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Pan, N.; Lin, J.; Xu, C.; Wang, F.; Liu, Z. Greening and Browning of the Hexi Corridor in Northwest China: Spatial Patterns and Responses to Climatic Variability and Anthropogenic Drivers. Remote Sens. 2018, 10, 1270. [Google Scholar] [CrossRef] [Green Version]
- You, G.; Arain, M.A.; Wang, S.; Zhang, X.H.; Gu, Y.Y.; Gao, J.X. The spatial-temporal distributions of controlling factors on vegetation growth in Tibet Autonomous Region, Southwestern China. Environ. Res. Commun. 2019, 1, 091003. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, S.Y.; Hou, S.G.; Xu, Z.W.; Lu, H.Y. Normalized Difference Vegetation Index-based assessment of climate change impact on vegetation growth in the humid-arid transition zone in northern China during 1982–2013. Int. J. Climatol. 2019, 39, 5583–5598. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Liu, Z.; Zeng, Z.; Ciais, P.; Huang, M.; Liu, Y.; Piao, S.L. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agric. For. Meteorol. 2016, 224, 1–10. [Google Scholar] [CrossRef]
- Wang, X.H.; Piao, S.L.; Ciais, P.; Li, J.S.; Friedlingstein, P.; Koven, C.D.; Chen, A.P. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The physical science basis. In Contribution of Working Group, I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Cong, N.; Shen, M.G.; Yang, W.; Yang, Z.; Zhang, F.G.; Piao, S.L. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. Int. J. Biometeorol. 2017, 61, 1433–1444. [Google Scholar] [CrossRef]
- Pan, N.Q.; Feng, X.M.; Fu, B.J.; Wang, S.; Ji, F.; Pan, S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, D.; Lin, H.; Montenegro, A.; Zhu, X. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J. Climatol. 2015, 35, 687–698. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Qin, S.; Wu, B.; Wu, X.; Zhu, Y.; Shao, Y.; Gao, Y.; Jin, Q.; Lai, Z. Effects of seasonal variability of climatic factors on vegetation coverage across drylands in northern China. Land Degrad. Dev. 2018, 29, 1782–1791. [Google Scholar]
- Yuan, J.J.; Guo, J.Y.; Niu, Y.P.; Zhu, C.C.; Li, Z. Mean Sea Surface Model over the Sea of Japan Determined from Multi-Satellite Altimeter Data and Tide Gauge Records. Remote Sens. 2020, 12, 4168. [Google Scholar] [CrossRef]
- Li, X.C. Historical Geography: Geopolitics, Regional Economy and Culture; Peking University Press: Beijing, China, 2004; pp. 79–93. (In Chinese) [Google Scholar]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; Amir, A.K. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Zhao, W.J. Extreme weather and climate events in China under changing climate. Natl. Sci. Rev. 2020, 7, 938–943. [Google Scholar] [PubMed]
- Wang, M.; Jiang, C.; Sun, O.J. Spatially differentiated changes in regional climate and underlying drivers in southwestern China. J. For. Res. 2022, 33, 755–765. [Google Scholar]
- IPCC. Special Report on Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2018.
- China Meteorological Administration. Blue Book on Climate Change in China 2020; Science Press: Beijing, China, 2020.
- Wang, H.; Liu, H.; Cao, G.; Sanders, N.J.; Classen, A.T.; He, J.S. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 2020, 23, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.T.; Zhu, W.Q.; Zhang, Y.J. Seasonally and spatially varied controls of climatic factors on net primary productivity in alpine grasslands on the Tibetan Plateau. Glob. Ecol. Conserv. 2020, 21, e00814. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, H.; Piao, S.L.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.T.; Menzel, A.; Penuelas, J.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis: Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2013.
- Harris, I.; Osborn, T.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar]
- Buermann, W.G.; Forkel, M.; O’Sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–115. [Google Scholar] [PubMed] [Green Version]
- Knott, G.D. Interpolating Cubic Splines; Springer Science & Business Media: Berlin, Germany, 2012; pp. 1–244. [Google Scholar]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flugel, W.A.; Pepin, N.; Yao, T.D. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 dataset. J. Geophys. Res. Atmos. 2020, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Grosso, S.D.; Parton, W.J.; Derner, J.; Chen, M.; Compton, J.T. Simple models to predict grassland ecosystem C exchange and actual evapotranspiration using NDVI and environmental variables. Agric. For. Meteorol. 2018, 249, 1–10. [Google Scholar] [CrossRef]
- Yin, L.; Wang, X.; Feng, X.; Fu, B.; Chen, Y. A Comparison of SSEBop-Model-Based Evapotranspiration with Eight Evapotranspiration Products in the Yellow River Basin, China. Remote Sens. 2020, 12, 2528. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.L.; Janssens, I.A.; Zhu, Z.; Wang, T.; Wu, D.; Ciais, P.; Myneni, R.B.; Peaucelle, M.; Peng, S.S.; et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 2017, 1, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Zhou, Y. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, L.; Guo, X.Y.; Chen, D.L. Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int. J. Climatol. 2017, 37, 1278–1284. [Google Scholar] [CrossRef]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Raymond, J.D. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- IPCC. Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2017. [Google Scholar]
- Chen, Y.H.; Li, X.B.; Shi, P.J. Variation in NDVI Driven by Climate Factors Across China, 1983–1992. Chin. J. Plant. Ecol. 2001, 25, 716–720. (In Chinese) [Google Scholar]
- Maimaiti, A.; Rusuli, Y.; He, H.; Abudukerimu, B. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017. Chin. J. Plant. Ecol. 2019, 43, 490–500. (In Chinese) [Google Scholar]
- Zhu, X.; Dong, W.; Wei, Z.; Guo, Y.; Gao, X.; Wen, X.; Yang, S.; Zheng, Z.; Yan, D.; Zhu, Y.; et al. Multi-decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models. Int. J. Climatol. 2017, 38, 1533–1542. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S. Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.G.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S.L. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189–190, 71–80. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, Z.; Dong, W.; Wen, X.; Zheng, Z.; Chen, G.; Liu, Y. Projected temperature and precipitation changes on the Tibetan Plateau: Results from dynamical downscaling and CCSM4. Theor. Appl. Climatol. 2019, 138, 861–875. [Google Scholar] [CrossRef]
- Duan, J.P.; Li, L.; Chen, L.; Zhang, H.X. Time-dependent warming amplification over the Tibetan Plateau during the past few decades. Atmos. Sci. Lett. 2020, 21, e998. [Google Scholar] [CrossRef]
- Yang, K. Observed regional climate change in Tibet over the last decades. In Regional Climate and Climate Change in the Region of Tibet; Distributed by Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Shen, Q.; Gao, G.; Han, F.; Xiao, F.; Ma, Y.; Wang, S.; Fu, B. Quantifying the effects of human activities and climate variability on vegetation cover change in a hyper-arid endorheic basin. Land Degrad. Dev. 2018, 29, 3294–3304. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Yu, Y.Q.; Zhang, T.Y.; Fang, J.Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Cui, L.; Wang, L.; Qu, S.; Singh, R.P.; Lai, Z.; Yao, R. Spatiotemporal extremes of temperature and precipitation during 1960–2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics. Theor. Appl. Climatol. 2019, 136, 675–692. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Chen, X.X.; Liu, Z.J. Increased spatial heterogeneity in vegetation greenness due to vegetation greening in mainland China. Ecol. Indic. 2019, 99, 240–250. [Google Scholar] [CrossRef]
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Scholes, R.J.; Steffen, W.L.; Wirth, C. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Sohn, B.J. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J. Geophys. Res. 2010, 115, D14101. [Google Scholar] [CrossRef]
- Kong, D.D.; Zhang, Q.; Singh, V.P.; Shi, P.J. Seasonal vegetation response to climate change in the northern hemisphere (1982–2013). Global Planet Chang. 2017, 148, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, L.W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci. Rep. 2016, 6, 24367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data | Data Sources | Resolution | Data Accessibility Links | Access Date | Access Format |
---|---|---|---|---|---|
GIMMS NDVI3g | GIMMS | 8 × 8 km | https://ecocast.arc.nasa.gov/data/pub/GIMMS/ | 18 November 2018 | .nc4 |
CRU_TS4.02 | Climate Research Unit | 0.5° × 0.5° | https://crudata.uea.ac.uk/cru/data/hrg/ | 28 June 2019 | .nc |
Global Artificial Impervious Area | Tsinghua university data | 30 × 30 m | http://data.ess.tsinghua.edu.cn | 31 December 2019 | .tif |
Digital elevation model | Resource and Environment Science and Data Center | 1 × 1 km | https://www.resdc.cn/data.aspx?DATAID=123 | 28 September 2019 | GRID |
China’s vegetation zoning data | Resource and Environment Science and Data Center | — | http://www.resdc.cn/data.aspx?DATAID=133 | 1 December 2017 | .shp |
1:1 million vegetation map of China | Resource and Environment Science and Data Center | — | https://www.resdc.cn/data.aspx?DATAID=122 | 1 December 2017 | .shp |
NDVI Changes Driving Factors | Zoning Criterias | ||||
---|---|---|---|---|---|
R1 | R2 | R3 | |||
Climate factors | Changed by temperature and precipitation strongly | [T+P]+ | |t| > t0.01 | |t| > t0.01 | F > F0.05 |
Changed by temperature and precipitation weakly | [T+P]− | F > F0.05 | |||
Changed by temperature | T | |t| > t0.01 | F > F0.05 | ||
Changed by precipitation | P | |t| > t0.01 | F > F0.05 | ||
Changed by temperature weakly | T− | t0.05 < |t| ≤ t0.01 | F > F0.05 | ||
Changed by precipitation weakly | P− | t0.05 < |t| ≤t0.01 | F > F0.05 | ||
Non-climate factors | Changed by non-climate | NC | F ≤ F0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; An, Z. Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China. Land 2022, 11, 1179. https://doi.org/10.3390/land11081179
Wang M, An Z. Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China. Land. 2022; 11(8):1179. https://doi.org/10.3390/land11081179
Chicago/Turabian StyleWang, Meng, and Zhengfeng An. 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China" Land 11, no. 8: 1179. https://doi.org/10.3390/land11081179
APA StyleWang, M., & An, Z. (2022). Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China. Land, 11(8), 1179. https://doi.org/10.3390/land11081179