Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Land Use Changes
2.3. Soil Sampling and Analyses
2.4. Soil Quality Indices
2.5. Carbon and Nitrogen Stock
2.6. Statistical Analysis
3. Results
3.1. Effects of Land Use Systems on Soil Properties
3.2. Effects of Land Use on TOC, POC, MOC, and KMnO4-C
3.3. Effects of Land Use on OOC and its Fractions
3.4. Effects of Land Use on TN and its Fraction
3.5. Carbon and Nitrogen Stock
3.6. Relationship with Soil Properties and Pools of Soil C and N
3.7. Soil Quality Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.K.; Kumar, M.; Sharma, B.K.; Tarfadar, J.C. Depletion of organic carbon, phosphorus and potassium stock under pearl millet based cropping sequence in arid environment of India. Arid. Land Res. Manag. 2007, 21, 119–131. [Google Scholar] [CrossRef]
- Moharana, P.C.; Naitam, R.K.; Verma, T.P.; Meena, R.L.; Kumar, S.; Tailor, B.L.; Singh, R.S.; Singh, S.K.; Samal, S.K. Effect of long term cropping systems on soil organic carbon pools and soil quality in western plain of hot arid India. Arch. Agron. Soil Sci. 2017, 63, 1661–1675. [Google Scholar] [CrossRef]
- Trumper, K.; Ravilious, C.; Dickson, B. Carbon in Drylands: Desertification, Climate Change and Carbon Finance. In Proceedings of the A UNEP-UNDP-UNCCD Technical Note for Discussions at CRIC 7 Istanbul, Istanbul, Turkey, 3–14 November 2008; pp. 3–14. [Google Scholar]
- Lal, R. Soils and world food security. Soil Tillage Res. 2009, 102, 1–4. [Google Scholar] [CrossRef]
- Williams, M.; Dunkerley, D.; De Deckker, P.; Kershaw, P.; Chappell, J. Evidence from the Deserts, Quaternary Environments, 2nd ed.; Arnold: New York, NY, USA, 1998. [Google Scholar]
- Ojima, D.S.; Dirks, B.M.; Glenn, E.P.; Owensby, C.E.; Scurlock, J.O. Assessment of C budget for grasslands and dry lands of the world. Water Air Soil Pollut. 1993, 70, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Kumar, M.; Sharma, B.K. Changes in soil properties in hot arid region of India. J. Indian Soc. Soil Sci. 2009, 57, 24–30. [Google Scholar]
- de MoraesSá, J.C.; PotmaGonçalves, D.R.; Ferreira, L.A.; Mishra, U.; Inagaki, T.M.; Ferreira Furlan, F.J.; Moro, R.S.; Floriani, N.; Briedis, C.; de Oliveira Ferreira, A. Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions. Ecol. Indic. 2018, 84, 96–105. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma 2015, 237–238, 149–158. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Meena, V.S.; Alam, N.M.; Dograa, P.; Bhattacharyya, R.; Sharma, N.M.; Mishra, P.K. Impact of conservation practices on soil aggregation and the carbon management index after seven years of maize–wheat cropping system in the Indian Himalayas. Agric. Ecosyst. Environ. 2016, 216, 247–257. [Google Scholar] [CrossRef]
- Sharma, V.; Hussain, S.; Sharma, K.R.; Arya, V.M. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma 2014, 232–234, 81–87. [Google Scholar] [CrossRef]
- Shyampura, R.L.; Singh, S.K.; Singh, R.S.; Jain, B.L.; Gajbhiye, K.S. Soil Series of Rajasthan; (NBSS Publ. No. 95); NBSS & LUP: Nagpur, India, 2002. [Google Scholar]
- Veihmeyer, F.J.; Hendrickson, A.H. Soil density and root penetration. Soil Sci. 1948, 65, 487–493. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall India Pvt. Ltd.: New Delhi, India, 1967. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Improvement of Saline and Alkali Soils. In USDA Agricultural Handbook 60; U.S. Government printing office: Washington, DC, USA, 1954. [Google Scholar]
- Snyder, J.D.; Trofymow, J.A. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in pot and soil samples. Commun. Soil Sci. Plant Anal. 1984, 15, 587–597. [Google Scholar] [CrossRef]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar]
- Camberdella, C.A.; Elliott, E.T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizable organic carbon fractions and soil quality changes in an oxicpaleustaff under different pasture leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A rapid method for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-term applications of chemical and organic fertilizers on plant-available nitrogen pools and nitrogen management index. Biol. Fertil. Soils 2011, 47, 767–775. [Google Scholar] [CrossRef]
- Duval, M.E.; Martinez, J.M.M.; Galantini, J. Assessing soil quality indices based on soil organic carbon fractions in different long-term wheat systems under semiarid conditions. Soil Use Manag. 2020, 36, 71–82. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- R Core Team. R Version 3.6.1: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available online: https://www.R-project.org (accessed on 25 August 2021).
- Moharana, P.C.; Singh, R.S.; Singh, S.K.; Jena, R.K.; Naitam, R.K.; Verma, T.P.; Nogiya, M.; Meena, R.L.; Gupta, D.K.; Sunil, K.; et al. Assessment of soil quality monitoring indicators under long term rice cultivation in hot arid Ghaggar-flood plains of India. Arch. Agron. Soil Sci. 2018, 64, 2030–2044. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, M.; Pandey, C.B.; Ghosh, A.; Mukhopadhyay, S.; Sarkar, D. Differences in soil properties between irrigation and cropping sequences in the Thar Desert of India. Arid Land Res. Manag. 2013, 27, 17–31. [Google Scholar] [CrossRef]
- Khan, M.A.; Moharana, P.C.; Singh, S.K. Integrated natural resources and environmental impact assessment for sustainable development of Ganganagar district, Rajasthan. In Research Report, Division of Natural Resources and Environment; Central Arid Zone Research Institute: Jodhpur, India, 2003. [Google Scholar]
- Anantha, K.C.; Majumder, S.P.; Badole, S.; Padhan, D.; Datta, A.; Mandal, B.; Sreenivas, C.H. Pools of organic carbon in soils under a long-term rice–rice system with different organic amendments in hot, subhumid India. Carbon Manag. 2020, 11, 331–339. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Pandey, C.B.; Singh, G.B.; Singh, S.K.; Singh, R.K. Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural land uses in a humid tropical climate of India. Plant Soil 2010, 333, 453–467. [Google Scholar] [CrossRef]
- Kalambukattu, J.G.; Singh, R.; Patra, A.K.; Arunkumar, K. Soil carbon pools and carbon management index under different land use systems in the central Himalayan region. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 200–205. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Arshad, M.A. Particulate organic carbon content and potential mineralization as affected by tillage and texture. Soil Sci. Soc. Am. J. 1997, 61, 1382–1386. [Google Scholar] [CrossRef]
- Six, J.; Elliot, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Yu, P.; Han, K.; Li, Q.; Zhou, D. Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in North eastern China. Ecol. Indic. 2017, 73, 331–337. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and range land. Environ Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Soil organic carbon and total nitrogen stocks under different land usesin a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.R.; Mitiku, H.; Borresen, T.; Lal, R. Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degrad. Dev. 2008, 19, 351–367. [Google Scholar] [CrossRef]
- Westerhof, R.; Vilela, L.; Ayarza, M.; Zech, W. Land use effects on labile N extracted with permanganate and the nitrogen management index in the Cerrado region of Brazil. Biol. Fertil. Soils 1998, 27, 353–357. [Google Scholar] [CrossRef]
Land Use Systems | Year Started | Age (Year) | Management Practices |
---|---|---|---|
Uncultivated | 1955 | 60 | Uncultivated areas—mixed shrub and uncontrolled wild grass species, had not been disturbed in over six decades. |
Agroforestry | 1995 | 20 | Agroforestry systems—Eucalyptus plantation + pulse crop, either mung (Vigna radiata)/black gram (Vigna mungo) (summer). |
Citrus orchard | 1995 | 20 | Citrus (4 m × 4 m). Fertilizer application @ 0.6 kg N plant−1, 0.2 kg P2O5plant−1, and 0.3 kg K2O plant−1. FYM at the rate of 30 kg plant−1. |
Rice–wheat | 1975 | 40 | Rice (summer)–wheat (winter) cropping system. Fertilizer application at the rate of 150 kg N, 80 kg P2O5, and 60 kg K2O ha−1 (rice crop). Wheat at the rate of 120 kg N, 60 kg P2O5, and 40 kg K2O ha−1. FYM at the rate of 5 Mg ha−1 (wheat every year). |
Forage crops | 1985 | 30 | Forage crops (Berseem, oat, and Lucerne). Fertilizer application at the rate of 25 kg N, 120 kg P2O5, and 40 kg K2O ha−1. FYM at the rate of 25 Mg ha−1. First harvest—60–65 days after sowing. Following harvests were performed every 20 to 25 days after that. |
Land Use | Depth (cm) | BD (Mg m−3) | pHw | EC (dS m−1) | CaCO3 (%) | CEC (cmol (p+) kg−1) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|---|---|---|
Uncultivated | 0–20 | 1.46 abA | 8.47 aA | 0.39 aA | 2.73 aA | 11.36 bAc | 23.00 bA | 45.85 aA | 31.15 aA |
20–40 | 1.49 aA | 8.64 aA | 0.50 aA | 2.36 abAB | 11.63 bA | 26.71 aA | 44.36 aA | 28.92 aA | |
40–60 | 1.56 aA | 8.54 abA | 0.51 aA | 2.47 abAB | 11.19 cA | 29.19 aA | 40.04 aA | 30.77 aA | |
60–80 | 1.58 aA | 8.64 aA | 0.32 aA | 2.30 bAB | 11.00 aA | 30.52 aA | 39.96 bA | 29.52 aA | |
80–100 | 1.50 abA | 8.92 aA | 0.37 aA | 2.05 aB | 10.00 bB | 37.65 aA | 39.65 aA | 22.69 bA | |
Mean | 1.52 yz | 8.64 z | 0.42 z | 2.38 yz | 11.04 y | 29.42 z | 41.97 z | 28.61 z | |
Agroforestry | 0–20 | 1.46 abA | 8.22 abA | 0.30 abA | 2.70 aA | 11.07 cBC | 34.53 abA | 40.28 aB | 25.20 aB |
20–40 | 1.52 aA | 8.64 aA | 0.26 bA | 2.79 aA | 11.76 abAB | 32.30 aA | 44.77 aAB | 22.92 aB | |
40–60 | 1.52 aA | 8.75 aA | 0.30 bA | 2.81 aA | 13.39 abA | 26.04 aAB | 46.58 aB | 27.38 aB | |
60–80 | 1.55 abA | 8.75 aA | 0.33 aA | 2.82 aA | 9.33 bD | 20.87 aB | 47.74 aB | 31.39 aAB | |
80–100 | 1.53 aA | 8.78 abA | 0.28 abA | 2.35 aA | 10.00 bCD | 17.72 bB | 42.64 aAB | 39.64 aA | |
Mean | 1.52 yz | 8.63 z | 0.29 y | 2.70 z | 11.11 y | 26.29 z | 44.40 z | 29.31 z | |
Citrus orchard | 0–20 | 1.56 aA | 8.05 abcB | 0.32 abA | 2.34 abA | 11.07 cB | 28.21 abA | 44.19 aA | 27.59 aA |
20–40 | 1.57 aA | 8.39 bAB | 0.35 bA | 2.31 abA | 13.23 aA | 27.53 aA | 38.24 aA | 34.23 aA | |
40–60 | 1.53 aA | 8.69 aA | 0.23 bA | 2.65 abA | 13.62 aA | 25.14 aA | 43.06 aA | 31.80 aA | |
60–80 | 1.52 abA | 8.66 aA | 0.21 abA | 2.37 abA | 11.00 aB | 30.50 aA | 41.34 bA | 28.15 aA | |
80–100 | 1.52 abA | 8.63 abA | 0.23 bA | 2.09 aA | 10.10 bB | 31.52 aA | 43.44 aA | 25.04 bA | |
Mean | 1.54 z | 8.48 z | 0.27 y | 2.35 xyz | 11.80 yz | 28.58 z | 42.06 z | 29.36 z | |
Rice–wheat | 0–20 | 1.42 abB | 8.00 bcB | 0.25 bA | 1.58 bB | 12.74 bA | 37.21 aA | 34.19 aA | 28.59 aAB |
20–40 | 1.49 aAB | 8.08 cAB | 0.27 bA | 2.08 bA | 12.56 abA | 28.86 aA | 36.91 aA | 34.23 aA | |
40–60 | 1.53 aA | 8.21 bAB | 0.21 bA | 2.19 bA | 11.79 bcA | 24.48 aA | 42.73 aA | 32.80 aAB | |
60–80 | 1.50 bAB | 8.40 aA | 0.26 abA | 2.21 bA | 12.27 aA | 30.17 aA | 42.68 abA | 27.15 aAB | |
80–100 | 1.51 abAB | 8.37 bAB | 0.25 bA | 1.99 aA | 11.86 aA | 31.18 aA | 43.44 aA | 25.37 bB | |
Mean | 1.49 yz | 8.21 y | 0.25 y | 2.01 x | 12.25 z | 30.38 z | 39.99 z | 29.63 z | |
Forage crops | 0–20 | 1.39 bB | 7.70 cB | 0.29 abA | 1.73 bA | 15.01 aA | 37.21 aA | 34.19 aA | 28.59 aA |
20–40 | 1.48 aAB | 8.08 cA | 0.28 bA | 1.79 bA | 12.69 abB | 32.19 aA | 41.24 aA | 26.56 aA | |
40–60 | 1.50 aA | 8.17 bA | 0.27 bA | 2.32 abA | 10.70 cC | 24.48 aA | 42.73 aA | 32.80 aA | |
60–80 | 1.48 bAB | 8.35 aA | 0.18 bB | 2.39 abA | 12.18 aB | 30.17 aA | 43.68 abA | 26.15 aA | |
80–100 | 1.49 bAB | 8.40 bA | 0.24 bAB | 2.30 aA | 12.10 aB | 31.18 aA | 43.44 aA | 25.37 bA | |
Mean | 1.47 y | 8.14 y | 0.25 y | 2.11 xy | 12.54 z | 31.05 z | 41.06 z | 27.90 z |
Land Use | Depth (cm) | TOC (g kg−1) | POC (g kg−1) | MOC (g kg−1) | KMnO4-C (g kg−1) |
---|---|---|---|---|---|
Uncultivated | 0–20 | 4.27 dA | 1.46 dA | 2.81 cA | 0.24 dA |
20–40 | 3.60 cB | 1.37 dAB | 2.23 bB | 0.21 bAB | |
40–60 | 3.24 cB | 1.19 cB | 2.05 bcB | 0.19 cB | |
60–80 | 2.36 cC | 0.94 dC | 1.42 cC | 0.14 dC | |
80–100 | 2.02 bC | 0.91 bC | 1.10 bcC | 0.12 cdC | |
Mean | 3.10 v | 1.17 v | 1.92 x | 0.18 w | |
Agroforestry | 0–20 | 6.06 cA | 2.27 cA | 3.79 bcA | 0.35 cA |
20–40 | 3.48 cB | 1.48 dB | 2.01 bB | 0.28 bB | |
40–60 | 3.12 cB | 1.42 cB | 1.70 cB | 0.21 bcC | |
60–80 | 2.95 bcB | 1.47 bB | 1.49 bcBC | 0.26 bBC | |
80–100 | 2.10 bC | 1.14 aB | 0.97 cC | 0.27 aB | |
Mean | 3.54 w | 1.55 w | 1.99 x | 0.27 x | |
Citrus orchard | 0–20 | 6.72 cA | 3.06 bA | 3.67 bcA | 0.38 cA |
20–40 | 4.20 bcB | 2.11 cB | 2.09 bB | 0.33 bA | |
40–60 | 3.68 cBC | 1.21 cC | 2.47 bcB | 0.18 cB | |
60–80 | 3.20 bC | 1.28 bcC | 1.92 bB | 0.19 cB | |
80–100 | 2.75 bC | 0.99 abD | 1.76 bB | 0.17 bB | |
Mean | 4.11 x | 1.73 x | 2.38 xy | 0.25 x | |
Rice–wheat | 0–20 | 8.59 bA | 3.08 bA | 5.51 bA | 0.56 bA |
20–40 | 5.20 bB | 2.53 bB | 2.67 bB | 0.53 aA | |
40–60 | 4.76 bB | 1.97 bC | 2.79 bB | 0.29 bB | |
60–80 | 2.86 bcC | 1.11 cdD | 1.75 bcC | 0.13 dC | |
80–100 | 2.09 bD | 1.16 aD | 0.94 cC | 0.12 dC | |
Mean | 4.70 y | 1.97 y | 2.73 y | 0.32 y | |
Forage crops | 0–20 | 11.07 aA | 3.69 aA | 7.38 aA | 0.90 aA |
20–40 | 8.62 aB | 3.11 aB | 5.51 aAB | 0.63 aB | |
40–60 | 7.04 aBC | 2.38 aC | 4.66 aBC | 0.42 aC | |
60–80 | 5.23 aCD | 2.07 aC | 3.16 aC | 0.34 aD | |
80–100 | 4.04 aD | 1.12 aD | 2.92 aC | 0.16 bcE | |
Mean | 7.20 z | 2.47 z | 4.73 z | 0.49 z |
Land Use | Depth (cm) | OOC (g kg−1) | VLC (g kg−1) | LC (g kg−1) | LLC (g kg−1) | NLC (g kg−1) | AP (g kg−1) | PC (g kg−1) |
---|---|---|---|---|---|---|---|---|
Uncultivated | 0–20 | 2.95 eA | 0.46 dA | 1.07 cA | 1.43 cA | 1.31 bA | 1.53 cA | 2.74 dA |
20–40 | 2.21 dB | 0.40 dA | 0.85 bB | 0.95 bB | 1.39 bA | 1.25 dB | 2.35 bAB | |
40–60 | 1.77 cC | 0.29 cB | 0.65 cBC | 0.82 abBC | 1.47 bA | 0.95 bC | 2.29 cAB | |
60–80 | 1.30 cD | 0.21 cBC | 0.46 cC | 0.62 aBC | 1.06 cA | 0.67 bD | 1.69 cBC | |
80–100 | 1.10 cD | 0.19 cC | 0.47 bC | 0.43 bC | 0.92 abA | 0.67 bD | 1.35 bC | |
Mean | 1.87 w | 0.31 v | 0.70 w | 0.85 w | 1.23 y | 1.01 w | 2.08 x | |
Agroforestry | 0–20 | 4.34 dA | 0.69 cA | 1.21 cA | 2.44 bA | 1.72 bA | 1.90 cA | 4.16 cA |
20–40 | 2.46 cdB | 0.64 cA | 0.99 bB | 0.83 bB | 1.02 bABC | 1.63 cdB | 1.85 bB | |
40–60 | 1.79 cB | 0.42 bcB | 0.75 bcC | 0.61 bB | 1.33 bAB | 1.17 bC | 1.95 cB | |
60–80 | 2.17 abB | 0.31 abBC | 0.86 aBC | 0.99 aB | 0.79 cBC | 1.18 aC | 1.77 cB | |
80–100 | 1.68 bB | 0.22 cC | 0.50 cD | 0.95 abB | 0.42 bC | 0.73 bD | 1.38 bB | |
Mean | 2.49 x | 0.46 w | 0.87 x | 1.17 x | 1.06 y | 1.32 x | 2.22 x | |
Citrus orchard | 0–20 | 5.17 cA | 0.90 bA | 1.80 bA | 2.47 bA | 1.56 bA | 2.70 bA | 4.03 cA |
20–40 | 3.08 cB | 0.82 bA | 1.24 abA | 1.02 bB | 1.12 bA | 2.06 bcB | 2.14 bB | |
40–60 | 2.35 bcC | 0.47 abB | 0.62 cC | 1.25 abB | 1.33 bA | 1.09 bC | 2.59 bcB | |
60–80 | 1.57 cD | 0.28 bcC | 0.41 cC | 0.87 aB | 1.63 bA | 0.69 bC | 2.51 bB | |
80–100 | 1.37 bcD | 0.25 bcC | 0.39 bC | 0.73 abB | 1.39 abA | 0.64 bC | 2.11 bB | |
Mean | 2.71 x | 0.54 x | 0.89 x | 1.27 xy | 1.41 y | 1.44 x | 2.68 y | |
Rice–wheat | 0–20 | 5.95 bA | 1.04 bA | 2.10 bA | 2.81 abA | 2.64 abA | 3.14 bA | 5.45 bA |
20–40 | 4.33 bB | 0.89 bB | 1.61 aB | 1.83 aB | 0.88 bC | 2.49 abB | 2.71 bBC | |
40–60 | 2.88 abC | 0.62 aC | 0.88 abC | 1.39 abBC | 1.88 bAB | 1.50 aC | 3.27 bB | |
60–80 | 1.74 bcD | 0.35 abD | 0.50 cCD | 0.90 aCD | 1.11 bcBC | 0.84 bD | 2.01 bcCD | |
80–100 | 1.41 bcD | 0.33 bD | 0.39 bD | 0.68 abD | 0.69 bC | 0.72 bD | 1.37 bD | |
Mean | 3.26 y | 0.65 y | 1.09 y | 1.52 y | 1.44 y | 1.74 y | 2.96 y | |
Forage crops | 0–20 | 7.29 aA | 1.27 aA | 2.60 aA | 3.41 aA | 3.78 aA | 3.87 aA | 7.20 aA |
20–40 | 5.18 aB | 1.02 aB | 1.75 aB | 2.40 aB | 3.44 aA | 2.78 aB | 5.84 aAB | |
40–60 | 3.22 aC | 0.50 abC | 0.99 aC | 1.73 aC | 3.82 aA | 1.49 aC | 5.55 aAB | |
60–80 | 2.34 aD | 0.41 aC | 0.70 bD | 1.24 aC | 2.89 aA | 1.10 bD | 4.13 aBC | |
80–100 | 2.21 aD | 0.44 aC | 0.61 aD | 1.17 aC | 1.83 aA | 1.04 aD | 3.00 aC | |
Mean | 4.05 z | 0.73 z | 1.33 z | 1.99 z | 3.15 z | 2.06 z | 5.14 z |
Land Use | Depth (cm) | TN (mg kg−1) | KMnO4-N (mg kg−1) | Org-N (mg kg−1) | NH4-N (mg kg−1) | NO3-N (mg kg−1) |
---|---|---|---|---|---|---|
Uncultivated | 0–20 | 338 cA | 42.5 cA | 324 cA | 7.07 cA | 6.40 bA |
20–40 | 307 bcA | 25.8 cB | 299 bcA | 4.57 bcB | 2.90 dB | |
40–60 | 244 cB | 24.4 bB | 239 cB | 2.53 aC | 2.38 abBC | |
60–80 | 200 cBC | 26.5 aB | 196 cB | 2.10 abC | 1.77 abBC | |
80–100 | 181 bC | 22.4 bB | 178 bB | 1.69 aC | 1.39 aC | |
Mean | 254 x | 28.3 x | 247 x | 3.59 xy | 2.97 x | |
Agroforestry | 0–20 | 392 cA | 45.6 cA | 380 cA | 6.07 cA | 6.40 bA |
20–40 | 244 cB | 39.4 bB | 237 cB | 3.90 cB | 2.99 dB | |
40–60 | 243 cB | 25.6 bC | 239 cB | 2.38 aC | 2.05 bBC | |
60–80 | 198 cBC | 24.6 aC | 195 cBC | 1.43 bC | 1.40 bC | |
80–100 | 144 bC | 21.7 bC | 141 bC | 1.69 aC | 1.25 aC | |
Mean | 244 x | 31.4 x | 238 x | 3.10 x | 2.82 x | |
Citrus orchard | 0–20 | 504 bA | 61.9 bA | 489 bA | 7.73 bcA | 8.07 abA |
20–40 | 308 abB | 56.3 aA | 297 bcB | 6.23 abA | 4.66 cB | |
40–60 | 252 cB | 34.9 aB | 247 cB | 2.87 aB | 2.72 abC | |
60–80 | 261 bB | 28.3 aBC | 256 bB | 2.37 aB | 2.10 abC | |
80–100 | 257 aB | 23.9 abC | 253 aB | 2.03 aB | 1.85 aC | |
Mean | 316 y | 41.1 y | 308 y | 4.25 yz | 3.88 y | |
Rice–wheat | 0–20 | 548 bA | 98.6 aA | 528 bA | 9.73 aA | 10.07 aA |
20–40 | 350 bB | 54.8 aB | 335 bB | 6.90 aB | 7.90 aB | |
40–60 | 338 bB | 33.8 aC | 332 bB | 3.20 aC | 3.05 aC | |
60–80 | 220 bcC | 26.8 aD | 215 bcC | 2.70 aC | 2.37 aC | |
80–100 | 160 bD | 25.5 abD | 155 bD | 2.36 aC | 2.18 aC | |
Mean | 323 y | 47.9 z | 313 y | 4.98 z | 5.11 z | |
Forage crops | 0–20 | 815 aA | 100.4 aA | 799 aA | 9.07 abA | 7.73 bA |
20–40 | 585 aB | 57.8 aB | 573 aB | 6.23 abB | 5.90 bB | |
40–60 | 462 aC | 36.6 aC | 457 aC | 2.87 aC | 2.72 abC | |
60–80 | 317 aD | 28.8 aD | 312 aD | 2.37 aC | 2.10 abC | |
80–100 | 262 aD | 26.9 aD | 258 aD | 2.13 aC | 1.95 aC | |
Mean | 488 z | 50.1 z | 480 z | 4.53 z | 4.08 y |
Parameters | BD | pH | EC | CaCO3 | CEC | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|
TOC | −0.421 b | −0.766 b | −0.097 | −0.364 b | 0.455 b | 0.210 | −0.280 a | −0.016 |
WBC | −0.462 b | −0.731 b | −0.072 | −0.373 b | 0.461 b | 0.170 | −0.253 a | 0.012 |
POC | −0.390 b | −0.747 b | −0.106 | −0.356 b | 0.405 b | 0.169 | −0.266 a | 0.026 |
MOC | −0.408 b | −0.724 b | −0.086 | −0.343 b | 0.449 b | 0.215 | −0.268 a | −0.036 |
KMnO4-C | −0.447 b | −0.691 b | −0.104 | −0.396 b | 0.453 b | 0.145 | −0.290 a | 0.084 |
VLC | −0.329 b | −0.735 b | −0.109 | −0.378 b | 0.596 b | 0.179 | −0.272 a | 0.019 |
LC | −0.432 b | −0.703 b | 0.037 | −0.349 b | 0.476 b | 0.124 | −0.202 | 0.026 |
LLC | −0.473 b | −0.658 b | −0.128 | −0.342 b | 0.346 b | 0.181 | −0.253 a | −0.003 |
NLC | −0.221 | −0.571 b | −0.105 | −0.232 a | 0.299 b | 0.201 | −0.230 a | −0.054 |
AC | −0.405 b | −0.726 b | −0.011 | −0.364 b | 0.524 b | 0.144 | −0.229 a | 0.025 |
PC | −0.388 b | −0.712 b | −0.134 | −0.327 b | 0.373 b | 0.224 | −0.280 a | −0.037 |
TN | −0.433 b | −0.726 b | −0.072 | −0.375 b | 0.445 b | 0.208 | −0.286 a | −0.008 |
Org-N | −0.431 b | −0.722 b | −0.076 | −0.376 b | 0.442 b | 0.208 | −0.285 a | −0.008 |
KMnO4-N | −0.419 b | −0.657 b | −0.060 | −0.419 b | 0.504 b | 0.208 | −0.346 b | 0.051 |
NH4+-N | −0.357 b | −0.634 b | 0.114 | −0.260 a | 0.446 b | 0.155 | −0.202 | −0.017 |
NO3--N | −0.413 b | −0.657 b | 0.001 | −0.257 a | 0.367 b | 0.180 | −0.246 a | −0.009 |
Land Use | Depth (cm) | CPI | LIC | CMI | NPI | LIN | NMI |
---|---|---|---|---|---|---|---|
Uncultivated | 0–20 | 1.00 dA | 1.00 bA | 100 dA | 1.00 cA | 1.00 bA | 100 cA |
20–40 | 1.00 cA | 1.00 bA | 100 bA | 1.00 bA | 1.00 bA | 100 cA | |
40–60 | 1.00 cA | 1.00 aA | 100 cA | 1.00 bA | 1.00 aA | 100 bA | |
60–80 | 1.00 cA | 1.00 bA | 100 dA | 1.00 bA | 1.00 aA | 100 aA | |
80–100 | 1.00 bA | 1.00 bA | 100 bcA | 1.00 bcA | 1.00 abA | 100 aA | |
Mean | 1.00 w | 1.00 y | 100 w | 1.00 x | 1.00 y | 100 y | |
Agroforestry | 0–20 | 1.42 cA | 1.06 bB | 150 cAB | 1.17 cA | 0.93 bB | 107 bcB |
20–40 | 0.98 cB | 1.45 abB | 142 bAB | 0.81 bA | 2.11 aA | 169 bA | |
40–60 | 0.97 cB | 1.23 aB | 115 bcC | 0.98 bA | 1.13 aB | 106 abB | |
60–80 | 1.25 bcAB | 1.55 aB | 190 bAB | 1.02 bA | 0.97 aB | 97 aB | |
80–100 | 1.04 bB | 2.23 aA | 232 aA | 0.80 cA | 1.31 abB | 103 aB | |
Mean | 1.13 xw | 1.51 x | 166 y | 0.96 x | 1.29 z | 116 y | |
Citrus orchard | 0–20 | 1.58 cA | 1.05 bA | 162 cA | 1.51 bA | 1.00 bBC | 147 bB |
20–40 | 1.18 cB | 1.43 abA | 161 bA | 1.01 bB | 2.52 aA | 249 aA | |
40–60 | 1.15 cB | 0.85 aA | 93 cB | 1.04 bAB | 1.48 aB | 152 aB | |
60–80 | 1.35 bAB | 1.01 bA | 137 cAB | 1.32 abAB | 0.81 abBC | 109 aB | |
80–100 | 1.36 bAB | 0.98 bcA | 134 bAB | 1.47 abAB | 0.73 bC | 105 aB | |
Mean | 1.32 xy | 1.06 y | 137 x | 1.27 y | 1.31 z | 152 z | |
Rice–wheat | 0–20 | 2.02 bA | 1.21 abB | 242 bA | 1.63 bA | 1.56 aAB | 249 aA |
20–40 | 1.46 bB | 1.82 aA | 267 aA | 1.15 bBC | 2.04 aA | 237 abA | |
40–60 | 1.48 bB | 1.07 aBC | 158 bB | 1.40 bAB | 1.05 aB | 141 abB | |
60–80 | 1.21 bcBC | 0.76 bC | 90 dC | 1.11 bBC | 0.93 aB | 103 aB | |
80–100 | 1.04 bC | 0.89 bcBC | 93 cC | 0.88 cC | 1.48 aAB | 123 aB | |
Mean | 1.44 y | 1.15 y | 170 y | 1.24 y | 1.41 z | 171 z | |
Forage crops | 0–20 | 2.59 aA | 1.53 aA | 395 aA | 2.42 aA | 0.98 bAB | 236 aA |
20–40 | 2.39 aAB | 1.28 abAB | 306 aB | 1.92 aAB | 1.22 bA | 233 abA | |
40–60 | 2.19 aAB | 1.05 aB | 226 aC | 1.92 aAB | 0.83 aAB | 150 aB | |
60–80 | 2.22 aAB | 1.07 bB | 237 aC | 1.61 aB | 0.67 bB | 108 aB | |
80–100 | 2.01 aB | 0.67 cC | 130 bcD | 1.51 aB | 0.81 bAB | 118 aB | |
Mean | 2.28 z | 1.12 y | 259 z | 1.88 z | 0.90 y | 169 z |
Label | PC1 | PC2 | PC3 |
---|---|---|---|
Eigenvalue | 15.10 | 1.50 | 0.38 |
Variance (%) | 83.87 | 8.32 | 2.12 |
Cumulative variance (%) | 83.9 | 92.2 | 94.3 |
Variables | |||
TOC | 0.98 | 0.20 | 0.05 |
OOC | 0.97 | −0.17 | 0.09 |
POC | 0.94 | −0.07 | −0.08 |
MOC | 0.93 | 0.31 | 0.11 |
KMnO4-C | 0.93 | −0.01 | −0.22 |
VLC | 0.92 | −0.22 | −0.18 |
LC | 0.94 | −0.24 | −0.15 |
LLC | 0.89 | −0.09 | 0.36 |
NLC | 0.67 | 0.70 | −0.04 |
AC | 0.95 | −0.24 | −0.16 |
PC | 0.90 | 0.41 | 0.16 |
TN | 0.96 | 0.11 | −0.08 |
Org-N | 0.96 | 0.13 | −0.08 |
KmnO4-N | 0.91 | −0.25 | −0.01 |
NH4-N | 0.85 | −0.39 | 0.16 |
NO3-N | 0.84 | −0.43 | 0.16 |
Profile C stock | 0.97 | 0.22 | 0.04 |
Profile N stock | 0.95 | 0.13 | −0.08 |
Label | PC1 | PC2 | PC3 |
---|---|---|---|
Eigenvalue | 3.84 | 2.31 | 1.92 |
Variance (%) | 32.0 | 19.2 | 16.0 |
Cumulative variance (%) | 32.0 | 51.2 | 67.2 |
Variables | |||
CPI | 0.76 | −0.11 | 0.43 |
LIC | 0.19 | 0.75 | 0.14 |
CMI | 0.77 | 0.42 | 0.35 |
NPI | 0.79 | −0.18 | 0.37 |
LIN | −0.05 | 0.79 | −0.33 |
NMI | 0.60 | 0.64 | −0.08 |
C/N | 0.27 | 0.00 | 0.50 |
POC/TOC | −0.46 | 0.62 | 0.09 |
OOC/LBN | 0.40 | −0.18 | 0.21 |
TOC/clay | 0.64 | −0.25 | −0.42 |
CSR | −0.71 | 0.10 | 0.56 |
NSR | −0.54 | 0.01 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moharana, P.C.; Meena, R.L.; Nogiya, M.; Jena, R.K.; Sharma, G.K.; Sahoo, S.; Jha, P.K.; Aditi, K.; Vara Prasad, P.V. Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India. Land 2022, 11, 1180. https://doi.org/10.3390/land11081180
Moharana PC, Meena RL, Nogiya M, Jena RK, Sharma GK, Sahoo S, Jha PK, Aditi K, Vara Prasad PV. Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India. Land. 2022; 11(8):1180. https://doi.org/10.3390/land11081180
Chicago/Turabian StyleMoharana, Pravash Chandra, Roshan Lal Meena, Mahaveer Nogiya, Roomesh Kumar Jena, Gulshan Kumar Sharma, Sonalika Sahoo, Prakash Kumar Jha, Kumari Aditi, and P. V. Vara Prasad. 2022. "Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India" Land 11, no. 8: 1180. https://doi.org/10.3390/land11081180
APA StyleMoharana, P. C., Meena, R. L., Nogiya, M., Jena, R. K., Sharma, G. K., Sahoo, S., Jha, P. K., Aditi, K., & Vara Prasad, P. V. (2022). Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India. Land, 11(8), 1180. https://doi.org/10.3390/land11081180