Insights into Boreal Forest Disturbance from Canopy Stability Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1—Forest Canopy Stability Index
2.2. Step 2—Identifying Disturbance Factors That Cause Forest Canopy Instability
2.2.1. Disturbance Factors
- (a)
- Direct drives of forest disturbance (harvest/logging, wildfire, insect infestation)—Data on the presence/absence of wildfire from years 1973 to 2020 [26,27,28,29,30] and forest harvesting from years approximately 1976 to 2020 [3,26,30,31,32] were compiled from national and provincial sources. Insect disturbance severity was ranked and combined from provincial datasets (Figure S1) [33,34]. Insect disturbance layers were combined and ranked for Ontario and Quebec as shown in Tables S2 and S3.
- (b)
- Indirect correlates of forest disturbance (land use and infrastructure; roads)—Land use and infrastructure disturbances included powerlines, railways, seismic lines, pipelines, dams, airstrips, mines, reservoirs, settlements, well sites, agriculture, and oil and gas, derived from provincial layers [3,35,36]. The road network [37,38,39] was buffered to 500 m and included as a separate input. Numerous studies have shown that proximity to roads and urban settlements, along with other built infrastructure, impacts forest cover, structure, and composition and elevates the probability of fragmentation [40,41,42,43].
- (c)
- Environmental factors associated with different disturbance regimes (landform classes, geological substrate, Topographic Wetness Index (TWI)). Previous studies have shown that these environmental factors influence the likelihood or intensity of wildfires, harvesting, or insect infestations [44,45,46,47]. The Global SRTM Landforms [48] were simplified into categories as shown in Table S1. Surficial geology was categorized based on Canadian Geoscience Maps [49], as seen in Table S4. TWI describes the topographic controls on the tendency for an area to accumulate water and was calculated [50] using the SRTM digital elevation model [51] and Whitebox tools [52].
2.2.2. Building the GBM Models
2.2.3. Partial Dependence Plots (PDP) and Individual Conditional Expectation (ICE) Plots
2.2.4. Ablation Study
2.3. Time Series Pixel Drill
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taye, F.A.; Folkersen, M.V.; Fleming, C.M.; Buckwell, A.; Mackey, B.; Diwakar, K.C.; Le, D.; Hasan, S.; Ange, C.S. The Economic Values of Global Forest Ecosystem Services: A Meta-Analysis. Ecol. Econ. 2021, 189, 107145. [Google Scholar] [CrossRef]
- Lindenmayer, D.; Zylstra, P. Identifying and Managing Disturbance-Stimulated Flammability in Woody Ecosystems. Biol. Rev. 2023, 99, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Mackey, B.; Campbell, C.; Norman, P.; Hugh, S.; DellaSala, D.A.; Malcolm, J.R.; Desrochers, M.; Drapeau, P. Assessing the Cumulative Impacts of Forest Management on Forest Age Structure Development and Woodland Caribou Habitat in Boreal Landscapes: A Case Study from Two Canadian Provinces. Land 2024, 13, 6. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W. Assessment of Forest Disturbances by Selective Logging and Forest Fires in the Brazilian Amazon Using Landsat Data. Int. J. Remote Sens. 2013, 34, 1057–1086. [Google Scholar] [CrossRef]
- Seidl, R.; Honkaniemi, J.; Aakala, T.; Aleinikov, A.; Angelstam, P.; Bouchard, M.; Boulanger, Y.; Burton, P.J.; De Grandpré, L.; Gauthier, S.; et al. Globally Consistent Climate Sensitivity of Natural Disturbances across Boreal and Temperate Forest Ecosystems. Ecography 2020, 43, 967–978. [Google Scholar] [CrossRef]
- van Lierop, P.; Lindquist, E.; Sathyapala, S.; Franceschini, G. Global Forest Area Disturbance from Fire, Insect Pests, Diseases and Severe Weather Events. For. Ecol. Manag. 2015, 352, 78–88. [Google Scholar] [CrossRef]
- St-Pierre, F.; Drapeau, P.; St-Laurent, M.-H. Drivers of Vegetation Regrowth on Logging Roads in the Boreal Forest: Implications for Restoration of Woodland Caribou Habitat. For. Ecol. Manag. 2021, 482, 118846. [Google Scholar] [CrossRef]
- Gauthier, S.; Kuuluvainen, T.; Macdonald, S.E.; Shorohova, E.; Shvidenko, A.; Bélisle, A.-C.; Vaillancourt, M.-A.; Leduc, A.; Grosbois, G.; Bergeron, Y.; et al. Ecosystem Management of the Boreal Forest in the Era of Global Change. In Boreal Forests in the Face of Climate Change: Sustainable Management; Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2023; pp. 3–49. ISBN 978-3-031-15988-6. [Google Scholar]
- Bowd, E.J.; Lindenmayer, D.B.; Banks, S.C.; Blair, D.P. Logging and Fire Regimes Alter Plant Communities. Ecol. Appl. 2018, 28, 826–841. [Google Scholar] [CrossRef]
- Morgan, E.A.; Cadman, T.; Mackey, B. Integrating Forest Management across the Landscape: A Three Pillar Framework. J. Environ. Plan. Manag. 2020, 64, 1735–1769. [Google Scholar] [CrossRef]
- Buxton, R.T.; Bennett, J.R.; Reid, A.J.; Shulman, C.; Cooke, S.J.; Francis, C.M.; Nyboer, E.A.; Pritchard, G.; Binley, A.D.; Avery-Gomm, S.; et al. Key Information Needs to Move from Knowledge to Action for Biodiversity Conservation in Canada. Biol. Conserv. 2021, 256, 108983. [Google Scholar] [CrossRef]
- Mackey, B.; Lindenmayer, D.; Norman, P.; Taylor, C.; Gould, S. Are Fire Refugia Less Predictable Due to Climate Change? Environ. Res. Lett. 2021, 16, 114028. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Hoang, N.T.; Kanemoto, K. Mapping the Deforestation Footprint of Nations Reveals Growing Threat to Tropical Forests. Nat. Ecol. Evol. 2021, 5, 845–853. [Google Scholar] [CrossRef]
- Lang, N.; Jetz, W.; Schindler, K.; Wegner, J.D. A High-Resolution Canopy Height Model of the Earth. Nat. Ecol. Evol. 2023, 7, 1778–1789. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Taylor, R.; Davis, C.; Brandt, J.; Parker, M.; Stäuble, T.; Said, Z. The Rise of Big Data and Supporting Technologies in Keeping Watch on the World’s Forests. Int. For. Rev. 2020, 22, 129–141. [Google Scholar] [CrossRef]
- Shestakova, T.A.; Mackey, B.; Hugh, S.; Dean, J.; Kukavskaya, E.A.; Laflamme, J.; Shvetsov, E.G.; Rogers, B.M. Mapping Forest Stability within Major Biomes Using Canopy Indices Derived from MODIS Time Series. Remote Sens. 2022, 14, 3813. [Google Scholar] [CrossRef]
- Brandt, J.P. The Extent of the North American Boreal Zone. Environ. Rev. 2009, 17, 101–161. [Google Scholar] [CrossRef]
- Mackey, B.; Berry, S.; Hugh, S.; Ferrier, S.; Harwood, T.D.; Williams, K.J. Ecosystem Greenspots: Identifying Potential Drought, Fire, and Climate-Change Micro-Refuges. Ecol. Appl. 2012, 22, 1852–1864. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. (MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061 2021. Combined MODIS Leaf Area Index (LAI) Data. Available online: https://lpdaac.usgs.gov/products/mcd15a3hv061/ (accessed on 29 September 2024).
- Vermote, E. MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V061 2021. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09A1 (accessed on 29 September 2024).
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land Cover Classification in an Era of Big and Open Data: Optimizing Localized Implementation and Training Data Selection to Improve Mapping Outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- McKenney, D.W.; Hutchinson, M.F.; Papadopol, P.; Lawrence, K.; Pedlar, J.; Campbell, K.; Milewska, E.; Hopkinson, R.F.; Price, D.; Owen, T. Customized Spatial Climate Models for North America. Bull. Am. Meteorol. Soc. 2011, 92, 1611–1622. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Campbell, L.B. Mass Data Processing of Time Series Landsat Imagery: Pixels to Data Products for Forest Monitoring. Int. J. Digit. Earth 2016, 9, 1035–1054. [Google Scholar] [CrossRef]
- Natural Resources Canada. Canadian Wildland Fire Information System|Canadian National Fire Database (CNFDB). Available online: https://cwfis.cfs.nrcan.gc.ca/ha/nfdb (accessed on 31 May 2024).
- Ministère des Ressources Naturelles et des Forêts. Feux de Forêt. Available online: https://www.donneesquebec.ca/recherche/dataset/feux-de-foret (accessed on 21 June 2023).
- Ontario Ministry of Natural Resources and Forestry. Fire Disturbance Area. Available online: https://geohub.lio.gov.on.ca/datasets/lio::fire-disturbance-area/about (accessed on 15 June 2023).
- National forest Information System. CA Forest Fires 1985–2020. Available online: https://opendata.nfis.org/mapserver/nfis-change_eng.html (accessed on 23 April 2023).
- Land Information Ontario. Forest Resources Inventory Packaged Products—Version 2. Available online: https://geohub.lio.gov.on.ca/maps/lio::forest-resources-inventory-packaged-products-version-2/about (accessed on 9 October 2023).
- Ministère des Ressources Naturelles et des Forêts. Récolte et Autres Interventions Sylvicoles—Données Québec. Available online: https://www.donneesquebec.ca/recherche/dataset/recolte-et-reboisement (accessed on 4 April 2023).
- Ministère des Ressources Naturelles et des Forêts. Données Sur Les Perturbations Naturelles—Insecte. Available online: https://www.donneesquebec.ca/recherche/dataset?organization=&q=Donn%C3%A9es+sur+les+perturbations+naturelles (accessed on 23 April 2023).
- Land Information Ontario. Forest Insect Damage Event. Available online: https://geohub.lio.gov.on.ca/documents/forest-insect-damage-event/about (accessed on 23 April 2023).
- Land Information Ontario. Ontario Land Cover Compilation v.2.0. Available online: https://geohub.lio.gov.on.ca/documents/7aa998fdf100434da27a41f1c637382c/about (accessed on 12 April 2023).
- Ministère de l’Environnement. Utilisation Du Territoire—Données Québec. Available online: https://www.donneesquebec.ca/recherche/dataset/utilisation-du-territoire (accessed on 13 April 2023).
- Ministère des Ressources Naturelles et des Forêts. Carte Écoforestière à Jour—Données Québec. Available online: https://www.donneesquebec.ca/recherche/dataset/carte-ecoforestiere-avec-perturbations (accessed on 15 June 2023).
- Land Information Ontario. MNRF Road Segments. Available online: https://geohub.lio.gov.on.ca/datasets/lio::mnrf-road-segments/explore (accessed on 17 April 2023).
- Statistics Canada. National Road Network—NRN—GeoBase Series—Open Government Portal. Available online: https://open.canada.ca/data/en/dataset/3d282116-e556-400c-9306-ca1a3cada77f (accessed on 17 April 2023).
- Venier, L.A.; Thompson, I.D.; Fleming, R.; Malcolm, J.; Aubin, I.; Trofymow, J.A.; Langor, D.; Sturrock, R.; Patry, C.; Outerbridge, R.O.; et al. Effects of Natural Resource Development on the Terrestrial Biodiversity of Canadian Boreal Forests. Environ. Rev. 2014, 22, 457–490. [Google Scholar] [CrossRef]
- Kuklina, V.; Bilichenko, I.; Bogdanov, V.; Kobylkin, D.; Petrov, A.N.; Shiklomanov, N. Informal Road Networks and Sustainability of Siberian Boreal Forest Landscapes: Case Study of the Vershina Khandy Taiga. Environ. Res. Lett. 2021, 16, 115001. [Google Scholar] [CrossRef]
- Moreno-Sanchez, R.; Torres-Rojo, J.M.; Moreno-Sanchez, F.; Hawkins, S.; Little, J.; McPartland, S. National Assessment of the Fragmentation, Accessibility and Anthropogenic Pressure on the Forests in Mexico. J. For. Res. 2012, 23, 529–541. [Google Scholar] [CrossRef]
- Romero-Sanchez, M.E.; Ponce-Hernandez, R. Assessing and Monitoring Forest Degradation in a Deciduous Tropical Forest in Mexico via Remote Sensing Indicators. Forests 2017, 8, 302. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.-A.; Thompson, D.K.; Hall, R.J.; Skakun, R.S.; Flannigan, M.D. Variability and Drivers of Burn Severity in the Northwestern Canadian Boreal Forest. Ecosphere 2018, 9, e02128. [Google Scholar] [CrossRef]
- Kafka, V.; Gauthier, S.; Bergeron, Y. Fire Impacts and Crowning in the Boreal Forest: Study of a Large Wildfire in Western Quebec. Int. J. Wildland Fire 2001, 10, 119–127. [Google Scholar] [CrossRef]
- Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying Influences and Relative Importance of Fire Weather, Topography, and Vegetation on Fire Size and Fire Severity in a Chinese Boreal Forest Landscape. For. Ecol. Manag. 2015, 356, 2–12. [Google Scholar] [CrossRef]
- Walker, X.J.; Rogers, B.M.; Veraverbeke, S.; Johnstone, J.F.; Baltzer, J.L.; Barrett, K.; Bourgeau-Chavez, L.; Day, N.J.; de Groot, W.J.; Dieleman, C.M.; et al. Fuel Availability Not Fire Weather Controls Boreal Wildfire Severity and Carbon Emissions. Nat. Clim. Change 2020, 10, 1130–1136. [Google Scholar] [CrossRef]
- Theobald, D.M.; Harrison-Atlas, D.; Monahan, W.B.; Albano, C.M. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE 2015, 10, e0143619. [Google Scholar] [CrossRef] [PubMed]
- Deblonde, C.; Cocking, R.B.; Kerr, D.E.; Campbell, J.E.; Eagles, S.; Everett, D.; Huntley, D.H.; Inglis, E.; Parent, M.; Plouffe, A.; et al. Surficial Data Model: The Science Language of the Integrated Geological Survey of Canada Data Model for Surficial Geology Maps. Version 2.4.0. 2019, p. 8236. Available online: https://publications.gc.ca/site/eng/9.932651/publication.html (accessed on 23 April 2023).
- Mattivi, P.; Franci, F.; Lambertini, A.; Bitelli, G. TWI Computation: A Comparison of Different Open Source GISs. Open Geospat. Data Softw. Stand. 2019, 4, 6. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef]
- Lindsay, J.B. Whitebox GAT: A Case Study in Geomorphometric Analysis. Comput. Geosci. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- Ridgeway, G. GBM Developers. Gbm: Generalized Boosted Regression Models. 2024. Available online: https://cran.r-project.org/web/packages/gbm/gbm.pdf (accessed on 23 April 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. 2024. Available online: https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf (accessed on 23 April 2024).
- ESRI ArcGIS Pro 2023. Available online: https://pro.arcgis.com/en/pro-app/latest/get-started/download-arcgis-pro.htm (accessed on 23 April 2024).
- GRASS Development Team; Landa, M.; Neteler, M.; Metz, M.; Petrášová, A.; Petráš, V.; Clements, G.; Zigo, T.; Larsson, N.; Kladivová, L.; et al. GRASS GIS; Zenodo: Geneva, Switzerland, 2024. [Google Scholar]
- Greenwell, B.M.; Boehmke, B.C.; McCarthy, A.J. A Simple and Effective Model-Based Variable Importance Measure. arXiv 2018. [Google Scholar] [CrossRef]
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. J. Comput. Graph. Stat. 2015, 24, 44–65. [Google Scholar] [CrossRef]
- Greenwell, B.M. Pdp: An R Package for Constructing Partial Dependence Plots. R J. 2017, 9, 421. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Anyomi, K.A.; Neary, B.; Chen, J.; Mayor, S.J. A Critical Review of Successional Dynamics in Boreal Forests of North America. Environ. Rev. 2022, 30, 563–594. [Google Scholar] [CrossRef]
- Roland, J.; Mackey, B.G.; Cooke, B. Effects of climate and forest structure on duration of forest tent caterpillar outbreaks across central ontario, Canada. Can. Entomol. 1998, 130, 703–714. [Google Scholar] [CrossRef]
- Rogers, B.M.; Mackey, B.; Shestakova, T.A.; Keith, H.; Young, V.; Kormos, C.F.; DellaSala, D.A.; Dean, J.; Birdsey, R.; Bush, G.; et al. Using Ecosystem Integrity to Maximize Climate Mitigation and Minimize Risk in International Forest Policy. Front. For. Glob. Change 2022, 5, 929281. [Google Scholar] [CrossRef]
- Betts, M.G.; Yang, Z.; Hadley, A.S.; Smith, A.C.; Rousseau, J.S.; Northrup, J.M.; Nocera, J.J.; Gorelick, N.; Gerber, B.D. Forest Degradation Drives Widespread Avian Habitat and Population Declines. Nat. Ecol. Evol. 2022, 6, 709–719. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Bouderbala, I.; Labadie, G.; Béland, J.-M.; Tremblay, J.A.; Boulanger, Y.; Hébert, C.; Desrosiers, P.; Allard, A.; Fortin, D. Long-Term Effect of Forest Harvesting on Boreal Species Assemblages under Climate Change. PLoS Clim. 2023, 2, e0000179. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.; Masuoka, E.J. Introduction to MODIS and an Overview of Associated Activities. In Earth Science Satellite Remote Sensing: Vol. 1: Science and Instruments; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 12–32. ISBN 978-3-540-37293-6. [Google Scholar]
- Román, M.O.; Justice, C.; Paynter, I.; Boucher, P.B.; Devadiga, S.; Endsley, A.; Erb, A.; Friedl, M.; Gao, H.; Giglio, L.; et al. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 Land Products. Remote Sens. Environ. 2024, 302, 113963. [Google Scholar] [CrossRef]
- Schneider, D.C. The Rise of the Concept of Scale in Ecology: The Concept of Scale Is Evolving from Verbal Expression to Quantitative Expression. BioScience 2001, 51, 545–553. [Google Scholar] [CrossRef]
- Courbin, N.; Fortin, D.; Dussault, C.; Courtois, R. Logging-Induced Changes in Habitat Network Connectivity Shape Behavioral Interactions in the Wolf–Caribou–Moose System. Ecol. Monogr. 2014, 84, 265–285. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Mackey, B.; Norman, P.; Campbell; Comer, P.; Kormos, C.F.; Keith, H.; Rogers, B.M. Mature and Old-Growth Forests Contribute to Large-Scale Conservation Targets in the Conterminous USA. Front. For. 2022. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Junqueira, A.B.; Crouzeilles, R.; Peña-Claros, M.; Mesquita, R.C.G.; Bongers, F. The Role of Land-Use History in Driving Successional Pathways and Its Implications for the Restoration of Tropical Forests. Biol. Rev. 2021, 96, 1114–1134. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mackey, B.; Hugh, S.; Norman, P.; Rogers, B.M.; Dellasala, D. Insights into Boreal Forest Disturbance from Canopy Stability Index. Land 2024, 13, 1644. https://doi.org/10.3390/land13101644
Mackey B, Hugh S, Norman P, Rogers BM, Dellasala D. Insights into Boreal Forest Disturbance from Canopy Stability Index. Land. 2024; 13(10):1644. https://doi.org/10.3390/land13101644
Chicago/Turabian StyleMackey, Brendan, Sonia Hugh, Patrick Norman, Brendan M. Rogers, and Dominick Dellasala. 2024. "Insights into Boreal Forest Disturbance from Canopy Stability Index" Land 13, no. 10: 1644. https://doi.org/10.3390/land13101644
APA StyleMackey, B., Hugh, S., Norman, P., Rogers, B. M., & Dellasala, D. (2024). Insights into Boreal Forest Disturbance from Canopy Stability Index. Land, 13(10), 1644. https://doi.org/10.3390/land13101644