Spatial Pattern and Influence Mechanisms of Forest Land Quality under the Background of Carbon Peaking and Carbon Neutrality: A Case Study in Kaizhou District, Chongqing, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources and Processing
3.2. Methods
3.2.1. Study Framework
3.2.2. Forest Land Quality Evaluation
- (1)
- Raw data normalization
- (2)
- Normalized matrix P construction (m represents the number of forest land units):
- (3)
- The jth indicator’s entropy value calculation:
- (4)
- The jth indicator’s discrimination coefficient calculation:
- (5)
- The weight of the jth indicator calculation (n represents the number of evaluation indicators):
- (1)
- The correction method:
- (2)
- The factor method:
3.2.3. Carnegie-Ames-Stanford Approach Model (CASA Model)
3.2.4. Landscape Ecology Indexes
- (1)
- Diversity index:
- (2)
- Centralization index:
- (3)
- Dominance index:
- (4)
- Homogeneity index:
3.2.5. Canonical Correlation Analysis
4. Results Analysis
4.1. Spatial Pattern of Forest Land Quality
4.1.1. Spatial Pattern of Forest Land Quality Indexes
4.1.2. NPP Results and Results Consistency Test
4.1.3. Spatial Pattern of Landscape Ecology Indexes
4.2. Influence Mechanisms of Forest Land Quality
4.2.1. Model Test
4.2.2. Influence Mechanisms Analysis
5. Discussion
5.1. Classified and Graded Management of Forest Land Resources
5.2. Forest Land Zoning Management and Regional Cooperation
5.3. Community Structure Optimization and Soil Quality Improvement
5.4. Promotion and Application of Forest Land Quality Evaluation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Type | Index | Weight | The Grading and Scoring Standard of the Indicators | ||||
---|---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | |||
Public welfare forest land | Naturalness | 0.300 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
Canopy density | 0.300 | ≥0.7 | 0.4~0.7 | <0.4 | |||
Mean tree height coefficient | 0.250 | ≥1 | 0.5~1 | <0.5 | |||
Public welfare forest Protection Level | 0.150 | National first-class public welfare forest land | National secondary public welfare forest land | General public welfare forest land | |||
Commodity forest land | Accessibility | 0.122 | Available for management, logging, skidding, and transportation | Can available for management, logging, skidding, and transportation in the near future | Not available for management, logging, skidding, and transportation | ||
Skidding distance (m) | 0.116 | ||||||
Transportation distance (m) | 0.116 | ||||||
Elevation (m) | 0.072 | <300 m | 300–500 | 500–1000 | 1000–1500 | ≥1500 | |
Slope (°) | 0.088 | <5 | ≥3515 | 15~25 | 25~35 | ≥35 | |
Slope Position | 0.060 | Flat slope | Valley slope | Downhill slope | Middle slope | Uphill and Reverse slope | |
Soil Texture | 0.074 | loam | clay | sand | |||
Soil Thickness (cm) | 0.087 | ≥80 | 60~80 | 40~60 | 20~40 | <20 | |
Humus Thickness (cm) | 0.102 | ≥10 | 5~10 | <5 | |||
Dominant Tree Species | 0.092 | Arbor/Bamboo | Shrub | Herb | |||
Business Level | 0.071 | High level | Middle level | Low level |
References
- Ali, A.; Ashraf, M.I.; Gulzar, S.; Akmal, M.; Ahmad, B. Estimation of Soil Carbon Pools in the Forests of Khyber Pakhtunkhwa Province, Pakistan. J. For. Res. 2020, 31, 2313–2321. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Zhang, X.; Yang, S. Estimation of Spatial–Temporal Dynamic Evolution of Potential Afforestation Land and Its Carbon Sequestration Capacity in China. Remote Sens. 2024, 16, 3098. [Google Scholar] [CrossRef]
- Dixon, A.; Simon, M.; Burkitt, T. Assessing the Environmental Impact of Two Options for Small-Scale Wastewater Treatment: Comparing a Reedbed and an Aerated Biological Filter Using a Life Cycle Approach. Ecol. Eng. 2003, 20, 297–308. [Google Scholar] [CrossRef]
- Phillips, O.L.; Lewis, S.L. Evaluating the Tropical Forest Carbon Sink. Glob. Change Biol. 2014, 20, 2039–2041. [Google Scholar] [CrossRef]
- Bieluczyk, W.; Asselta, F.O.; Navroski, D.; Gontijo, J.B.; Venturini, A.M.; Mendes, L.W.; Simon, C.P.; Camargo, P.B.D.; Tadini, A.M.; Martin-Neto, L.; et al. Linking above and Belowground Carbon Sequestration, Soil Organic Matter Properties, and Soil Health in Brazilian Atlantic Forest Restoration. J. Environ. Manag. 2023, 344, 118573. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on Forest Carbon Sequestration in the Three-North Shelterbelt Program Region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Liu, J.; Cihlar, J.; Gray, S. Annual Carbon Balance of Canada’s Forests during 1895–1996. Glob. Biogeochem. Cycles 2000, 14, 839–849. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of Construction Land Allocation in China: An Econometric Analysis of Panel Data. Land. Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Raj, A.; Jhariya, M.K. Site Quality and Vegetation Biomass in the Tropical Sal Mixed Deciduous Forest of Central India. Landsc. Ecol. Eng. 2021, 17, 387–399. [Google Scholar] [CrossRef]
- Negi, V.S.; Pathak, R.; Rawal, R.S.; Bhatt, I.D.; Sharma, S. Long-Term Ecological Monitoring on Forest Ecosystems in Indian Himalayan Region: Criteria and Indicator Approach. Ecol. Indic. 2019, 102, 374–381. [Google Scholar] [CrossRef]
- Meng, Y.; Cao, B.; Dong, C.; Dong, X. Mount Taishan Forest Ecosystem Health Assessment Based on Forest Inventory Data. Forests 2019, 10, 657. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Z.; Pang, Q.; Xiang, Y.; Sun, Y. Analysis on the Agricultural Green Production Efficiency and Driving Factors of Urban Agglomerations in the Middle Reaches of the Yangtze River. Sustainability 2021, 13, 97. [Google Scholar] [CrossRef]
- Daubenmire, R. The Use of Vegetation in Assessing the Productivity of Forest Lands. Bot. Rev. 1976, 42, 115–143. [Google Scholar] [CrossRef]
- Kazana, V.; Kazaklis, A.; Raptis, D.; Stamatiou, C. A Combined Multi-Criteria Approach to Assess Forest Management Sustainability: An Application to the Forests of Eastern Macedonia & Thrace Region in Greece. Ann. Oper. Res. 2020, 294, 321–343. [Google Scholar] [CrossRef]
- Mushkarova, O.; Mikheeva, M.; Tereshchenko, S.; Panyutin, A.; Kuznetsov, E. Increasing the Efficiency of the Use of Forest Resources by the Digitalization of Forest Education. IOP Conf. Ser. Earth Environ. Sci. 2020, 574, 012054. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, Y.; Sun, H.; Chen, N.; Guan, X. Examining the Influencing Factors of Forest Health, Its Implications on Rural Revitalization: A Case Study of Five Forest Farms in Beijing. Land. Use Policy 2021, 102, 105265. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; Del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland Expansion Changes Deforestation Dynamics in the Southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef]
- Burger, J.A. Management Effects on Growth, Production and Sustainability of Managed Forest Ecosystems: Past Trends and Future Directions. For. Ecol. Manag. 2009, 258, 2335–2346. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of Machine Learning Algorithms for Forest Parameter Estimations and Application for Forest Quality Assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Long, H.; De Jong, W.; Youn, Y.-C. Economic Globalization, Trade and Forest Transition-the Case of Nine Asian Countries. For. Policy Econ. 2017, 76, 7–13. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, W.; Li, M.; Chen, F. Grade Division and Benchmark Price of Forestlands Using Geospatial Technology: A Case Study of Southeastern China. Forests 2022, 13, 1105. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bottega, E.L.; Bakhshandeh, E.; Owliaie, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Scholten, T.; Xu, M. Spatial Variability of Soil Quality within Management Zones: Homogeneity and Purity of Delineated Zones. CATENA 2022, 209, 105835. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Li, Q.; Zuo, Q.; Gao, H.; Liu, J.; Tian, Y. Forest Land Quality Evaluation and the Protection Zoning of Subtropical Humid Evergreen Broadleaf Forest Region Based on the PSO-TOPSIS Model and the Local Indicator of Spatial Association: A Case Study of Hefeng County, Hubei Province, China. Forests 2021, 12, 325. [Google Scholar] [CrossRef]
- Gao, X.; Wang, G.; Innes, J.L.; Zhao, Y.; Zhang, X.; Zhang, D.; Mi, F. Forest Ecological Security in China: A Quantitative Analysis of Twenty Five Years. Glob. Ecol. Conserv. 2021, 32, e01821. [Google Scholar] [CrossRef]
- Li, R.; Zhao, S.; Zhao, H.; Xu, M.; Zhang, L.; Wen, H.; Sheng, Q. Spatiotemporal Assessment of Forest Biomass Carbon Sinks: The Relative Roles of Forest Expansion and Growth in Sichuan Province, China. J. Environ. Qual. 2017, 46, 64–71. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, G.; Mi, F.; Zhang, X.; Xu, L.; Zhang, Y.; Jiang, X. Evaluation and Scenario Simulation for Forest Ecological Security in China. J. For. Res. 2019, 30, 1651–1666. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; López-Ulloa, M.; Vanwalleghem, T.; Herrera-Machuca, M.Á. Effects of Land Use Change on Soil Quality Indicators in Forest Landscapes of the Western Amazon. Soil. Sci. 2017, 182, 128–136. [Google Scholar] [CrossRef]
- Lu, S.; Tang, X.; Guan, X.; Qin, F.; Liu, X.; Zhang, D. The Assessment of Forest Ecological Security and Its Determining Indicators: A Case Study of the Yangtze River Economic Belt in China. J. Environ. Manag. 2020, 258, 110048. [Google Scholar] [CrossRef]
- Valero, E.; Picos, J.; Álvarez, X. Characterization of Riparian Forest Quality of the Umia River for a Proposed Restoration. Ecol. Eng. 2014, 67, 216–222. [Google Scholar] [CrossRef]
- Cui, G.; Chen, Y.; Cao, Y. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China. PLoS ONE 2015, 10, e0137452. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, C.; Yun, W.; Zhu, D. A Balance Adjustment Method on Grading Results of Cultivated Land Quality. Sens. Lett. 2013, 11, 1030–1035. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Yang, Z.; Gower, S.T.; Turner, D.P.; Ritts, W.D.; Berterretche, M.; Running, S.W. Comparisons of Land Cover and LAI Estimates Derived from ETM+ and MODIS for Four Sites in North America: A Quality Assessment of 2000/2001 Provisional MODIS Products. Remote Sens. Environ. 2003, 88, 233–255. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Andrews, P.K. Systematic Method for Rating Soil Quality of Conventional, Organic, and Integrated Apple Orchards in Washington State. Agric. Ecosyst. Environ. 2000, 80, 29–45. [Google Scholar] [CrossRef]
- Liu, S.; Peng, Y.; Xia, Z.; Hu, Y.; Wang, G.; Zhu, A.X.; Liu, Z. The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data. Sensors 2019, 19, 5127. [Google Scholar] [CrossRef] [PubMed]
- Ceretti; Medeiros-Sousa; Slovic An Environmental Health Typology as a Contributor to Sustainable Regional Urban Planning: The Case of the Metropolitan Region of São Paulo (MRSP). Sustainability 2019, 11, 5800. [CrossRef]
- Shao, W.; Guan, Q.; Tan, Z.; Luo, H.; Li, H.; Sun, Y.; Ma, Y. Application of BP-ANN Model in Evaluation of Soil Quality in the Arid Area, Northwest China. Soil. Tillage Res. 2021, 208, 104907. [Google Scholar] [CrossRef]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, F.; Shao, G.; Zhou, L.; Tang, L. China’s Classification-Based Forest Management: Procedures, Problems, and Prospects. Environ. Manag. 2009, 43, 1162–1173. [Google Scholar] [CrossRef]
- Morgan, E.A.; Buckwell, A.; Guidi, C.; Garcia, B.; Rimmer, L.; Cadman, T.; Mackey, B. Capturing Multiple Forest Ecosystem Services for Just Benefit Sharing: The Basket of Benefits Approach. Ecosyst. Serv. 2022, 55, 101421. [Google Scholar] [CrossRef]
- Wang, B.; Wei, W.; Xing, Z.; You, W.; Niu, X.; Ren, X.; Liu, C. Biomass Carbon Pools of Cunninghamia Lanceolata (Lamb.) Hook. Forests in Subtropical China: Characteristics and Potential. Scand. J. For. Res. 2012, 27, 545–560. [Google Scholar] [CrossRef]
- Wang, N.; Bao, Y. Modeling Forest Quality at Stand Level: A Case Study of Loess Plateau in China. For. Policy Econ. 2011, 13, 488–495. [Google Scholar] [CrossRef]
- Dong, N.T.; Tap, V.H.; Phương Mai, N.T.; Lien, N.T.H. Estimation of Forest Carbon Stocks in Ba Be National Park, Bac Kan Province, Vietnam. For. Soc. 2020, 4, 195. [Google Scholar] [CrossRef]
- Martin, M.; Valeria, O.; Potapov, P.; Paillet, Y. Editorial: Forests of High Naturalness as References for Management and Conservation: Potential and Pitfalls. Front. For. Glob. Change 2022, 5, 1004087. [Google Scholar] [CrossRef]
- Feng, H.; Kang, P.; Deng, Z.; Zhao, W.; Hua, M.; Zhu, X.; Wang, Z. The Impact of Climate Change and Human Activities to Vegetation Carbon Sequestration Variation in Sichuan and Chongqing. Environ. Res. 2023, 238, 117138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, Y.; Yan, Z. Effects of Land-Use Change on Carbon Emission and Its Driving Factors in Shaanxi Province from 2000 to 2020. Environ. Sci. Pollut. Res. 2023, 30, 68313–68326. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, T.; Yang, M.; Zhou, X.; Peng, C. The Effects of Environmental Factors and Plant Diversity on Forest Carbon Sequestration Vary between Eastern and Western Regions of China. J. Clean. Prod. 2024, 437, 140371. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the Geographical Environment and the Forest Carbon Sink Capacity in China Based on an Individual-Tree Growth-Rate Model. Ecol. Indic. 2022, 138, 108814. [Google Scholar] [CrossRef]
- Yang, S.; Volk, T.; Fortier, M.-O. Willow Biomass Crops Are a Carbon Negative or Low-Carbon Feedstock Depending on Prior Land Use and Transportation Distances to End Users. Energies 2020, 13, 4251. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, L.; Jing, P. Analysis of Broad Leaved Forest Carbon Sinks Changes and Forest Economics and Management in China. Environ. Sci. Pollut. Res. 2020, 27, 12922–12931. [Google Scholar] [CrossRef]
- Zhong, T.-Y.; Huang, X.-J.; Zhang, X.-Y.; Wang, K. Temporal and Spatial Variability of Agricultural Land Loss in Relation to Policy and Accessibility in a Low Hilly Region of Southeast China. Land Use Policy 2011, 28, 762–769. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Paliwal, A.; Mathur, V.B. Spatial Pattern Analysis for Quantification of Landscape Structure of Tadoba-Andhari Tiger Reserve, Central India. J. For. Res. 2014, 25, 185–192. [Google Scholar] [CrossRef]
- Suo, A.; Wang, C.; Zhang, M. Analysis of Sea Use Landscape Pattern Based on GIS: A Case Study in Huludao, China. SpringerPlus 2016, 5, 1587. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, M.; Hou, C.; Lu, Z.; Liu, D. RETRACTED ARTICLE: Distribution of Rural Tourism Development in Geographical Space: A Case Study of 323 Traditional Villages in Shaanxi, China. Eur. J. Remote Sens. 2021, 54, 318–333. [Google Scholar] [CrossRef]
- Ye, H. Analysis on Ecological Environment Change of Kalajun-Kurdening World Natural Heritage Site from 2006 to 2019. Pol. J. Environ. Stud. 2022, 31, 915–927. [Google Scholar] [CrossRef]
- Camargo, J.A. The Lorenz Curve: A Suitable Framework to Define Satisfactory Indices of Landscape Composition. Landsc. Ecol. 2019, 34, 2735–2742. [Google Scholar] [CrossRef]
- Ade, L.; Millner, J.P.; Hou, F. The Dominance of Ligularia Spp. Related to Significant Changes in Soil Microenvironment. Ecol. Indic. 2021, 131, 108183. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, S.; Zhang, J.; Guo, W. Quantifying the Relationship between Urban Blue-Green Landscape Spatial Pattern and Carbon Sequestration: A Case Study of Nanjing’s Central City. Ecol. Indic. 2023, 154, 110483. [Google Scholar] [CrossRef]
- Zieleniewski, A.M.; Fulker, D.W.; DeFries, J.C.; LaBuda, M.C. Multiple Regression Analysis of Twin and Sibling Data. Personal. Individ. Differ. 1987, 8, 787–791. [Google Scholar] [CrossRef]
- Noss, R.F. Assessing and Monitoring Forest Biodiversity: A Suggested Framework and Indicators. For. Ecol. Manag. 1999, 115, 135–146. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K.; Li, X.; Gao, N.; Yu, M. Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province. Sustainability 2021, 13, 2513. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Liu, Y.; Zhu, Y.; Yang, X. Optimal Strategies for Integrated Forest Management in Megacities Combined with Wood and Carbon Services. J. Clean. Prod. 2019, 229, 431–439. [Google Scholar] [CrossRef]
- Luo, M.; Li, T. Spatial and Temporal Analysis of Landscape Ecological Quality in Yulin. Environ. Technol. Innov. 2021, 23, 101700. [Google Scholar] [CrossRef]
- Moriguchi, K. Towards the Globally Sustainable Use of Forestlands and Wood Resources: Estimating Fair Timber Price Deriving Supply Curves in a Proven Stable State. Resour. Conserv. Recycl. 2023, 199, 107285. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, D.; Chang, X.; Lin, Z. A New Grading System for Evaluating China’s Cultivated Land Quality. Land. Degrad. Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- Ding, Z.; Li, R.; O’Connor, P.; Zheng, H.; Huang, B.; Kong, L.; Xiao, Y.; Xu, W.; Ouyang, Z. An Improved Quality Assessment Framework to Better Inform Large-Scale Forest Restoration Management. Ecol. Indic. 2021, 123, 107370. [Google Scholar] [CrossRef]
- Yang, G.; Gui, Q.; Liu, J.; Chen, X.; Cheng, S. Spatial-Temporal Evolution and Driving Factors of Ecological Security in China Based on DPSIR-DEA Model: A Case Study of the Three Gorges Reservoir Area. Ecol. Indic. 2023, 154, 110777. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Z.; Lu, F.; Wang, X.; Zhang, M.; Liu, B.; Wei, Y.; Cui, L.; Luo, Y.; Zhang, L.; et al. The Influence of Disturbance and Conservation Management on the Greenhouse Gas Budgets of China’s Forests. J. Clean. Prod. 2020, 261, 121000. [Google Scholar] [CrossRef]
- Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in Planted Forests and Future Global Implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef]
- Sasaki, N. Timber Production and Carbon Emission Reductions through Improved Forest Management and Substitution of Fossil Fuels with Wood Biomass. Resour. Conserv. Recycl. 2021, 173, 105737. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, J.; Shen, S.; Liu, Q.; Lan, Y. Nature-Based Solutions: Assessing the Carbon Sink Potential and Influencing Factors of Urban Park Plant Communities in the Temperate Monsoon Climate Zone. Sci. Total Environ. 2024, 950, 175347. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gou, M.; Wang, N.; La, L.; Liu, C. Do Ecological Restoration Programs Reduce Forest Fragmentation? Case Study of the Three Gorges Reservoir Area, China. Ecol. Eng. 2021, 172, 106410. [Google Scholar] [CrossRef]
- Battie-Laclau, P.; Delgado-Rojas, J.S.; Christina, M.; Nouvellon, Y.; Bouillet, J.-P.; de Cassia Piccolo, M.; Moreira, M.Z.; de Moraes Gonçalves, J.L.; Roupsard, O.; Laclau, J.-P. Potassium Fertilization Increases Water-Use Efficiency for Stem Biomass Production without Affecting Intrinsic Water-Use Efficiency in Eucalyptus Grandis Plantations. For. Ecol. Manag. 2016, 364, 77–89. [Google Scholar] [CrossRef]
- Messier, C.; Bauhus, J.; Doyon, F.; Maure, F.; Sousa-Silva, R.; Nolet, P.; Mina, M.; Aquilué, N.; Fortin, M.-J.; Puettmann, K. The Functional Complex Network Approach to Foster Forest Resilience to Global Changes. For. Ecosyst. 2019, 6, 21. [Google Scholar] [CrossRef]
- Gao, H.; Gong, J.; Liu, J.; Ye, T. Effects of Land Use/Cover Changes on Soil Organic Carbon Stocks in Qinghai-Tibet Plateau: A Comparative Analysis of Different Ecological Functional Areas Based on Machine Learning Methods and Soil Carbon Pool Data. J. Clean. Prod. 2024, 434, 139854. [Google Scholar] [CrossRef]
- Thakur, T.K.; Swamy, S.L.; Thakur, A.; Mishra, A.; Bakshi, S.; Kumar, A.; Altaf, M.M.; Kumar, R. Land Cover Changes and Carbon Dynamics in Central India’s Dry Tropical Forests: A 25-Year Assessment and Nature-Based Eco-Restoration Approaches. J. Environ. Manag. 2024, 351, 119809. [Google Scholar] [CrossRef]
- Sheng, W.; Zhen, L.; Xie, G.; Xiao, Y. Determining Eco-Compensation Standards Based on the Ecosystem Services Value of the Mountain Ecological Forests in Beijing, China. Ecosyst. Serv. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, F.; Wang, Z. Research on Optimization of Ecological Service Function and Planning Control of Land Resources Planning Based on Ecological Protection and Restoration. Environ. Technol. Innov. 2021, 24, 101904. [Google Scholar] [CrossRef]
- Jin, G.; Chen, K.; Liao, T.; Zhang, L.; Najmuddin, O. Measuring Ecosystem Services Based on Government Intentions for Future Land Use in Hubei Province: Implications for Sustainable Landscape Management. Landsc. Ecol. 2021, 36, 2025–2042. [Google Scholar] [CrossRef]
Location | Public Welfare Forest Land | Commodity Forest Land | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV | Min | Max | Mean | SD | CV | Min | Max | |
Zone 1 | 70.70 | 14.72 | 4.80 | 37.89 | 132.20 | 67.55 | 7.31 | 9.24 | 40.00 | 90.69 |
Zone 2 | 69.84 | 14.23 | 4.91 | 45.92 | 116.50 | 69.34 | 8.07 | 8.59 | 50.07 | 92.26 |
Zone 3 | 65.49 | 16.21 | 4.04 | 37.89 | 130.17 | 69.28 | 7.87 | 8.80 | 49.80 | 91.22 |
Zone 4 | 69.27 | 17.59 | 3.94 | 37.89 | 148.15 | 68.04 | 7.78 | 8.74 | 47.65 | 92.67 |
Kaizhou District | 68.92 | 15.92 | 4.33 | 37.89 | 148.15 | 68.33 | 7.71 | 8.87 | 40.00 | 92.67 |
Canonical Functions | Canonical Correlation Coefficient | Group X Overlap Index | Group Y Overlap Index | p-Value | |
---|---|---|---|---|---|
Public welfare forest land | 1 | 0.862 | 0.262 | 0.129 | 0.000 |
2 | 0.481 | 0.159 | 0.246 | 0.000 | |
3 | 0.231 | 0.013 | 0.036 | 0.002 | |
4 | 0.007 | 0.032 | 0.007 | 0.470 | |
5 | 0.000 | 0.043 | 0.182 | 0.519 | |
Commodity forest land | 1 | 0.988 | 0.350 | 0.101 | 0.000 |
2 | 0.385 | 0.116 | 0.164 | 0.000 | |
3 | 0.093 | 0.016 | 0.047 | 0.001 | |
4 | 0.037 | 0.021 | 0.006 | 0.849 | |
5 | 0.000 | 0.052 | 0.040 | 0.926 |
Independent Variables | Canonical Loading | Dependent Variables | Canonical Loading | ||
---|---|---|---|---|---|
Average annual precipitation | 0.413 | 0.134 | Public welfare forest land quality index | 1.000 | 0.032 |
Average annual temperature | 0.365 | −0.437 | Diversity index | −0.197 | −0.951 |
Soil moisture | 0.541 | 0.352 | Centralization index | 0.118 | 0.933 |
Land type | 0.132 | −0.019 | Dominance index | 0.163 | 0.975 |
Landform | −0.415 | −0.724 | Homogeneity index | 0.197 | 0.951 |
Slope aspect | 0.117 | 0.155 | |||
Community structure | 0.762 | 0.595 | |||
Overlap Index | 0.262 | 0.159 | 0.129 | 0.246 | |
ρ2 | 0.743 | 0.231 | |||
ρ | 0.862 *** | 0.481 *** |
Independent Variables | Canonical Loading | Dependent Variables | Canonical Loading | ||
---|---|---|---|---|---|
Average annual precipitation | 0.113 | 0.191 | Commodity forest land quality index | 0.999 | 0.030 |
Average annual temperature | 0.581 | 0.145 | Diversity index | −0.185 | −0.924 |
Soil moisture | 0.732 | −0.134 | Centralization index | 0.196 | 0.913 |
Land type | 0.032 | 0.403 | Dominance index | 0.173 | 0.980 |
Landform | −0.347 | −0.821 | Homogeneity index | 0.185 | 0.924 |
Slope aspect | 0.309 | 0.513 | |||
Community structure | 0.105 | 0.318 | |||
Overlap Index | 0.350 | 0.116 | 0.101 | 0.164 | |
ρ2 | 0.918 | 0.127 | |||
ρ | 0.958 *** | 0.357 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Zhang, P.; Zhang, J.; Wang, R.; Hu, S.; Ma, C. Spatial Pattern and Influence Mechanisms of Forest Land Quality under the Background of Carbon Peaking and Carbon Neutrality: A Case Study in Kaizhou District, Chongqing, China. Land 2024, 13, 1645. https://doi.org/10.3390/land13101645
Lu S, Zhang P, Zhang J, Wang R, Hu S, Ma C. Spatial Pattern and Influence Mechanisms of Forest Land Quality under the Background of Carbon Peaking and Carbon Neutrality: A Case Study in Kaizhou District, Chongqing, China. Land. 2024; 13(10):1645. https://doi.org/10.3390/land13101645
Chicago/Turabian StyleLu, Shasha, Pan Zhang, Jiayi Zhang, Rongfang Wang, Suxin Hu, and Changjiang Ma. 2024. "Spatial Pattern and Influence Mechanisms of Forest Land Quality under the Background of Carbon Peaking and Carbon Neutrality: A Case Study in Kaizhou District, Chongqing, China" Land 13, no. 10: 1645. https://doi.org/10.3390/land13101645
APA StyleLu, S., Zhang, P., Zhang, J., Wang, R., Hu, S., & Ma, C. (2024). Spatial Pattern and Influence Mechanisms of Forest Land Quality under the Background of Carbon Peaking and Carbon Neutrality: A Case Study in Kaizhou District, Chongqing, China. Land, 13(10), 1645. https://doi.org/10.3390/land13101645