A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
- (1)
- Specify the scope of the water source: indicate the limits of the region being studied.
- (2)
- Create time-series datasets by combining the LANDSAT/LT05/C02/T1_L2, LANDSAT/LE07/C02/T1_L2, and LANDSAT/LC08/C02/T1_L2 datasets. Apply a filter to choose data within a certain period and then remove any cloud cover present in the data.
- (3)
- Generate annual median image dataset: aggregate the produced picture datasets by year and compute the yearly median image for each period.
- (4)
- Water body mask processing: Utilize the mask function to exclude water bodies from the picture to minimize their impact on the estimate of plant cover.
2.3. Research Methodology
2.3.1. Whale Optimization Algorithm
- (1)
- Encircling prey
- (2)
- Bubble-net attacking method (exploitation phase)
2.3.2. Search for Prey (Exploration Phase)
2.3.3. Informer
2.4. Experiment
2.4.1. Can the WOA Enhance the Functionality and Performance of Informer?
2.4.2. The Need for WOA to Enhance the Informer Model
3. Results
3.1. Advantages of WOA for Optimizing Informer Model Parameters
3.2. Effect of WOA on Informer Model Efficacy
3.3. Benefits of the WOA–Informer Model in Forecasting Extended Time Series of Dry Vegetation Indicators
3.4. Prolonged Observation and Examination of Vegetation Dynamics and Their Response to Drought
3.5. WOA–Informer: Precise Long-Term Dynamic Sequence Forecasting
4. Discussion
4.1. The Significance of Integrating WOA and Informer Models in Long-Term Time-Series Forecasting
4.2. Influence of Prolonged Regional Drought-Index Forecasts
4.3. Influence of Multi-Objective Optimization on WOA–Informer Model Efficacy
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jha, S.; Das, J.; Sharma, A.; Hazra, B.; Goyal, M.K. Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Glob. Planet. Chang. 2019, 176, 23–35. [Google Scholar]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.A.; Mushore, T.D.; Gupta, A. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Peng, X.; Cai, H. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci. Total Environ. 2020, 716, 137166. [Google Scholar] [PubMed]
- Han, H.; Bai, J.; Yan, J.; Yang, H.; Ma, G. A combined drought monitoring index based on multi-sensor remote sensing data and machine learning. Geocarto Int. 2021, 36, 1161–1177. [Google Scholar]
- Piri, J.; Abdolahipour, M.; Keshtegar, B. Advanced machine learning model for prediction of drought indices using hybrid SVR-RSM. Water Resour. Manag. 2023, 37, 683–712. [Google Scholar]
- Roy, B.; Sagan, V.; Haireti, A.; Newcomb, M.; Tuberosa, R.; LeBauer, D.; Shakoor, N. Early Detection of Drought Stress in Durum Wheat Using Hyperspectral Imaging and Photosystem Sensing. Remote Sens. 2023, 16, 155. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Li Liu, D.; Yu, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar]
- Aghelpour, P.; Bahrami-Pichaghchi, H.; Varshavian, V. Hydrological drought forecasting using multi-scalar streamflow drought index, stochastic models and machine learning approaches, in northern Iran. Stoch. Environ. Res. Risk Assess. 2021, 35, 1615–1635. [Google Scholar] [CrossRef]
- Kafy, A.A.; Bakshi, A.; Saha, M.; Al Faisal, A.; Almulhim, A.I.; Rahaman, Z.A.; Mohammad, P. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Sci. Total Environ. 2023, 867, 161394. [Google Scholar]
- Tyagi, S.; Zhang, X.; Saraswat, D.; Sahany, S.; Mishra, S.K.; Niyogi, D. Flash drought: Review of concept, prediction and the potential for machine learning, deep learning methods. Earth’s Future 2022, 10, e2022EF002723. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Zhang, J. Gradient descent based optimization algorithms for deep learning models training. arXiv 2019, arXiv:1903.03614. [Google Scholar]
- Li, M.W.; Xu, D.Y.; Geng, J.; Hong, W.C. A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm. Nonlinear Dyn. 2022, 107, 2447–2467. [Google Scholar]
- Jadhav, A.S.; Patil, P.B.; Biradar, S. Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evol. Intell. 2021, 14, 1431–1448. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar]
- Mirjalili, S.; Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar]
- Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020, 32, 12363–12379. [Google Scholar]
- Sharma AB HI SH, E.K.; Sharma, A.; Choudhary, S.; Pachauri, R.K.; Shrivastava, A.; Kumar, D. A review on artificial bee colony and it’s engineering applications. J. Crit. Rev. 2020, 7, 4097–4107. [Google Scholar]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar]
- Couceiro, M.; Ghamisi, P.; Couceiro, M.; Ghamisi, P. Particle Swarm Optimization; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–10. [Google Scholar]
- Blum, C. Ant colony optimization: Introduction and recent trends. Phys. Life Rev. 2005, 2, 353–373. [Google Scholar]
- Fidanova, S.; Fidanova, S. Ant colony optimization. In Ant Colony Optimization and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–8. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Fan, Q.; Yu, F.; Xuan, M. Transformer fault diagnosis method based on improved whale optimization algorithm to optimize support vector machine. Energy Rep. 2021, 7, 856–866. [Google Scholar]
- Hou, H.; Li, R.; Zheng, H.; Tong, C.; Wang, J.; Lu, H.; Wang, G.; Qin, Z.; Wang, W. Regional NDVI Attribution Analysis and Trend Prediction Based on the Informer Model: A Case Study of the Maowusu Sandland. Agronomy 2023, 13, 2882. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, L.; Xia, Q.; Liang, C.; Wang, L.; Shao, Y. Effects of revegetation on climate in the Mu Us Sandy Land of China. Sci. Total Environ. 2020, 739, 139958. [Google Scholar] [PubMed]
- Ji, X.; Yang, J.; Liu, J.; Du, X.; Zhang, W.; Liu, J.; Li, G.; Guo, J. Analysis of Spatial-Temporal Changes and Driving Forces of Desertification in the Mu Us Sandy Land from 1991 to 2021. Sustainability 2023, 15, 10399. [Google Scholar] [CrossRef]
- Moravec, D.; Komárek, J.; López-Cuervo Medina, S.; Molina, I. Effect of atmospheric corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV sensors. Remote Sens. 2021, 13, 3550. [Google Scholar] [CrossRef]
- Bian, Z.; Roujean, J.L.; Fan, T.; Dong, Y.; Hu, T.; Cao, B.; Li, H.; Du, Y.; Xiao, Q.; Liu, Q. An angular normalization method for temperature vegetation dryness index (TVDI) in monitoring agricultural drought. Remote Sens. Environ. 2023, 284, 113330. [Google Scholar]
- Khan, R.; Gilani, H. Global drought monitoring with drought severity index (DSI) using Google Earth Engine. Theor. Appl. Climatol. 2021, 146, 411–427. [Google Scholar] [CrossRef]
- Yoon, D.H.; Nam, W.H.; Lee, H.J.; Hong, E.M.; Kim, T. Drought hazard assessment using MODIS-based Evaporative Stress Index (ESI) and ROC analysis. J. Korean Soc. Agric. Eng. 2020, 62, 51–61. [Google Scholar]
- Rana, N.; Latiff MS, A.; Abdulhamid SI, M.; Chiroma, H. Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments. Neural Comput. Appl. 2020, 32, 16245–16277. [Google Scholar]
- Yang, W.; Xia, K.; Fan, S.; Wang, L.; Li, T.; Zhang, J.; Feng, Y. A multi-strategy whale optimization algorithm and its application. Eng. Appl. Artif. Intell. 2022, 108, 104558. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R. Multistrategy improved whale optimization algorithm and its application. Comput. Intell. Neurosci. 2022, 2022, 3418269. [Google Scholar] [CrossRef] [PubMed]
- Hemasian-Etefagh, F.; Safi-Esfahani, F. Group-based whale optimization algorithm. Soft Comput. 2020, 24, 3647–3673. [Google Scholar] [CrossRef]
- Hussien, A.G.; Hassanien, A.E.; Houssein, E.H.; Amin, M.; Azar, A.T. New binary whale optimization algorithm for discrete optimization problems. Eng. Optim. 2020, 52, 945–959. [Google Scholar] [CrossRef]
- Deng, H.; Liu, L.; Fang, J.; Qu, B.; Huang, Q. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm. Math. Comput. Simul. 2023, 205, 794–817. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, J.; Zeng, J.; Tang, J. Nature-inspired approach: An enhanced whale optimization algorithm for global optimization. Math. Comput. Simul. 2021, 185, 17–46. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K.; Sharma, S.; Chakraborty, R.; Debnath, S. A hybrid whale optimization algorithm for global optimization. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 431–467. [Google Scholar] [CrossRef]
- Wang, H.K.; Song, K.; Cheng, Y. A hybrid forecasting model based on CNN and informer for short-term wind power. Front. Energy Res. 2022, 9, 788320. [Google Scholar] [CrossRef]
- Zheng, H.; Hou, H.; Li, R.; Tong, C. Trend Prediction of Vegetation and Drought by Informer Model Based on STL-EMD Decomposition of Ha Cai Tou Dang Water Source Area in the Maowusu Sandland. Agronomy 2024, 14, 708. [Google Scholar] [CrossRef]
- Wei, H.; Wang, W.S.; Kao, X.X. A novel approach to ultra-short-term wind power prediction based on feature engineering and informer. Energy Rep. 2023, 9, 1236–1250. [Google Scholar] [CrossRef]
- Jiang, C.; Zhu, Q. Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer. Appl. Energy 2023, 348, 121544. [Google Scholar] [CrossRef]
- Xinxin, W.; Xiaopan, S.; Xueyi, A.; Shijia, L. Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer. PLoS ONE 2023, 18, e0289161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, S.; Qiu, Y.; Armaghani, D.J.; Zhou, A.; Yong, W. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm. Acta Geotech. 2022, 17, 1343–1366. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Lu, S.; He, S. A multi-leader whale optimization algorithm for global optimization and image segmentation. Expert Syst. Appl. 2021, 175, 114841. [Google Scholar] [CrossRef]
- Hussain, N.; Khan, M.A.; Kadry, S.; Tariq, U.; Mostafa, R.R.; Choi, J.I.; Nam, Y. Intelligent deep learning and improved whale optimization algorithm based framework for object recognition. Hum. Cent. Comput. Inf. Sci. 2021, 11, 2021. [Google Scholar]
- Brodzicki, A.; Piekarski, M.; Jaworek-Korjakowska, J. The whale optimization algorithm approach for deep neural networks. Sensors 2021, 21, 8003. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, C.; Hua, L.; Ma, H.; Nazir, M.S.; Peng, T. A multi-scale evolutionary deep learning model based on CEEMDAN, improved whale optimization algorithm, regularized extreme learning machine and LSTM for AQI prediction. Environ. Res. 2022, 215, 114228. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, H.X.; Lin, Z.Z.; Chen, Z.H.; Zhang, Y. A decision-making method for reservoir operation schemes based on deep learning and whale optimization algorithm. Front. Plant Sci. 2023, 14, 1102855. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sharma, S.; Saha, A.K.; Chakraborty, S. SHADE–WOA: A metaheuristic algorithm for global optimization. Appl. Soft Comput. 2021, 113, 107866. [Google Scholar] [CrossRef]
- Hassib, E.M.; El-Desouky, A.I.; Labib, L.M.; El-Kenawy, E.S.M. WOA+ BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network. Soft Comput. 2020, 24, 5573–5592. [Google Scholar] [CrossRef]
- Yang, P.; Wang, T.; Yang, H.; Meng, C.; Zhang, H.; Cheng, L. The performance of electronic current transformer fault diagnosis model: Using an improved whale optimization algorithm and RBF neural network. Electronics 2023, 12, 1066. [Google Scholar] [CrossRef]
- Toren, M. Optimization of transformer parameters at distribution and power levels with hybrid Grey wolf-whale optimization algorithm. Eng. Sci. Technol. Int. J. 2023, 43, 101439. [Google Scholar]
- Ibrahim, A.; El-kenawy ES, M.; Khodadadi, N.; Eid, M.M.; Abdelhamid, A.A. Guided whale optimization algorithm (guided WOA) with its application. In Handbook of Whale Optimization Algorithm; Academic Press: Cambridge, MA, USA, 2024; pp. 243–251. [Google Scholar]
- Ye, H.; Zhu, Q.; Zhang, X. Short-Term Load Forecasting for Residential Buildings Based on Multivariate Variational Mode Decomposition and Temporal Fusion Transformer. Energies 2024, 17, 3061. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Tao, L.; Yang, L. Transformer fault diagnosis model based on improved gray wolf optimizer and probabilistic neural network. Energies 2021, 14, 3029. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Zheng, L.; Yan, T.; Tang, C. The Denoising Method for Transformer Partial Discharge Based on the Whale VMD Algorithm Combined with Adaptive Filtering and Wavelet Thresholding. Sensors 2023, 23, 8085. [Google Scholar] [CrossRef]
- Guan, S.; Yang, H.; Wu, T. Transformer fault diagnosis method based on TLR-ADASYN balanced dataset. Sci. Rep. 2023, 13, 23010. [Google Scholar]
- Dai, X.; Yi, K.; Wang, F.; Cai, C.; Tang, W. Bearing fault diagnosis based on POA-VMD with GADF-Swin Transformer transfer learning network. Measurement 2024, 238, 115328. [Google Scholar]
- Wang, B.; Zhao, H.; Wang, X.; Lyu, G.; Chen, K.; Xu, J.; Cui, G.; Zhong, L.; Yu, L.; Huang, H.; et al. Bamboo classification based on GEDI, time-series Sentinel-2 images and whale-optimized, dual-channel DenseNet: A case study in Zhejiang province, China. ISPRS J. Photogramm. Remote Sens. 2024, 209, 312–323. [Google Scholar] [CrossRef]
- Liu, C.; Fan, H.; Jiang, Y.; Ma, R.; Song, S. Gully erosion susceptibility assessment based on machine learning-A case study of watersheds in Tuquan County in the black soil region of Northeast China. Catena 2023, 222, 106798. [Google Scholar]
- Xue, Z.; Yi, X.; Feng, W.; Kong, L.; Wu, M. Prediction and mapping of soil thickness in alpine canyon regions based on whale optimization algorithm optimized random forest: A case study of Baihetan Reservoir area in China. Comput. Geosci. 2024, 191, 105667. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Wang, P.; Tang, X.; Zhang, Z. A coupled model to improve river water quality prediction towards addressing non-stationarity and data limitation. Water Res. 2024, 248, 120895. [Google Scholar] [CrossRef]
- Yan, S.; Wu, L.; Fan, J.; Zhang, F.; Zou, Y.; Wu, Y. A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China. Agric. Water Manag. 2021, 244, 106594. [Google Scholar] [CrossRef]
Learning Rate | Overfitting | Batch Size | Activation Function | |
---|---|---|---|---|
Transformer | 0.0001 | may | 128 | Relu |
Informer | 0.001 | no | 128 | Gelu |
WOA–Informer | 0.001 | no | 128 | Gelu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, C.; Hou, H.; Zheng, H.; Wang, Y.; Liu, J. A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm. Land 2024, 13, 1731. https://doi.org/10.3390/land13111731
Tong C, Hou H, Zheng H, Wang Y, Liu J. A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm. Land. 2024; 13(11):1731. https://doi.org/10.3390/land13111731
Chicago/Turabian StyleTong, Changfu, Hongfei Hou, Hexiang Zheng, Ying Wang, and Jin Liu. 2024. "A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm" Land 13, no. 11: 1731. https://doi.org/10.3390/land13111731
APA StyleTong, C., Hou, H., Zheng, H., Wang, Y., & Liu, J. (2024). A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm. Land, 13(11), 1731. https://doi.org/10.3390/land13111731