Scale-Dependent Effects of Urban Canopy Cover, Canopy Volume, and Impervious Surfaces on Near-Surface Air Temperature in a Mid-Sized City
Abstract
:1. Introduction
- (1)
- How does variability in the coverage of urban canopies and impervious surfaces influence daytime near-surface air temperature?
- (2)
- How do these effects vary throughout different intraurban spatial scales?
- (3)
- What effect does urban canopy volume have on daytime near-surface air temperature?
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. GIS Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Clim. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Stone, B., Jr. The City and the Coming Climate: Climate Change in the Places We Live; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014. [Google Scholar]
- Multnomah County. Final Report: Health Impacts from Excessive Heat Events Multnomah County, Oregon. 2021. Available online: https://multco-web7-psh-files-usw2.s3-us-west-2.amazonaws.com/s3fs-public/20220624_final-heat-report-2021_SmallFile-2.pdf (accessed on 9 May 2024).
- Batchelor, M. 2023 Heat Related Deaths Report. Maricopa County Department of Public Health. 2024. Available online: https://www.maricopa.gov/ArchiveCenter/ViewFile/Item/5796 (accessed on 9 May 2024).
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef]
- Akbari, H.; Bell, R.; Brazel, T.; Cole, D.; Estes, M.; Heisler, G.; Hitchcock, D.; Johnson, B.; Lewis, M.; McPherson, G.; et al. Reducing Urban Heat Islands: Compendium of Strategies. Environmental Protection Agency, 2008. Available online: https://www.epa.gov/sites/production/files/2014-06/documents/basicscompendium.pdf (accessed on 22 April 2024).
- Seto, K.C.; Golden, J.S.; Alberti, M.; Turner, B.L., 2nd. Sustainability in an urbanizing planet. Proc. Natl. Acad. Sci. USA 2017, 114, 8935–8938. [Google Scholar] [CrossRef] [PubMed]
- Solecki, W.D.; Rosenzweig, C.; Parshall, L.; Pope, G.; Clark, M.; Cox, J.; Wiencke, M. Mitigation of the heat island effect in urban New Jersey. Glob. Environ. Chang. Part B Environ. Hazards 2005, 6, 39–49. [Google Scholar] [CrossRef]
- Advisory Committee for Environmental Research and Education. Sustainable Urban Systems: Articulating a Long-Term Convergence Research Agenda. A Report from the NSF Advisory Committee for Environmental Research and Education (Prepared by the Sustainable Urban Systems Subcommittee). 2018. Available online: https://www.nsf.gov/ere/ereweb/ac-ere/sustainable-urban-systems.pdf (accessed on 22 April 2024).
- Amani Beni, M.; Chen, Y.; Vasileva, M.; Zhang, B.; Xie, G. Quantitative-spatial relationships between air and surface temperature, a proxy for microclimate studies in fine-scale intra-urban areas? Sustain. Cities Soc. 2021, 77, 103584. [Google Scholar] [CrossRef]
- CAPA/NIHHIS. Heat Watch Portland Metro Region. 2024. Available online: https://osf.io/m8b3w?view_only=cafa95f8fc9d4dd0bf84ed5cad8cd664 (accessed on 23 April 2024).
- Chen, J.; Jin, S.; Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102060. [Google Scholar] [CrossRef]
- Davis, A.Y.; Jung, J.; Pijanowski, B.C.; Minor, E.S. Combined vegetation volume and “greenness” affect urban air temperature. Appl. Geogr. 2016, 71, 106–114. [Google Scholar] [CrossRef]
- Gage, E.A.; Cooper, D.J. Urban forest structure and land cover composition effects on land surface temperature in a semi-arid suburban area. Urban For. Urban Green 2017, 28, 28–35. [Google Scholar] [CrossRef]
- Wang, H.; Cai, Y.; Deng, W.; Li, C.; Dong, Y.; Zhou, L.; Sun, J.; Li, C.; Song, B.; Zhang, F.; et al. The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests 2023, 14, 80. [Google Scholar] [CrossRef]
- United States Census Bureau. QuickFacts Portland City, Oregon. 2023. Available online: https://www.census.gov/quickfacts/fact/table/portlandcityoregon/PST045216 (accessed on 15 May 2024).
- Bureau of Planning and Sustainability. City of Portland Zoning App. 2018. Available online: https://www.portlandmaps.com/bps/zoning/#/map/ (accessed on 20 May 2024).
- DiSalvo, A.; Ramsey, J.; Rossmiller, N. Tree Canopy Monitoring: Protocol and Monitoring from 2000–2020. 2022. Available online: https://www.portland.gov/trees/documents/tree-canopy-monitoring-2000-2020/download (accessed on 20 May 2024).
- DiSalvo, A.; Fukuda, J.; Ramsey, J. Street Tree Inventory Report: City of Portland. 2017. Available online: https://www.portland.gov/trees/documents/city-portland-street-tree-inventory-2017/download (accessed on 20 May 2024).
- Urban Forestry: Portland Parks and Recreation. Tree Canopy Explorer: City of Portland, Oregon. 2023. Available online: https://experience.arcgis.com/experience/7556b8b1017949cdb56145ec33aef814 (accessed on 20 May 2024).
- Makido, Y.; Hellman, D.; Shandas, V. Nature-based designs to mitigate urban heat: The efficacy of green infrastructure treatments in Portland, Oregon. Atmosphere 2019, 10, 282. [Google Scholar] [CrossRef]
- Bailey, E., Jr. Portland Weather Hits 90 Degrees for Record 31st Day in 2018. Oregonlive. 6 September 2018. Available online: https://www.oregonlive.com/weather/2018/09/portland_weather_hits_90_degre.html (accessed on 24 April 2024).
- Portland State University Climate Science Lab. Portland Climate Charts: Portland Climate Statistics. 2023. Available online: https://sites.google.com/pdx.edu/portland-state-climate-science/portland-climate-charts?authuser=0 (accessed on 1 May 2024).
- Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends-Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Metro. Canopy 2019. Oregon Metro RLIS, Metadata Viewer. 2019. Available online: https://www.arcgis.com/sharing/rest/content/items/b6da4ea243df4ba492d47860964cf2b5/info/metadata/metadata.xml?format=default&output=html (accessed on 1 May 2024).
- Voelkel, J.; Shandas, V. Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling Techniques. Climate 2017, 5, 41. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Pro 3.3; ESRI: Redlands, CA, USA, 2024. [Google Scholar]
- Hyndman, R.J.; Fan, Y. Sample Quantiles in Statistical Packages. Am. Stat. 1996, 50, 361–365. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. (Eds.) An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Sabatino, S.D.; Buccolieri, R.; Pappaccogli, G.; Leo, L.S. The effects of trees on micrometeorology in a real street canyon: Consequences for local air quality. Int. J. Environ. Pollut. 2015, 58, 100–111. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Bardhan, R.; Kubilay, A.; Derome, D.; Carmeliet, J. Time-evolving Impact of Trees on Street Canyon Microclimate. J. Phys. Conf. Ser. 2023, 2654, 012145. [Google Scholar] [CrossRef]
- Meili, N.; Manoli, G.; Burlando, P.; Carmeliet, J.; Chow, W.T.; Coutts, A.M.; Roth, M.; Velasco, E.; Vivoni, E.R.; Fatichi, S. Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects. Urban For. Urban Green. 2021, 58, 126970. [Google Scholar] [CrossRef]
- Stutzke, A. Why the Coldest Part of the Day Is Just After Sunrise. WQAD8. 29 November 2023. Available online: https://www.wqad.com/article/weather/ask-andrew/coldest-part-of-the-day-after-sunrise/526-9d0b8bfd-f268-4467-aec9-058d73672649 (accessed on 14 May 2024).
- Hiemstra, J.A.; Saaroni, H.; Amorim, J.H. The urban heat Island: Thermal comfort and the role of urban greening. In The Urban Forest: Cultivating Green Infrastructure for People and the Environment; Springer: Cham, Switzerland, 2017; pp. 7–19. [Google Scholar]
- Rizwan, A.M.; Dennis, L.Y.; Chunho, L.I.U. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Zhao, X.; Yang, J.; Song, J. Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Appl. Energy 2016, 161, 437–444. [Google Scholar] [CrossRef]
- Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H. The Potential for Reducing Urban Air Temperatures and Energy Consumption Through Vegetative Cooling (No. LBL-35320); Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 1994. [Google Scholar]
- Jones, B.A. Planting urban trees to improve quality of life? The life satisfaction impacts of urban afforestation. For. Policy Econ. 2021, 125, 102408. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
Data | Time Period | Source |
---|---|---|
Canopy cover | 2019 | Metro |
Canopy volume | 2019 | Metro |
Impervious surfaces | 2019 | City of Portland, BES |
Temperature (°F) | 2023 | CAPA_NIHHIS |
Traverse Data | % Canopy | Avg. Canopy Volume | % Impervious Surface |
---|---|---|---|
Morning 10 m | 2.11 | 2.07 | 1.19 |
Morning 30 m | 2.89 | 2.42 | 1.58 |
Morning 60 m | 4.30 | 3.33 | 1.75 |
Morning 90 m | 4.99 | 3.65 | 1.92 |
Afternoon 10 m | 2.08 | 1.78 | 1.25 |
Afternoon 30 m | 2.66 | 2.06 | 1.54 |
Afternoon 60 m | 3.65 | 2.68 | 1.79 |
Afternoon 90 m | 3.76 | 2.65 | 1.81 |
Evening 10 m | 2.57 | 2.20 | 1.46 |
Evening 30 m | 2.57 | 2.10 | 1.41 |
Evening 60 m | 3.38 | 2.58 | 1.59 |
Evening 90 m | 3.76 | 2.73 | 1.76 |
Traverse Time | Temperature Range (° F) | Variation (° F) |
---|---|---|
Morning (6–7 a.m.) | 54.7–65.1 | 10.4 |
Afternoon (3–4 p.m.) | 78.4–88.7 | 10.3 |
Evening (7–8 p.m.) | 75.2–85.6 | 10.4 |
Time of Day + Scale of Analysis | a | b (% Canopy) | c (% Impervious Surface) | d (Avg. Canopy Vol.) | |
---|---|---|---|---|---|
Morning, 10 m | 0.17 | 7.75 | −0.02 * | 0.02 *** | −0.01 |
Morning, 30 m | 0.36 | 7.82 | −0.03 *** | 0.04 *** | 0.01 |
Morning, 60 m | 0.42 | 7.82 | −0.04 *** | 0.04 *** | 0.02 * |
Morning, 90 m | 0.44 | 7.82 | −0.05 *** | 0.04 *** | 0.02 * |
Afternoon, 10 m | 0.22 | 9.25 | −0.03 *** | 0.02 * | −0.01 |
Afternoon, 30 m | 0.30 | 9.26 | −0.03 *** | 0.02 ** | 0 |
Afternoon, 60 m | 0.31 | 9.26 | −0.05 *** | 0.01 | 0 |
Afternoon, 90 m | 0.35 | 9.25 | −0.04 *** | 0.01 | −0.01 |
Evening, 10 m | 0.26 | 9.10 | −0.02 ** | 0.01 * | −0.02 * |
Evening, 30 m | 0.45 | 9.09 | −0.04 *** | 0.01 ** | −0.01 * |
Evening, 60 m | 0.55 | 9.09 | −0.04 *** | 0.01 | −0.02 ** |
Evening, 90 m | 0.55 | 9.09 | −0.06 *** | 0.01 | −0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ralls, C.; Polyakov, A.Y.; Shandas, V. Scale-Dependent Effects of Urban Canopy Cover, Canopy Volume, and Impervious Surfaces on Near-Surface Air Temperature in a Mid-Sized City. Land 2024, 13, 1741. https://doi.org/10.3390/land13111741
Ralls C, Polyakov AY, Shandas V. Scale-Dependent Effects of Urban Canopy Cover, Canopy Volume, and Impervious Surfaces on Near-Surface Air Temperature in a Mid-Sized City. Land. 2024; 13(11):1741. https://doi.org/10.3390/land13111741
Chicago/Turabian StyleRalls, Carson, Anne Y. Polyakov, and Vivek Shandas. 2024. "Scale-Dependent Effects of Urban Canopy Cover, Canopy Volume, and Impervious Surfaces on Near-Surface Air Temperature in a Mid-Sized City" Land 13, no. 11: 1741. https://doi.org/10.3390/land13111741
APA StyleRalls, C., Polyakov, A. Y., & Shandas, V. (2024). Scale-Dependent Effects of Urban Canopy Cover, Canopy Volume, and Impervious Surfaces on Near-Surface Air Temperature in a Mid-Sized City. Land, 13(11), 1741. https://doi.org/10.3390/land13111741