The Impact of Human Activity Expansion on Habitat Quality in the Yangtze River Basin
Abstract
:1. Introduction
2. Methods
2.1. Habitat Quality Measrements
2.2. Calculation of the Human Footprint Index
2.3. Hotspot Analysis
2.4. Bivariate Spatial Autocorrelation
2.5. Spatial Regression Model
3. Materials
3.1. Data Sources
3.2. Study Area
4. Results
4.1. Spatiotemporal Patterns of HQ and HA
4.2. Spatial Clustering Patterns of HQ and HA
4.3. Effects of HA on HQ
5. Discussion
5.1. Impact of HA on HQ
5.2. Policy Implications
5.3. Limitations and Future Plans
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, S.; Yang, L.; Jiao, H. Spatio-temporal analysis of the effects of human activities on habitat quality: A case study of guiyang city, guizhou province, China. Land 2022, 11, 1837. [Google Scholar] [CrossRef]
- Yang, L.; Xu, H.; Pan, S.; Chen, W.; Zeng, J. Identifying the impact of global human activities expansion on natural habitats. J. Clean. Prod. 2024, 434, 140247. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, S. A study on the dynamic evaluation of ecosystem health in the yangtze river basin of China. Ecol. Indic. 2023, 153, 110445. [Google Scholar] [CrossRef]
- Yang, H.; Sun, F.; Liao, H.; Guo, Y.; Pan, T.; Wu, F.; Giesy, J. Distribution, abundance, and risks posed by microplastics in surface waters of the yangtze river basin, China. Environ. Pollut. 2023, 333, 122086. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, G.; Zheng, X.; He, J.; Sun, X.; Ren, Y.; Xue, X.; Yang, G. Changes in the mean and extreme temperature in the yangtze river basin over the past 120 years. Weather. Clim. Extrem. 2023, 40, 100557. [Google Scholar] [CrossRef]
- Wang, K.; Huang, L.; He, G.; Fang, H.; Chen, M.; Wang, D.; Wu, X. Spatial-temporal evolution of sediment transport in the upper yangtze river basin considering the cumulative impacts of mega reservoirs. Catena 2023, 232, 107370. [Google Scholar] [CrossRef]
- Yang, L.; Pan, S.; Chen, W.; Zeng, J.; Xu, H.; Gu, T. Spatially non-stationary response of habitat quality to land use activities in world’s protected areas over 20 years. J. Clean. Prod. 2023, 419, 138245. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, L.; Dang, X.; Hu, F.; Yuan, B.; Yuan, Z.; Wei, L. Impacts and predictions of urban expansion on habitat quality in the densely populated areas: A case study of the Yangtze River Basin, China. Ecol. Indic. 2023, 151, 110320. [Google Scholar] [CrossRef]
- García, J.; Suárez-Seoane, S.; Miquélez, D.; Osborne, P.; Zumalacárregui, C. Spatial analysis of habitat quality in a fragmented population of little bustard (tetrax): Implications for conservation. Biol. Conserv. 2007, 137, 45. [Google Scholar] [CrossRef]
- Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.; Wuytack, T.; Potters, G.; Samson, R. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ. Pollut. 2010, 158, 788. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Li, J.; Sun, H.; Deng, C. Priority areas identified through spatial habitat suitability index and network analysis: Wild boar populations as proxies for tigers in and around the hupingshan and houhe National Nature Reserves. Sci. Total Environ. 2021, 774, 145067. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Su, W.; Cui, S.; Xu, Y.; Zhou, Z. Research on habitat quality assessment and decision-making based on semi-supervised ensemble learning method—Daxia river basin, China. Ecol. Indic. 2023, 156, 111153. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Y.; Li, L.; Chen, Z.; Chen, X.; Wu, T.; Li, Y. Spatiotemporal change of habitat quality in hainan island of China based on changes in land use. Ecol. Indic. 2022, 145, 109707. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Cao, Y.; Xu, Y.; Zhao, Z.; Zhuang, Y.; Liu, X.; Du, Z.; Liu, T.; Yang, B. Habitat quality dynamics in China’s first group of national parks in recent four decades: Evidence from land use and land cover changes. J. Environ. Manag. 2023, 325, 116505. [Google Scholar] [CrossRef]
- Zeng, C.; Wen, Y.; Liu, X.; Yu, J.; Jin, B.; Li, D. Impact of activities on changes of ichthyofauna in the middle and lower xiang river. Aquac. Fish. 2022, 7, 693. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the taihang mountains in hebei province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Das, M.; Mandal, A.; Das, A.; Inacio, M.; Pereira, P. Urban dynamics and its impact on habitat and eco-environmental quality along urban-rural gradient in an urban agglomeration (India). Environ. Chall. 2023, 14, 100824. [Google Scholar] [CrossRef]
- Yang, L.; Bian, C.; Pan, S.; Chen, W.; Zeng, J.; Xu, H.; Gu, T. Assessing the conservation effectiveness of the world’s protected areas: A habitat quality and human activities perspective. J. Clean. Prod. 2023, 431, 139772. [Google Scholar] [CrossRef]
- Mao, C.; Ren, Q.; He, C.; Qi, T. Assessing direct and indirect impacts of human activities on natural habitats in the qinghai-tibet plateau from 2000 to 2020. Ecol. Indic. 2023, 157, 111217. [Google Scholar] [CrossRef]
- Kajtoch, L.; Leso, P.; Aubrechtová, E.; Bydzovská, T.; Horák, J. The transformation of river ecosystems caused by mining affects bird breeding in indigenous riparian habitats. Sci. Total Environ. 2024, 912, 169286. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.; Pejchar, L.; Reed, S.; McHale, M. The efficacy of urban habitat enhancement programs for conserving native plants and human-sensitive animals. Landsc. Urban Plan. 2022, 220, 104356. [Google Scholar] [CrossRef]
- Zhi, X.; Du, H.; Zhang, M.; Long, Z.; Zhong, L.; Sun, X. Mapping the habitat for the moose population in northeast China by combining remote sensing products and random forests. Glob. Ecol. Conserv. 2022, 40, e02347. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, Q.; Li, Z. Analysis of spatial characteristics and influence mechanism of human settlement suitability in traditional villages based on multi-scale geographically weighted regression model: A case study of hunan province. Ecol. Indic. 2023, 154, 110828. [Google Scholar] [CrossRef]
- Liu, Y.; Song, C.; Yang, X.; Zhuo, H.; Zhou, Z.; Cao, L.; Cao, X.; Zhou, Y.; Xu, J.; Wan, L. Hydrological regimes and water quality variations in the yangtze river basin from 1998 to 2018. Water Res. 2024, 249, 120910. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of northern shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Xu, L.; Chen, S.; Xu, Y.; Li, G.; Su, W. Impacts of land-use change on habitat quality during 1985–2015 in the taihu lake basin. Sustainability 2019, 11, 3513. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s hebei province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Dong, N.; Wu, H.; Li, S. The projected futures of water resources vulnerability under climate and socioeconomic change in the yangtze river basin, China. Ecol. Indic. 2023, 147, 109933. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; He, Y.; Liang, D.; Shen, Y.; Gu, Q.; Zeng, Y. How microplastic loads relate to natural conditions and activities in the yangtze river basin. Chemosphere 2023, 342, 140146. [Google Scholar] [CrossRef]
- Yu, J.; Zou, L.; Xia, J.; Zhang, Y.; Zuo, L.; Li, X. Investigating the spatial–temporal changes of flood events across the yangtze river basin, China: Identification, spatial heterogeneity, and dominant impact factors. J. Hydrol. 2023, 621, 129503. [Google Scholar] [CrossRef]
- Dashtbozorgi, F.; Hedayatiaghmashhadi, A.; Dashtbozorgi, A.; Ruiz–Agudelo, C.; Fürst, C.; Cirella, G.T.; Dashtbozorgi, M. Ecosystem services valuation using InVEST modeling: Case from southern Iranian mangrove forests. Reg. Stud. Mar. Sci. 2023, 60, 102813. [Google Scholar] [CrossRef]
- Li, K.; Cao, J.; Adamowski, J.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the loess plateau area using the InVEST model: A case study in huining county, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the poplar ecological retreat project on water conservation in the dongting lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.; Marques, J.; Cunha, P.; Teixeira, Z. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial human footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Z. LTPP data-based investigation on asphalt pavement performance using geospatial hot spot analysis and decision tree models. Int. J. Transp. Sci. Technol. 2023, 12, 606. [Google Scholar] [CrossRef]
- Islam, S.; Islam, K.; Mullick, M. Drought hot spot analysis using local indicators of spatial autocorrelation: An experience from bangladesh. Environ. Chall. 2022, 6, 100410. [Google Scholar] [CrossRef]
- Xu, H.; Croot, P.; Zhang, C. Discovering hidden spatial patterns and their associations with controlling factors for potentially toxic elements in topsoil using hot spot analysis and K-means clustering analysis. Environ. Int. 2021, 151, 106456. [Google Scholar] [CrossRef]
- Choi, H.; Sohn, S.; Yeom, H. Technological composition of US metropolitan statistical areas with high-impact patents. Technol. Forecast. Soc. Change 2018, 134, 72. [Google Scholar] [CrossRef]
- Yan, G.; Wang, S. Coexistence and transformation from urban industrial land to green space in decentralization of megacities: A case study of daxing district, Beijing, China. Ecol. Indic. 2023, 156, 111120. [Google Scholar] [CrossRef]
- Dong, Y.; Peng, F.; Li, H.; Men, Y. Spatial autocorrelation and spatial heterogeneity of underground parking space development in Chinese megacities based on multisource open data. Appl. Geogr. 2023, 153, 102897. [Google Scholar] [CrossRef]
- Tao, R.; Thill, J. BiFlowLISA: Measuring spatial association for bivariate flow data. Comput. Environ. Urban Syst. 2020, 83, 101519. [Google Scholar] [CrossRef]
- Shu, Y.; Liang, J.; Rong, Y.; Fu, Z.; Yang, Y. A more accurate estimation with kernel machine for nonparametric spatial lag models. Spat. Stat. 2023, 58, 100786. [Google Scholar] [CrossRef]
- Zhang, R.; Du, Q.; Geng, J.; Liu, B.; Huang, Y. An improved spatial error model for the mass appraisal of commercial real estate based on spatial analysis: Shenzhen as a case study. Habitat Int. 2015, 46, 196. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.; Chen, S.; Zhai, S. Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Comput. Environ. Urban Syst. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Yang, L.; Meng, F.; Ma, C.; Hou, D. Elucidating the spatial determinants of heavy metals pollution in different agricultural soils using geographically weighted regression. Sci. Total Environ. 2022, 853, 158628. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yang, L.; Han, C.; Tang, J.; Li, Z. A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership. J. Transp. Geogr. 2022, 105, 103472. [Google Scholar] [CrossRef]
- Chen, X.; Emam, M.; Zhang, L.; Rifhat, R.; Zhang, L.; Zheng, Y. Analysis of spatial characteristics and geographic weighted regression of tuberculosis prevalence in Kashgar, China. Prev. Med. Rep. 2023, 35, 102362. [Google Scholar] [CrossRef]
- Mizrak, S.; Çam, H. Determining the factors affecting the disaster resilience of countries by geographical weighted regression. Int. J. Disaster Risk Reduct. 2022, 81, 103311. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Cheng, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, J.; Guo, A.; Zhou, K.; Yang, G.; Zou, D. Ecological drought evolution characteristics under different climatic regions in the yangtze river basin. J. Hydrol. 2024, 629, 130573. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195. [Google Scholar] [CrossRef]
- Sugasawa, S.; Murakami, D. Adaptively robust geographically weighted regression. Spat. Stat. 2022, 48, 100623. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the yangtze river economic belt and Yangtze River Basin of China. Land Use Policy 2023, 125, 106463. [Google Scholar] [CrossRef]
- Lü, Z.; You, M. A holistic approach to creating a new yangtze river basin protection legislation. Chin. J. Popul. Resour. Environ. 2020, 18, 196. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Zhang, S.; Wang, W. Dynamic identification and health assessment of wetlands in the middle reaches of the yangtze river basin under changing environment. J. Clean. Prod. 2022, 345, 131105. [Google Scholar] [CrossRef]
- Liu, X.; Wu, R.; Lopes-Lima, M.; Xue, T.; Zhou, Y.; Li, K.; Xu, Y.; Qin, J.; Ouyang, S.; Wu, X. Changes and drivers of freshwater mussel diversity patterns in the middle and lower yangtze river basin, China. Glob. Ecol. Conserv. 2020, 22, e00998. [Google Scholar] [CrossRef]
- Chen, S.; Wen, Z.; Zhang, S.; Huang, P.; Ma, M.; Zhou, X.; Liao, T.; Wu, S. Effects of long-term and large-scale ecology projects on forest dynamics in yangtze river basin, China. For. Ecol. Manag. 2021, 496, 119463. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Gardner, C.; Wu, F. Threats and protection policies of the aquatic biodiversity in the yangtze river. J. Nat. Conserv. 2020, 58, 125931. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, Y.; Cang, Y.; Ding, X. Ecological security assessment for megacities in the yangtze river basin: Applying improved emergy-ecological footprint and DEA-SBM model. Ecol. Indic. 2022, 134, 108481. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Xiang, X.; Chen, J.; Rong, J. Genetic diversity of crop wild relatives under threat in yangtze river basin: Call for enhanced In situ conservation and utilization. Mol. Plant 2019, 12, 1535. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, J.; Chen, X. Ecological infrastructure planning of large river basin to promote nature conservation and ecosystem functions. J. Environ. Manag. 2022, 306, 114482. [Google Scholar] [CrossRef]
- Sheng, J.; Rui, D.; Han, X. Governmentality and sociotechnical imaginary within the conservation-development nexus: China’s great yangtze river protection programme. Environ. Sci. Policy 2022, 136, 56. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, D.; Xie, L.; Zhang, X.; Wu, H.; Li, S. Mapping changes in the value of ecosystem services in the yangtze river middle reaches megalopolis, China. Ecosyst. Serv. 2021, 48, 101252. [Google Scholar] [CrossRef]
Code | Threat Source | Maximum Distance (km) | Weight | Decay Type |
---|---|---|---|---|
I | Urban and rural construction land | 12 | 0.28 | Exponential |
II | Other construction land | 8 | 0.19 | Exponential |
III | Farmland | 3 | 0.11 | Exponential |
IV | Desert | 10 | 0.25 | Exponential |
V | Gobi | 6 | 0.14 | Exponential |
VI | Bare | 3 | 0.03 | Exponential |
Land-Use Type | Habitat Suitability | Threat Source | ||||||
---|---|---|---|---|---|---|---|---|
Code | Name | I | II | III | IV | V | VI | |
11 | Paddy field | 0.60 | 0.65 | 0.45 | 0.35 | 0.30 | 0.25 | 0.10 |
12 | Arid land | 0.40 | 0.60 | 0.40 | 0.30 | 0.30 | 0.30 | 0.20 |
21 | Forest land | 1.00 | 0.70 | 0.50 | 0.60 | 0.45 | 0.30 | 0.10 |
22 | Shrubwood | 1.00 | 0.60 | 0.40 | 0.40 | 0.35 | 0.20 | 0.10 |
23 | Open forest land | 1.00 | 0.90 | 0.80 | 0.70 | 0.65 | 0.30 | 0.10 |
24 | Other forest land | 1.00 | 0.85 | 0.75 | 0.70 | 0.65 | 0.30 | 0.10 |
31 | High-cover grassland | 0.80 | 0.55 | 0.60 | 0.50 | 0.80 | 0.35 | 0.10 |
32 | Medium-cover grassland | 0.75 | 0.60 | 0.70 | 0.55 | 0.85 | 0.40 | 0.10 |
33 | Low-cover grassland | 0.70 | 0.65 | 0.80 | 0.60 | 0.75 | 0.40 | 0.20 |
41 | Graff | 1.00 | 0.80 | 0.30 | 0.65 | 0.65 | 0.35 | 0.10 |
42 | Lake reservoir | 1.00 | 0.85 | 0.35 | 0.70 | 0.85 | 0.40 | 0.10 |
45 | Bottomland | 0.60 | 0.85 | 0.35 | 0.70 | 0.60 | 0.40 | 0.20 |
51 | Urban land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
52 | Rural residential land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
53 | Other construction land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
61 | Desert | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
62 | Gobi | 0.10 | 0.10 | 0.40 | 0.10 | 0.60 | 0.10 | 0.10 |
63 | Bare | 0.20 | 0.15 | 0.20 | 0.10 | 0.50 | 0.30 | 0.10 |
64 | Marshland | 1.00 | 0.60 | 0.60 | 0.70 | 0.60 | 0.35 | 0.20 |
67 | Other | 0.10 | 0.10 | 0.10 | 0.10 | 0.20 | 0.10 | 0.10 |
Data Name | Data Resolution | Data Format | Data Sources |
---|---|---|---|
HFI | 1000 m | Tif | https://www.x-mol.com/groups/li_xuecao |
Land-use data | 1000 m | Tif | http://www.resdc.cn |
Boundary data | / | Shpfile | http://www.resdc.cn http://www.ngcc.cn |
Cluster Types | High–High | Low–Low | High–Low | Low–High |
---|---|---|---|---|
2000 | 7.680% | 10.198% | 16.590% | 15.425% |
2010 | 6.471% | 10.334% | 15.514% | 15.317% |
2020 | 6.219% | 11.968% | 16.446% | 15.186% |
Diagnostic Item | 2000 | 2010 | 2020 |
---|---|---|---|
Moran’s I (error) | 234.5292 *** | 235.517 *** | 232.450 *** |
LM (lag) | 54,246.817 *** | 54,171.908 *** | 51,631.749 *** |
Robust LM (lag) | 169.289 *** | 207.819 *** | 218.046 *** |
LM (error) | 54,964.396 *** | 55,428.354 *** | 53,993.951 *** |
Robust LM (error) | 886.868 *** | 1464.265 *** | 2580.247 *** |
Lagrange multiplier (SARMA) | 55,133.685 *** | 55,636.173 *** | 54,211.996 *** |
Breusch–Pagan test | 352.618 *** | 257.113 *** | 284.895 *** |
Koenker–Bassett test | 193.9842 *** | 135.763 *** | 133.542 *** |
Log-likelihood | 7212.750 | 7064.670 | 7055.640 |
AIC | −14,421.500 | −14,125.300 | −14,107.300 |
SC | −14,405.300 | −14,109.100 | −14,091.100 |
R2 | 0.005 | 0.014 | 0.043 |
Explanatory Variables | SLM | SEM | SEMLD | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
HA | −0.068 *** | −0.075 *** | −0.084 *** | −0.334 *** | −0.341 *** | −0.370 *** | −0.035 *** (0.002) | −0.035 *** (0.002) | −0.034 *** (0.002) |
Constant | 0.082 *** | 0.085 *** | 0.098 *** | 0.795 *** | 0.797 *** | 0.814 *** | −0.017 *** (0.002) | −0.016 *** (0.002) | −0.013 *** (0.002) |
Spatial lag term | 0.908 *** | 0.906 *** | 0.895 *** | 1.033 *** (0.002) | 1.031 *** (0.002) | 1.029 *** (0.002) | |||
Spatial error term | 0.914 *** | 0.914 *** | 0.908 *** | −0.677 *** (0.014) | −0.658 *** (0.014) | −0.657 *** (0.014) | |||
Log likelihood | 22,956.200 | 22,794.700 | 21,859.900 | 23,534.269 | 23,501.254 | 22,791.041 | 26,775.907 | 26,520.790 | 25,445.620 |
AIC | −45,906.300 | −45,583.300 | −43,713.900 | −47,064.500 | −46,998.500 | −45,578.100 | −53,545.800 | −53,035.600 | −50,885.200 |
SC | −45,882.000 | −45,559.000 | −43,689.600 | −47,048.300 | −46,982.300 | −45,561.900 | −53,521.500 | −53,011.300 | −50,860.900 |
R2 | 0.773 | 0.773 | 0.762 | 0.785 | 0.789 | 0.782 | 0.812 | 0.811 | 0.800 |
Explanatory Variables | SLM | SEM | SEMLD | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
HA | −0.016 *** | −0.023 *** | −0.038 *** | −0.207 *** | −0.219 *** | −0.269 *** | −0.026 *** (0.002) | −0.027 *** (0.003) | −0.024 *** (0.002) |
Constant | 0.069 *** | 0.070 *** | 0.078 *** | 0.730 *** | 0.733 *** | 0.752 *** | −0.021 *** (0.002) | −0.020 *** (0.002) | −0.020 *** (0.002) |
Spatial lag term | 0.904 *** | 0.905 *** | 0.900 *** | 1.035 *** (0.003) | 1.035 *** (0.003) | 1.035 *** (0.003) | |||
Spatial error term | 0.910 *** | 0.911 *** | 0.908 *** | −0.701 *** (0.017) | −0.695 *** (0.017) | −0.684 *** (0.017) | |||
Log likelihood | 13,739.000 | 13,663.200 | 13,222.500 | 13,905.673 | 13,866.005 | 13,541.526 | 16,159.919 | 16,074.237 | 15,572.295 |
AIC | −27,472.100 | −27,320.400 | −26,439.000 | −27,807.300 | −27,728.000 | −27,079.100 | −32,313.800 | −32,142.500 | −31,138.600 |
SC | −27,449.300 | −27,297.600 | −26,416.200 | −27,792.100 | −27,712.800 | −27,063.800 | −32,291.000 | −32,119.700 | −31,115.800 |
R2 | 0.765 | 0.765 | 0.752 | 0.771 | 0.773 | 0.764 | 0.808 | 0.808 | 0.795 |
Explanatory Variables | SLM | SEM | SEMLD | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
HA | −0.317 *** | −0.304 *** | −0.297 *** | −0.494 *** | −0.471 *** | −0.467 *** | −0.141 *** (0.006) | −0.143 *** (0.006) | −0.147 *** (0.005) |
Constant | 0.263 *** | 0.271 *** | 0.308 *** | 0.945 *** | 0.940 *** | 0.951 *** | 0.061 *** (0.006) | 0.070 *** (0.006) | 0.098 *** (0.006) |
Spatial lag term | 0.786 *** | 0.775 *** | 0.737 *** | 0.973 *** (0.005) | 0.964 *** (0.005) | 0.938 *** (0.006) | |||
Spatial error term | 0.864 *** | 0.860 *** | 0.842 *** | −0.593 *** (0.024) | −0.566 *** (0.024) | −0.555 *** (0.024) | |||
Log likelihood | 8357.070 | 8326.890 | 8188.990 | 8457.452 | 8445.305 | 8357.833 | 9103.311 | 9024.309 | 8791.379 |
AIC | −16,708.100 | −16,647.800 | −16,372.000 | −16,910.900 | −16,886.600 | −16,711.700 | −18,200.600 | −18,042.600 | −17,576.800 |
SC | −16,687.300 | −16,627.000 | −16,351.200 | −16,897.000 | −16,872.800 | −16,697.800 | −18,179.800 | −18,021.800 | −17,556.000 |
R2 | 0.756 | 0.755 | 0.756 | 0.771 | 0.772 | 0.777 | 0.782 | 0.780 | 0.778 |
Explanatory Variables | SLM | SEM | SEMLD | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
HA | −0.210 *** | −0.215 *** | −0.261 *** | −0.309 *** | −0.346 *** | −0.382 *** | −0.052 *** (0.011) | −0.067 *** (0.010) | −0.086 *** (0.012) |
Constant | 0.215 *** | 0.234 *** | 0.299 *** | 0.798 *** | 0.813 *** | 0.834 *** | 0.008 (0.011) | 0.031 (0.012) | 0.061 *** (0.014) |
Spatial lag term | 0.801 *** | 0.785 *** | 0.733 *** | 1.015 *** (0.011) | 0.993 *** (0.012) | 0.968 *** (0.013) | |||
Spatial error term | 0.867 *** | 0.870 *** | 0.843 *** | −0.567 *** (0.042) | −0.466 *** (0.042) | −0.471 *** (0.042) | |||
Log likelihood | 2033.750 | 2026.100 | 1844.520 | 2013.895 | 2024.201 | 1816.932 | 2295.148 | 2247.032 | 2036.960 |
AIC | −4061.500 | −4046.200 | −3683.030 | −4023.790 | −4044.400 | −3629.860 | −4584.300 | −4488.060 | −4067.920 |
SC | −4044.210 | −4028.910 | −3665.740 | −4012.270 | −4032.880 | −3618.340 | −4567.010 | −4470.780 | −4050.630 |
R2 | 0.738 | 0.760 | 0.755 | 0.742 | 0.770 | 0.761 | 0.770 | 0.781 | 0.776 |
Explanatory Variables | Upper Basin | Middle Basin | Lower Basin | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
HA | −0.026 *** (0.002) | −0.027 *** (0.003) | −0.024 *** (0.002) | −0.141 *** (0.006) | −0.143 *** (0.006) | −0.147 *** (0.005) | −0.052 *** (0.011) | −0.067 *** (0.010) | −0.086 *** (0.012) |
Constant | −0.021 *** (0.002) | −0.020 *** (0.002) | −0.020 *** (0.002) | 0.061 *** (0.006) | 0.070 *** (0.006) | 0.098 *** (0.006) | 0.008 (0.011) | 0.031 (0.012) | 0.061 *** (0.014) |
Spatial lag term | 1.035 *** (0.003) | 1.035 *** (0.003) | 1.035 *** (0.003) | 0.973 *** (0.005) | 0.964 *** (0.005) | 0.938 *** (0.006) | 1.015 *** (0.011) | 0.993 *** (0.012) | 0.968 *** (0.013) |
Spatial error term | −0.701 *** (0.017) | −0.695 *** (0.017) | −0.684 *** (0.017) | −0.593 *** (0.024) | −0.566 *** (0.024) | −0.555 *** (0.024) | −0.567 *** (0.042) | −0.466 *** (0.042) | −0.471 *** (0.042) |
Log likelihood | 16,159.919 | 16,074.237 | 15,572.295 | 9103.311 | 9024.309 | 8791.379 | 2295.148 | 2247.032 | 2036.960 |
AIC | −32,313.800 | −32,142.500 | −31,138.600 | −18,200.600 | −18,042.600 | −17,576.800 | −4584.300 | −4488.060 | −4067.920 |
SC | −32,291.000 | −32,119.700 | −31,115.800 | −18,179.800 | −18,021.800 | −17,556.000 | −4567.010 | −4470.780 | −4050.630 |
R2 | 0.808 | 0.808 | 0.795 | 0.782 | 0.780 | 0.778 | 0.770 | 0.781 | 0.776 |
Years | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
GWR | OLS | GWR | OLS | GWR | OLS | |
AICc | −56,777.633 | −14,421.500 | −54,721.534 | −14,125.300 | −50,751.269 | −14,107.300 |
R2 | 0.884 | 0.005 | 0.857 | 0.014 | 0.816 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; Yang, L.; Zhao, X.; Yao, X.; Xiao, L. The Impact of Human Activity Expansion on Habitat Quality in the Yangtze River Basin. Land 2024, 13, 908. https://doi.org/10.3390/land13070908
Bian C, Yang L, Zhao X, Yao X, Xiao L. The Impact of Human Activity Expansion on Habitat Quality in the Yangtze River Basin. Land. 2024; 13(7):908. https://doi.org/10.3390/land13070908
Chicago/Turabian StyleBian, Chenchen, Liyan Yang, Xiaozhen Zhao, Xiaowei Yao, and Lang Xiao. 2024. "The Impact of Human Activity Expansion on Habitat Quality in the Yangtze River Basin" Land 13, no. 7: 908. https://doi.org/10.3390/land13070908
APA StyleBian, C., Yang, L., Zhao, X., Yao, X., & Xiao, L. (2024). The Impact of Human Activity Expansion on Habitat Quality in the Yangtze River Basin. Land, 13(7), 908. https://doi.org/10.3390/land13070908