Mapping the Functional Structure of Urban Agglomerations at the Block Level: A New Spatial Classification That Goes beyond Land Use
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Block Division
2.2. Capturing and Preprocessing POI Big Data
2.3. Calculating the Total, Average, and Ratio of Function Intensity
3. Results
3.1. Definition and Spatial Pattern of PLE Functions in the GBA
3.2. Accuracy Validation of PLE Recognition
3.3. Structure of PLE Functions in the GBA at the City Scale
4. Discussion
4.1. Recognition Influenced by Proportions of POIs
4.2. Recognition Influenced by Relevance and Influence
4.3. Comparing the PLEs with the Land Use Product Derived from High-Resolution Images
4.4. Uncertainties and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.X.; Zeng, J.; Li, N. Change in land-use structure due to urbanisation in China. J. Clean. Prod. 2021, 321, 128986. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Wang, S. The coupling curve between urbanization and the eco-environment: China’s urban agglomeration as a case study. Ecol. Indic. 2021, 130, 108107. [Google Scholar] [CrossRef]
- Yu, Q.; Feng, C.-C.; Shi, Y.; Guo, L. Spatiotemporal interaction between ecosystem services and urbanization in China: Incorporating the scarcity effects. J. Clean. Prod. 2021, 317, 128392. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, Y.; Zhang, X.; Hu, M.; Gao, Y.; Zhu, J. Exploring ecological civilization performance and its determinants in emerging industrialized countries: A new evaluation system in the case of China. J. Clean. Prod. 2021, 315, 128051. [Google Scholar] [CrossRef]
- Meng, F.; Guo, J.; Guo, Z.; Lee, J.C.K.; Liu, G.; Wang, N. Urban ecological transition: The practice of ecological civilization construction in China. Sci. Total Environ. 2021, 755, 142633. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y. Territory spatial planning and national governance system in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Hansen, M.H.; Li, H.; Svarverud, R. Ecological civilization: Interpreting the Chinese past, projecting the global future. Glob. Environ. Chang.-Hum. Policy Dimens. 2018, 53, 195–203. [Google Scholar] [CrossRef]
- Xue, Z.; Zhen, L.; Miah, M.G.; Shoyama, K. Impact assessment of land use functions on the sustainable regional development of representative Asian countries—A comparative study in Bangladesh, China and Japan. Sci. Total Environ. 2019, 694, 133689. [Google Scholar] [CrossRef]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan. 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Li, M.; Meng, L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Fu, C.; Tu, X.Q.; Huang, A. Identification and Characterization of Production-Living-Ecological Space in a Central Urban Area Based on POI Data: A Case Study for Wuhan, China. Sustainability 2021, 13, 7691. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, C.T.; Zhang, L.; Liu, J.A.; Li, R.N. Spatial Simulation of Land-Use Development of Feixi County, China, Based on Optimized Productive-Living-Ecological Functions. Sustainability 2022, 14, 6195. [Google Scholar] [CrossRef]
- Li, S.N.; Zhu, C.M.; Lin, Y.; Dong, B.Y.; Chen, B.J.; Si, B.; Li, Y.J.; Deng, X.D.; Gan, M.Y.; Zhang, J.; et al. Conflicts between agricultural and ecological functions and their driving mechanisms in agroforestry ecotone areas from the perspective of land use functions. J. Clean. Prod. 2021, 317, 128453. [Google Scholar] [CrossRef]
- Tao, C.; Lu, W.; Qi, J.; Wang, H. Spatial Information Considered Network for Scene Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 984–988. [Google Scholar] [CrossRef]
- Zhao, B.; Tan, X.; Luo, L.; Deng, M.; Yang, X. Identifying the Production-Living-Ecological Functional Structure of Haikou City by Integrating Empirical Knowledge with Multi-Source Data. ISPRS Int. J. Geo-Inf. 2023, 12, 276. [Google Scholar] [CrossRef]
- Tian, F.H.; Li, M.Y.; Han, X.L.; Liu, H.; Mo, B.X. A Production-Living-Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China. Ecol. Model. 2020, 437, 109310. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Zhi, C.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Gao, K.; Yang, X.M.; Wang, Z.H.; Zhang, H.F.; Huang, C.; Zeng, X.W. Spatial Sustainable Development Assessment Using Fusing Multisource Data from the Perspective of Production-Living-Ecological Space Division: A Case of Greater Bay Area, China. Remote Sens. 2022, 14, 2772. [Google Scholar] [CrossRef]
- Chen, Y.; He, C.; Guo, W.; Zheng, S.; Wu, B. Mapping Urban Functional Areas Using Multisource Remote Sensing Images and Open Big Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7919–7931. [Google Scholar] [CrossRef]
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G. Identification and Classification of Urban PLES Spatial Functions Based on Multisource Data and Machine Learning. Land 2022, 11, 1824. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Petrescu, D.C.; Reti, K.-O. My land is my food: Exploring social function of large land deals using food security-land deals relation in five Eastern European countries. Land Use Policy 2019, 82, 729–741. [Google Scholar] [CrossRef]
- Lu, W.P.; Tao, C.; Li, H.F.; Qi, J.; Li, Y.S. A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data. Remote Sens. Environ. 2022, 270, 112830. [Google Scholar] [CrossRef]
- Wubuli, J.; Xue, D.Q.; Song, Y.Y.; Ma, B.B. Method for identifying rural PLES and its applications. Ecol. Indic. 2024, 166, 112273. [Google Scholar] [CrossRef]
- Chen, W.; Huang, H.; Dong, J.; Zhang, Y.; Tian, Y.; Yang, Z. Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS J. Photogramm. Remote Sens. 2018, 146, 436–452. [Google Scholar] [CrossRef]
- Abdul-Rahman, M.; Chan, E.H.W.; Wong, M.S.; Irekponor, V.E.; Abdul-Rahman, M.O. A framework to simplify pre-processing location-based social media big data for sustainable urban planning and management. Cities 2021, 109, 102986. [Google Scholar] [CrossRef]
- Su, Y.; Zhong, Y.; Zhu, Q.; Zhao, J. Urban scene understanding based on semantic and socioeconomic features: From high-resolution remote sensing imagery to multi-source geographic datasets. ISPRS J. Photogramm. Remote Sens. 2021, 179, 50–65. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Qian, J.; Liu, Z.; Du, Y.; Liang, F.; Yi, J.; Ma, T.; Pei, T. Quantify city-level dynamic functions across China using social media and POIs data. Comput. Environ. Urban Syst. 2021, 85, 101552. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, X.Y.; Shi, Y.; Han, Y.; Peng, Z.R.; Gu, C.L. Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs. Comput. Environ. Urban Syst. 2019, 74, 1–12. [Google Scholar] [CrossRef]
- Hu, S.; He, Z.; Wu, L.; Yin, L.; Xu, Y.; Cui, H. A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data. Comput. Environ. Urban Syst. 2020, 80, 101442. [Google Scholar] [CrossRef]
- Niu, H.; Silva, E.A. Delineating urban functional use from points of interest data with neural network embedding: A case study in Greater London. Comput. Environ. Urban Syst. 2021, 88, 101651. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Spatial pattern of China’s new urbanization. In China’s New Urbanization: Developmental Paths, Blueprints Patterns; Springer: Berlin/Heidelberg, Germany, 2016; pp. 179–232. [Google Scholar]
- Pan, C.; Wu, S.; Li, E.; Li, H.; Liu, X. Identification of urban functional zones in Macau Peninsula based on POI data and remote information sensors technology for sustainable development. Phys. Chem. Earth 2023, 131, 103447. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.; Xiang, T.; Zhang, Z.; Wang, X.; Wu, J. Exploring the coordination between physical space expansion and social space growth of China’s urban agglomerations based on hierarchical analysis. Land Use Policy 2021, 109, 105700. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Wang, Z. Exploring the Spatial Pattern of Urban Block Development Based on POI Analysis: A Case Study in Wuhan, China. Sustainability 2019, 11, 6961. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wang, H.; Li, X. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-scenario perspective based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Long, Y.; Shen, Y.; Jin, X. Mapping Block-Level Urban Areas for All Chinese Cities. Ann. Am. Assoc. Geogr. 2016, 106, 96–113. [Google Scholar] [CrossRef]
- Ni, M.Y.; Zhao, Y.D.; Ma, C.H.; Jiang, W.Z.; Xie, Y.M.; Hou, X.L. Spatial Identification and Change Analysis of Production-Living-Ecological Space Using Multi-Source Geospatial Data: A Case Study in Jiaodong Peninsula, China. Land 2023, 12, 1748. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yang, R.X.; Xiao, X.M.; Xia, J.H. Contribution of urban functional zones to the spatial distribution of urban thermal environment. Build. Environ. 2022, 216, 109000. [Google Scholar] [CrossRef]
- Taubenböck, H.; Weigand, M.; Esch, T.; Staab, J.; Wurm, M.; Mast, J.; Dech, S. A new ranking of the world’s largest cities-Do administrative units obscure morphological realities? Remote Sens. Environ. 2019, 232, 111353. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.J.; Chen, F.; Ban, Y.F.; Li, S.N.A.; Han, G.; Tong, X.H.; Liu, C.; Stamenova, V.; Stamenov, S. Collaborative validation of GlobeLand30: Methodology and practices. Geo-Spat. Inf. Sci. 2021, 24, 134–144. [Google Scholar] [CrossRef]
- GB 50180-2018; Code of Urban Residential Areas Planning & Design. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2018.
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G.; Li, X. Sustainable land use diagnosis based on the perspective of production-living-ecological spaces in China. Land Use Policy 2022, 122, 106386. [Google Scholar] [CrossRef]
- Cao, G.; Gu, C.; Zhang, Q. Recognition of “Ecological Space, Living Space, and Production Space” in the Urban Central Area Based on POI Data: The Case of Shanghai. Urban Plan. Forum 2019, 2, 44–53. [Google Scholar]
- Abbas, Z.; Zhu, Z.Y.; Zhao, Y.L. Spatiotemporal analysis of landscape pattern and structure in the Greater Bay Area, China (Mar, 10.1007/s12145-022-00782-y, 2022). Earth Sci. Inform. 2022, 15, 1993–1994. [Google Scholar] [CrossRef]
- Liang, T.; Du, P.; Yang, F.; Su, Y.X.; Luo, Y.C.; Wu, Y.; Wen, C.H. Potential Land-Use Conflicts in the Urban Center of Chongqing Based on the “Production-Living-Ecological Space” Perspective. Land 2022, 11, 1415. [Google Scholar] [CrossRef]
- Wang, S.H.; Huang, L.; Xu, X.L.; Li, J.H. Spatio-temporal variations in ecological spaces and their ecological carrying status in China’s mega-urban agglomerations. J. Geogr. Sci. 2022, 32, 1683–1704. [Google Scholar] [CrossRef]
- Song, J.; Lin, T.; Li, X.; Prishchepov, A.V. Mapping Urban Functional Zones by Integrating Very High Spatial Resolution Remote Sensing Imagery and Points of Interest: A Case Study of Xiamen, China. Remote Sens. 2018, 10, 1737. [Google Scholar] [CrossRef]
- He, D.; Shi, Q.; Liu, X.; Zhong, Y.; Xia, G.; Zhang, L. Generating annual high resolution land cover products for 28 metropolises in China based on a deep super-resolution mapping network using Landsat imagery. Gisci. Remote Sens. 2022, 59, 2036–2067. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Q.; Zou, Y. Simulation and Analysis of Urban Production-Living-Ecological Space Evolution Based on a Macro-Micro Joint Decision Model. Int. J. Environ. Res. Public Health 2021, 18, 9832. [Google Scholar] [CrossRef]
- Jing, Z.R.; Wang, J.M.; Tang, Q.; Liu, B.A.; Niu, H.B. Evolution of land use in coal-based cities based on the ecological niche theory: A case study in Shuozhou City, China. Resour. Policy 2021, 74, 102245. [Google Scholar] [CrossRef]
PLE Type | POI Type | Relevance (α) | Influence (β) | Weight (ω = α × β) | |
---|---|---|---|---|---|
P | P1 | Auto services | 0.083 | 70 | 5.81 |
P2 | Enterprises | 0.314 | 90 | 28.26 | |
P3 | Business buildings | 0.195 | 60 | 11.7 | |
P4 | Finance & insurance services | 0.069 | 40 | 2.76 | |
P5 | Logistics & warehousing | 0.056 | 60 | 3.36 | |
P6 | Major transportation facilities | 0.145 | 70 | 10.15 | |
P7 | General transport facilities | 0.043 | 20 | 0.86 | |
P8 | Government organizations & social groups | 0.095 | 40 | 3.8 | |
L | L1 | Residential districts | 0.502 | 90 | 45.18 |
L2 | Shopping services | 0.055 | 60 | 3.3 | |
L3 | Daily life services | 0.106 | 60 | 6.36 | |
L4 | Food & beverage services | 0.078 | 20 | 1.56 | |
L5 | Medical services | 0.053 | 60 | 3.18 | |
L6 | Science/cultural & education services | 0.106 | 60 | 6.36 | |
L7 | Sports & recreation services | 0.026 | 20 | 0.52 | |
L8 | Accommodation services | 0.074 | 20 | 1.48 | |
E | E1 | Tourist attractions | 0.75 | 90 | 67.5 |
E2 | Agriculture, forestry, grazing and fishing | 0.25 | 80 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, B.; Lai, Z.; Ma, S. Mapping the Functional Structure of Urban Agglomerations at the Block Level: A New Spatial Classification That Goes beyond Land Use. Land 2024, 13, 1148. https://doi.org/10.3390/land13081148
Ai B, Lai Z, Ma S. Mapping the Functional Structure of Urban Agglomerations at the Block Level: A New Spatial Classification That Goes beyond Land Use. Land. 2024; 13(8):1148. https://doi.org/10.3390/land13081148
Chicago/Turabian StyleAi, Bin, Zhenlin Lai, and Shifa Ma. 2024. "Mapping the Functional Structure of Urban Agglomerations at the Block Level: A New Spatial Classification That Goes beyond Land Use" Land 13, no. 8: 1148. https://doi.org/10.3390/land13081148
APA StyleAi, B., Lai, Z., & Ma, S. (2024). Mapping the Functional Structure of Urban Agglomerations at the Block Level: A New Spatial Classification That Goes beyond Land Use. Land, 13(8), 1148. https://doi.org/10.3390/land13081148