Assessing Macrophyte and Ecosystem Service Changes in Shallow Eutrophic Coastal Waters Using Remote Sensing Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis and Documentation of the WFD Macrophyte Monitoring Approach and Data Set
2.3. Drone-Based Habitat Mapping
2.4. Satellite-Based Habitat Mapping
2.5. Assessment of Spatial Ecosystem Service Changes
3. Results
3.1. Macrophyte Monitoring, Distribution, and Composition in Greifswald Bay
3.2. Detection of Underwater Habitats Using Aerial and Underwater Drones
3.3. Detection of Underwater Habitats and Their Changes Using Satellite Images
3.4. Changes in Ecosystem Service Potentials
4. Discussion
4.1. Methodological Assessment
4.2. Towards Spatial Monitoring of Macrophytes
4.3. Towards a Spatiotemporal Assessment of Ecosystems Services
4.4. Transeferability of Approaches and Results and Future Perpectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiewer, U. Ecology of Baltic Coastal Waters; Springer: Berlin, Germany, 2008; ISBN 9783540735236. [Google Scholar]
- Schubert, H.; Müller, F. (Eds.) Southern Baltic Coastal Systems Analysis; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-13682-5. [Google Scholar]
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.I.; Sousa, A.I.; et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Heckwolf, M.J.; Peterson, A.; Jänes, H.; Horne, P.; Künne, J.; Liversage, K.; Sajeva, M.; Reusch, T.B.H.; Kotta, J. From ecosystems to socio-economic benefits: A systematic review of coastal ecosystem services in the Baltic Sea. Sci. Total Environ. 2021, 755, 142565. [Google Scholar] [CrossRef] [PubMed]
- Schernewski, G.; Friedland, R.; Paysen, S.; Bucas, M.; Dahlke, S.; von Weber, M. Macrophytes and water quality in a large Baltic lagoon: Relevance, development and restoration perspectives. Front. Mar. Sci. 2023, 10, 1049181. [Google Scholar] [CrossRef]
- Lønborg, C.; Thomasberger, A.; Staehr, P.A.U.; Stockmarr, A.; Sengupta, S.; Rasmussen, M.L.; Nielsen, L.T.; Hansen, L.B.; Timmermann, K. Submerged aquatic vegetation: Overview of monitoring techniques used for the identification and determination of spatial distribution in European coastal waters. Integr. Environ. Assess. Manag. 2022, 18, 892–908. [Google Scholar] [CrossRef]
- Huber, S.; Hansen, L.B.; Nielsen, L.T.; Rasmussen, M.L.; Sølvsteen, J.; Berglund, J.; Paz von Friesen, C.; Danbolt, M.; Envall, M.; Infantes, E.; et al. Novel approach to large-scale monitoring of submerged aquatic vegetation: A nationwide example from Sweden. Integr. Environ. Assess. Manag. 2022, 18, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.; Wilken, H.; Meyer, T. Handlungsanweisung zum Bewertungsverfahren BALCOSIS: Bewertung des Ökologischen Zustands der Makrophyten in den Äußeren Küstengewässern der Ostsee nach den Vorgaben der WRRL. Available online: https://mhb.meeresschutz.info/files/meeresschutz/Dokumente/makrophyten/Handlungsanweisung_BALCOSIS_Mai2019_deu.pdf (accessed on 7 August 2024).
- Nickel, J.; Wilken, H.; Meyer, T. Handlungsanweisung zum Bewertungsverfahren PHYBIBCO: Bewertung des Ökologischen Zustands der Makrophyten in den inneren Küstengewässern der Ostsee nach den Vorgaben der WRRL. 2019. Available online: https://mhb.meeresschutz.info/files/meeresschutz/Dokumente/makrophyten/Handlungsanweisung_PHYBIBCO_Mai2019_deu.pdf (accessed on 7 August 2024).
- Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef]
- Monteiro, J.G.; Jiménez, J.L.; Gizzi, F.; Přikryl, P.; Lefcheck, J.S.; Santos, R.S.; Canning-Clode, J. Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis. Sci. Rep. 2021, 11, 574. [Google Scholar] [CrossRef]
- Román, A.; Tovar-Sánchez, A.; Olivé, I.; Navarro, G. Using a UAV-Mounted Multispectral Camera for the Monitoring of Marine Macrophytes. Front. Mar. Sci. 2021, 8, 722698. [Google Scholar] [CrossRef]
- Kuhwald, K.; Schneider von Deimling, J.; Schubert, P.; Oppelt, N. How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? Remote Sens. Ecol. Conserv. 2022, 8, 328–346. [Google Scholar] [CrossRef]
- BMUV/UBA. Water Framework Directive—The Status of German Waters 2021. Progress and Challenges. 2022. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/water-framework-directive-2021_bf.pdf (accessed on 7 August 2024).
- Bouwma, I.; Schleyer, C.; Primmer, E.; Winkler, K.J.; Berry, P.; Young, J.; Carmen, E.; Špulerová, J.; Bezák, P.; Preda, E.; et al. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 2018, 29, 213–222. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water: Synthesis; Workd Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Haines-Young, R.; Potschin-Young, M. Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. OE 2018, 3, e27108. [Google Scholar] [CrossRef]
- Schernewski, G.; Robbe, E. Ecosystem Service Assessment in European Coastal and Marine Policies. South. Balt. Coast. Syst. Anal. 2023, 246, 347–366. [Google Scholar] [CrossRef]
- Inácio, M.; Schernewski, G.; Nazemtseva, Y.; Baltranaitė, E.; Friedland, R.; Benz, J. Ecosystem services provision today and in the past: A comparative study in two Baltic lagoons. Ecol. Res. 2018, 33, 1255–1274. [Google Scholar] [CrossRef]
- Inácio, M.; Schernewski, G.; Pliatsika, D.A.; Benz, J.; Friedland, R. Assessing Changes in Ecosystem Services Provision in Coastal Waters. Sustainability 2019, 11, 2632. [Google Scholar] [CrossRef]
- Schernewski, G.; Paysen, P.; Robbe, E.; Inácio, M.; Schumacher, J. Ecosystem Service Assessments in Water Policy Implementation: An Analysis in Urban and Rural Estuaries. Front. Mar. Sci. 2019, 6, 1–17. [Google Scholar] [CrossRef]
- Schernewski, G.; Neumann, T.; Bučas, M.; von Thenen, M. Ecosystem Services of the Baltic Sea—State and Changes during the Last 150 Years. Environments 2024, 11, 200. [Google Scholar] [CrossRef]
- Addamo, A.M.; La Notte, A.; Guillen, J. Status of mapping, assessment and valuation of marine ecosystem services in the European seas. Ecosyst. Serv. 2024, 67, 101631. [Google Scholar] [CrossRef]
- Drakou, E.G.; Kermagoret, C.; Liquete, C.; Ruiz-Frau, A.; Burkhard, K.; Lillebø, A.I.; van Oudenhoven, A.P.E.; Ballé-Béganton, J.; Rodrigues, J.G.; Nieminen, E.; et al. Marine and coastal ecosystem services on the science–policy–practice nexus: Challenges and opportunities from 11 European case studies. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 51–67. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Inácio, M.; Karnauskaitė, D.; Baltranaitė, E.; Kalinauskas, M.; Bogdzevič, K.; Gomes, E.; Pereira, P. Ecosystem services of the Baltic Sea: An assessment and mapping perspective. Geogr. Sustain. 2020, 1, 256–265. [Google Scholar] [CrossRef]
- Rova, S.; Pastres, R.; Zucchetta, M.; Pranovi, F. Ecosystem services’ mapping in data-poor coastal areas: Which are the monitoring priorities? Ocean. Coast. Manag. 2018, 153, 168–175. [Google Scholar] [CrossRef]
- Landesamt für Umwelt, Naturschutz und Geologie. WRRL Wasserkörper-Steckbrief Küstengewässer Mecklenburg-Vorpommern: Bewirtschaftungszeitraum 2022–2027. Available online: https://fis-wasser-mv.de/charts/steckbriefe/cw/cw_wk.php?kg=WP_13 (accessed on 2 August 2024).
- Munkes, B. Eutrophication, phase shift, the delay and the potential return in the Greifswalder Bodden, Baltic Sea. Aquat. Sci. 2005, 67, 372–381. [Google Scholar] [CrossRef]
- Kanstinger, P.; Beher, J.; Grenzdörffer, G.; Hammer, C.; Huebert, K.B.; Stepputis, D.; Peck, M.A. What is left? Macrophyte meadows and Atlantic herring (Clupea harengus) spawning sites in the Greifswalder Bodden, Baltic Sea. Estuar. Coast. Shelf Sci. 2018, 201, 72–81. [Google Scholar] [CrossRef]
- Tauber, F. Seabed Sediments in the German Baltic Sea; Federal Maritime and Hydrographic Agency: Hamburg, Germany, 2012. [Google Scholar]
- Seifert, R. Die bodenfauna des greifswalder boddens. Ein beitrag zur ökologie der brackwasserfauna. Z. Morph. u. Okol. Tiere 1938, 34, 221–271. [Google Scholar] [CrossRef]
- Schubert, H.; Blümel, C.; Eggert, A.; Rieling, T.; Schubert, M.; Selig, U. Entwicklung von leitbildorientierten Bewertungsgrundlagen für innere Küstengewässer der deutschen Ostseeküste nach der EU-WRRL. Forschungsbericht zum BMBF Projekt ELBO. FKZ 0330014: 1-109, 2003.
- Von Thenen, M.; Effelsberg, N.; Weber, L.; Schernewski, G. Perspectives and Scenarios for Coastal Fisheries in a Social-Ecological Context: An Ecosystem Service Assessment Approach in the German Baltic Sea. Sustainability 2023, 15, 15732. [Google Scholar] [CrossRef]
- Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern. Fangstatistik der Kl. Hochsee-und Küstenfischerei M-V 2021: Fanggebiete: Küstengewässer und Ostsee. 2022. Available online: https://www.lallf.de/fileadmin/media/PDF/fischer/5_Statistik/Fangstatistik_2021Gebiete.pdf (accessed on 2 August 2024).
- Berg, T.; Fürhaupter, K.; Meyer, T. Evaluierung der WRRL-Bewertungssysteme. Teil A: MarBIT (Makrozoobenthos), Teil B: ELBO (Makrophyten), Teil C: BALCOSIS.
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363. [Google Scholar] [CrossRef]
- CODE-DE Browser. CODE-DE Browser. Available online: https://browser.code-de.org/#lat=54.088676&lng=13.470483&zoom=17&time=2023-05-08&preset=1_TRUE_COLOR&datasource=Sentinel-2%20L1C (accessed on 21 October 2024).
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. LO 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Armoškaitė, A.; Puriņa, I.; Aigars, J.; Strāķe, S.; Pakalniete, K.; Frederiksen, P.; Schrøder, L.; Hansen, H.S. Establishing the links between marine ecosystem components, functions and services: An ecosystem service assessment tool. Ocean. Coast. Manag. 2020, 193, 105229. [Google Scholar] [CrossRef]
- Geange, S.; Townsend, M.; Clark, D.; Ellis, J.I.; Lohrer, A.M. Communicating the value of marine conservation using an ecosystem service matrix approach. Ecosyst. Serv. 2019, 35, 150–163. [Google Scholar] [CrossRef]
- Potts, T.; Burdon, D.; Jackson, E.; Atkins, J.; Saunders, J.; Hastings, E.; Langmead, O. Do marine protected areas deliver flows of ecosystem services to support human welfare? Mar. Policy 2014, 44, 139–148. [Google Scholar] [CrossRef]
- HELCOM. HELCOM Thematic Assessment of Economic and Social Analyses 2016–2021. Baltic Sea Environment Proceedings No. 188. 2023. Available online: https://helcom.fi/post_type_publ/holas3_esa (accessed on 14 November 2024).
- Tempera, F.; Liquete, C.; Cardoso, A.C. Spatial Distribution of Marine Ecosystem Service Capacity in the European Seas; EUR 27843; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten years of ecosystem services matrix: Review of a ®evolution. OE 2020, 5, e51103. [Google Scholar] [CrossRef]
- Vasquez, M.; Agnesi, S.; Al Hamdani, Z.; Annunziatellis, A.; Castle, L.; Laamanen, L.; Lillis, H.; Manca, E.; Mo, G.; Muresan, M.; et al. Method for Classifying EUSeaMap According to the New Version of EUNIS, HELCOM HUB and the Mediterranean Habitat Types, Report. 2021. Available online: https://archimer.ifremer.fr/doc/00677/78949/ (accessed on 14 November 2024).
- Schumacher, J.; Lange, S.; Müller, F.; Schernewski, G. Assessment of Ecosystem Services Across the Land–Sea Interface in Baltic Case Studies. Appl. Sci. 2021, 11, 11799. [Google Scholar] [CrossRef]
- Schumacher, J.; Bicking, S.; Ahrendt, K.; Müller, F.; Schernewski, G. Spatial Ecosystem Service Assessment Across the Land–Sea Interface. In Southern Baltic Coastal Systems Analysis; Schubert, H., Müller, F., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 257–272. ISBN 978-3-031-13682-5. [Google Scholar]
- Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens. 2021, 13, 623. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef]
- Müller, F.; Bicking, S.; Ahrendt, K.; Kinh Bac, D.; Blindow, I.; Fürst, C.; Haase, P.; Kruse, M.; Kruse, T.; Ma, L.; et al. Assessing ecosystem service potentials to evaluate terrestrial, coastal and marine ecosystem types in Northern Germany—An expert-based matrix approach. Ecol. Indic. 2020, 112, 106116. [Google Scholar] [CrossRef]
- Vahtmäe, E.; Argus, L.; Toming, K.; Möller-Raid, T.; Kutser, T. Assessing Seasonal and Inter-Annual Changes in the Total Cover of Submerged Aquatic Vegetation Using Sentinel-2 Imagery. Remote Sens. 2024, 16, 1396. [Google Scholar] [CrossRef]
- Vahtmäe, E.; Toming, K.; Argus, L.; Möller-Raid, T.; Ligi, M.; Kutser, T. On the possibility to map submerged aquatic vegetation cover with Sentinel-2 in low-transparency waters. JARS 2023, 17, 44506. [Google Scholar] [CrossRef]
- Bartels, S.; Klüber, U. Determination of Submerged Macrophyte Coverage of Greifswalder Bodden. Limnologica 1999, 29, 311–313. [Google Scholar] [CrossRef]
- Grenzdörffer, G. Fernerkundliche Erfassung der Makrophyten im Greifswalder Bodden auf der Grundlage digitaler Luftbilddaten. In Proceedings of the DGPF Tagungsband 19/2010–Dreiländertagung OVG, DGPF und SGPF, Wien, Austria, 1–3 July 2010; OVG–DGPF–SGPF, Ed.; Available online: https://www.dgpf.de/src/pub/DGPF2010.pdf (accessed on 18 November 2024).
- Townsend, M.; Davies, K.; Hanley, N.; Hewitt, J.E.; Lundquist, C.J.; Lohrer, A.M. The Challenge of Implementing the Marine Ecosystem Service Concept. Front. Mar. Sci. 2018, 5, 359. [Google Scholar] [CrossRef]
- Liquete, C.; Piroddi, C.; Drakou, E.G.; Gurney, L.; Katsanevakis, S.; Charef, A.; Egoh, B. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 2013, 8, e67737. [Google Scholar] [CrossRef]
- Robbe, E.; Rogge, L.; Lesutienė, J.; Bučas, M.; Schernewski, G. Assessment of Ecosystem Services Provided by Macrophytes in Southern Baltic and Southern Mediterranean Coastal Lagoons. Environ. Manag. 2024, 74, 206–229. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, M.; Ségeat, B.; Cordingley, A.; Tilby, E.; Wikström, S.; Ehrnsten, E.; Al Hamdani, Z.; Agnesi, S.; Andersen, M.S.; Annunziatellis, A.; et al. EUSeaMap 2023, A European Broad-Scale Seabed Habitat Map, Technical Report; EMODnet: Oostende, Belgium, 2023. [Google Scholar]
- Vysna, V.; Maes, J.; Petersen, J.-E.; La Notte, A.; Vallecillo, S.; Aizpurua, N.; Ivits-Wasser, E.; Teller, A. Accounting for Ecosystems and Their Services in the European Union (INCA): Final Report from Phase II of the INCA Project Aiming to Develop a Pilot for an Integrated System of Ecosystem Accounts for the EU, 2021 ed.; Publications Office of the European Union: Luxembourg, 2021; ISBN 9789276174011. [Google Scholar]
- Vallecillo, S.; La Notte, A.; Ferrini, S.; Maes, J. How ecosystem services are changing: An accounting application at the EU level. Ecosyst. Serv. 2019, 40, 101044. [Google Scholar] [CrossRef] [PubMed]
- García-Llamas, P.; Geijzendorffer, I.R.; García-Nieto, A.P.; Calvo, L.; Suárez-Seoane, S.; Cramer, W. Impact of land cover change on ecosystem service supply in mountain systems: A case study in the Cantabrian Mountains (NW of Spain). Reg. Environ. Change 2019, 19, 529–542. [Google Scholar] [CrossRef]
- Zeiler, M.; Ricklefs, K.; Bartholomä, A. Seabed Morphology and Sediment Dynamics; Die Küste No. 74; Boyens: Heide, Holstein, Germany, 2008; Available online: https://hdl.handle.net/20.500.11970/101592 (accessed on 14 November 2024).
- Armoškaitė, A.; Aigars, J.; Andersone, I.; Hansen, H.S.; Schrøder, L.; Strāķe, S. Assessing change in habitat composition, ecosystem functioning and service supply in Latvian protected stony reefs. J. Environ. Manag. 2021, 298, 113537. [Google Scholar] [CrossRef] [PubMed]
- Reusch, T.B.H.; Dierking, J.; Andersson, H.C.; Bonsdorff, E.; Carstensen, J.; Casini, M.; Czajkowski, M.; Hasler, B.; Hinsby, K.; Hyytiäinen, K.; et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 2018, 4, eaar8195. [Google Scholar] [CrossRef]
- Li, Y.; Bai, J.; Chen, S.; Chen, B.; Zhang, L. Mapping seagrasses on the basis of Sentinel-2 images under tidal change. Mar. Environ. Res. 2023, 185, 105880. [Google Scholar] [CrossRef] [PubMed]
- Nahirnick, N.K.; Hunter, P.; Costa, M.; Schroeder, S.; Sharma, T. Benefits and Challenges of UAS Imagery for Eelgrass (Zostera marina) Mapping in Small Estuaries of the Canadian West Coast. J. Coast. Res. 2019, 35, 673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, J.; Horn, D.; Escobar-Sánchez, G.; Markfort, G.; Schernewski, G.; von Weber, M. Assessing Macrophyte and Ecosystem Service Changes in Shallow Eutrophic Coastal Waters Using Remote Sensing Methods. Land 2025, 14, 4. https://doi.org/10.3390/land14010004
Schumacher J, Horn D, Escobar-Sánchez G, Markfort G, Schernewski G, von Weber M. Assessing Macrophyte and Ecosystem Service Changes in Shallow Eutrophic Coastal Waters Using Remote Sensing Methods. Land. 2025; 14(1):4. https://doi.org/10.3390/land14010004
Chicago/Turabian StyleSchumacher, Johanna, David Horn, Gabriela Escobar-Sánchez, Greta Markfort, Gerald Schernewski, and Mario von Weber. 2025. "Assessing Macrophyte and Ecosystem Service Changes in Shallow Eutrophic Coastal Waters Using Remote Sensing Methods" Land 14, no. 1: 4. https://doi.org/10.3390/land14010004
APA StyleSchumacher, J., Horn, D., Escobar-Sánchez, G., Markfort, G., Schernewski, G., & von Weber, M. (2025). Assessing Macrophyte and Ecosystem Service Changes in Shallow Eutrophic Coastal Waters Using Remote Sensing Methods. Land, 14(1), 4. https://doi.org/10.3390/land14010004