An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Region
2.2. Data Description
2.2.1. Reference Data
2.2.2. Global Meteorological Estimate Datasets (GMEs)
2.3. Method Description
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)
2.3.2. Evaluation Metrics
2.3.3. Visual Analysis
2.3.4. Attribute Contributions of Precipitation and PET
3. Results
3.1. Comparison of the Ability of GMEs to Represent the Spatiotemporal Characteristics of Drought
3.2. Comparison of GMEs in Detecting Drought Events
3.3. Representation of Drought Characteristics by GMEs in Xinjiang During Typical Drought Years
3.4. Analysis of Error Sources in Drought Characteristics Based on GMEs
4. Discussion
5. Conclusions
- (1)
- The results indicated that all GMEs significantly overestimated the SPEI before 1990 and substantially underestimated it after 1990. Among the GMEs, ERA5 exhibited the best overall performance in terms of absolute error (AE) throughout Xinjiang. However, CRU performed better in terms of correlation coefficient (CC) and root-mean-square error (RMSE) in northern Xinjiang, while ERA5 demonstrated stronger representation capabilities in southern Xinjiang. Categorical statistical metrics yielded similar results, with CRU excelling in drought detection in northern Xinjiang and ERA5 showing superior drought detection capabilities in the southern basin regions.
- (2)
- Differences were observed among the three GMEs in representing the geographical distribution and severity of drought events. CRU and ERA5 performed well in capturing the six major droughts in Xinjiang and were notably superior to NCEP-NCAR. Both CRU and ERA5 exhibited relatively accurate simulations of drought conditions in northern Xinjiang. They accurately represented the droughts in 1962, 1974, and 1997, and correctly reflected the absence of drought in northern Xinjiang in 1980. However, they underestimated the severity of the drought in 1965 and overestimated it in 1977. However, considerable uncertainty was observed among the three GMEs in the southern Xinjiang region.
- (3)
- Additionally, the GMEs exhibited varying levels of accuracy in reproducing different meteorological elements. In terms of precipitation and PET, CRU demonstrated the highest quality, despite the presence of underestimation in Xinjiang. For temperature, ERA5 performed relatively well in northern Xinjiang, while CRU performed better in southern Xinjiang. Both datasets exhibited underestimation in mountainous areas and overestimation in basin areas. However, ERA5 and NCEP-NCAR did not capture wind speed satisfactorily, with both significantly underestimating wind speeds in Xinjiang. ERA5 demonstrated better quality in relative humidity data, whereas NCEP-NCAR overestimated relative humidity in Xinjiang. Among the GMEs, differences were observed in the leading factors contributing to the transition of SPEI from overestimation to underestimation around 1990. CRU and ERA5 were mainly influenced by changes in PET, whereas NCEP-NCAR was influenced by both precipitation and PET. Wind speed played a significant role in driving the differences in PET variation. The inability of the GMEs to accurately simulate the sustained decrease (or notable increase) in surface wind speed led to the transition of SPEI from overestimation to underestimation around 1990.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought risk assessment in central Nepal: Temporal and spatial analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef]
- Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of droughts over Pakistan using machine learning algorithms. Adv. Water Resour. 2020, 139, 103562. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Zhang, X.; Chen, Z. An evaluation of statistical, NMME and hybrid models for drought prediction in China. J. Hydrol. 2018, 566, 235–249. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, M.K. Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. J. Hydrol. 2018, 567, 489–509. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Sachindra, D.A.; Nawaz, N.; Chung, E.S. Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method. J. Hydrol. 2019, 573, 281–298. [Google Scholar] [CrossRef]
- Wang, H.J.; Chen, Y.N.; Pan, Y.P.; Li, W.H. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Chen, F.H.; Xie, T.T.; Yang, Y.J.; Chen, S.Q.; Chen, F.; Huang, W.; Chen, J. Discussion on the “warm-wet” issue and its future trends in the northwest arid region of China. Chin. Geogr. Sci. 2023, 76, 57–72. [Google Scholar]
- Long, B.; Zhang, B.Q.; He, C.S.; Shao, R.; Tian, W. Is there a change from a warm-dry to a warm-wet climate in the inland river area of China? Interpretation and analysis through surface water balance. J. Geophys. Res.-Atmos. 2018, 123, 7114–7131. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.M.; Qin, D.H. New perspectives on the ‘warming-wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Begueria, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets, and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Yao, J.Q.; Mao, W.; Chen, J.; Dilinuer, T. The signal and impact of the climate “wet-dry transition” in Xinjiang. Acta Geogr. Sin. 2021, 76, 57–72. [Google Scholar]
- Deng, H.X.; Tang, Q.H.; Yun, X.B.; Tang, Y.; Liu, X.C.; Xu, X.M.; Sun, S.A.; Zhao, G.; Zhang, Y.Y.; Zhang, Y.Q. Wetting trend in northwest China reversed by warmer temperature and drier air. J. Hydrol. 2022, 613, 128435. [Google Scholar] [CrossRef]
- Huang, Q.Z.; Zhang, Q.; Singh, V.P.; Shi, P.J.; Zheng, Y.J. Variations of dryness/wetness across China: Changing properties, drought risks, and causes. Glob. Planet. Change 2017, 155, 1–12. [Google Scholar] [CrossRef]
- Yao, J.Q.; Chen, Y.N.; Guan, X.F.; Zhao, Y.; Chen, J.; Mao, W.Y. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Sun, S.; Wang, P. Interdecadal variation of the number of days with drought in China based on the standardized precipitation evapotranspiration index (SPEI). J. Clim. 2022, 35, 2003–2018. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Zheng, Z.; Shen, W.; Li, Y.; Rong, P.; Qin, Y. Trends in drought and effects on carbon sequestration over the Chinese mainland. Sci. Total Environ. 2023, 856, 159075. [Google Scholar] [CrossRef]
- Yao, J.Q.; Zhao, Y.; Chen, Y.N.; Yu, X.J.; Zhang, R.B. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Begueria, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; Garcia-Ruiz, J.M.; Azorin-Molina, C.; Moran-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Ullah, I.; Ma, X.; Yin, J.; Asfaw, T.G.; Azam, K.; Syed, S.; Liu, M.; Arshad, M.; Shahzaman, M. Evaluating the meteorological drought characteristics over Pakistan using in situ observations and reanalysis products. Int. J. Climatol. 2021, 41, 4437–4459. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Ren, L.; Zhang, L.; Lu, Y. Utility assessment of CRU products for temporality of drought events in mainland China. Water Resour. Prot. 2021, 37, 112–120. [Google Scholar]
- Li, Y.; Qin, X.; Liu, Y.; Jin, Z.; Liu, J.; Wang, L.; Chen, J. Evaluation of long-term and high-resolution gridded precipitation and temperature products in the Qilian Mountains, Qinghai-Tibet Plateau. Front. Environ. Sci. 2022, 10, 906821. [Google Scholar] [CrossRef]
- Xin, Y.; Lu, N.; Jiang, H.; Liu, Y.; Yao, L. Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao Greater Bay Area, China. J. Hydrol. 2021, 602, 126791. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR reanalysis 40-year project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, S.; Luo, J.; Han, Y.; Zhang, J. Analysis of near-surface wind speed change in China during 1958–2015. Theor. Appl. Climatol. 2019, 137, 2785–2801. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, K.; Lu, H.; He, J.; Sun, J.; Wang, Y. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmos. Res. 2021, 264, 105875. [Google Scholar] [CrossRef]
- Huang, X.L.; Han, S.; Shi, C.X. Evaluation of three air temperature reanalysis datasets in the alpine region of the Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 4447. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Shi, C. Multiscale assessments of three reanalysis temperature data systems over China. Agriculture 2021, 11, 1292. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.Y.; Nawaz, N.; Gull, R.; Elnashar, A. Spatio-temporal assessment of global precipitation products over the largest agriculture region in Pakistan. Remote Sens. 2020, 12, 3650. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, K. Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017. J. Clim. 2020, 33, 3989–4008. [Google Scholar] [CrossRef]
- Eini, M.R.; Javadi, S.; Delavar, M.; Monteiro, J.A.F.; Darand, M. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecol. Eng. 2019, 131, 107–119. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhou, Q.M.; Chen, X.; Li, J.F.; Li, Q.X.; Chen, D.L.; Liu, W.B.; Yin, G. Evaluation of three global gridded precipitation data sets in Central Asia based on rain gauge observations. Int. J. Climatol. 2018, 38, 3475–3493. [Google Scholar] [CrossRef]
- Mutti, P.R.; Dubreuil, V.; Bezerra, B.G.; Arvor, D.; de Oliveira, C.P.; Silva, C. Assessment of gridded CRU TS data for long-term climatic water balance monitoring over the São Francisco watershed, Brazil. Atmosphere 2020, 11, 1207. [Google Scholar] [CrossRef]
- Shi, H.Y.; Li, T.J.; Wei, J.H. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- Wang, D.; Wang, A. Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013. Clim. Environ. Res. 2017, 22, 446–462. [Google Scholar]
- Peng, J.; Dadson, S.; Hirpa, F.; Dyer, E.; Lees, T.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C. A Pan-African high-resolution drought index dataset. Earth Syst. Sci. Data 2020, 12, 753–769. [Google Scholar] [CrossRef]
- Huang, D.-Q.; Zhu, J.; Zhang, Y.-C.; Huang, Y.; Kuang, X.-Y. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Q. J. R. Meteorol. Soc. 2016, 142, 108–119. [Google Scholar] [CrossRef]
- Xu, J.; Tian, R.; Feng, S. Comparison of atmospheric vertical motion over China in ERA-Interim, JRA-55, and NCEP/NCAR reanalysis datasets. Asia-Pac. J. Atmos. Sci. 2021, 57, 773–786. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Huang, M.; Tao, B.; Liu, Z.; Hao, M.; Guo, R. Climate-driven uncertainties in modeling terrestrial ecosystem net primary productivity in China. Agric. For. Meteorol. 2017, 246, 123–132. [Google Scholar] [CrossRef]
- Song, C.; Ke, L.; Richards, K.S.; Cui, Y. Homogenization of surface temperature data in High Mountain Asia through comparison of reanalysis data and station observations. Int. J. Climatol. 2016, 36, 1088–1101. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Lin, H.; Pepin, N.; Sillanpaa, M.; Kang, S. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. J. Geophys. Res.-Atmos. 2015, 120, 3610–3621. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Bandhauer, M.; Isotta, F.; Lakatos, M.; Lussana, C.; Baserud, L.; Izsak, B.; Szentes, O.; Tveito, O.E.; Frei, C. Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. Int. J. Climatol. 2022, 42, 727–747. [Google Scholar] [CrossRef]
- Huai, B.; Wang, J.; Sun, W.; Wang, Y.; Zhang, W. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos. Res. 2021, 250, 105419. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhao, T.B.; Li, Z.; Li, C.X.; Li, Z.; Ying, K.R.; Shi, C.X.; Jiang, L.P.; Zhang, W.Y. Evaluation of surface relative humidity in China from the CRA-40 and current reanalyses. Adv. Atmos. Sci. 2021, 38, 1958–1976. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, W. Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan Plateau from the perspective of regional rainfall events. Int. J. Climatol. 2021, 41, 2625–2637. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese mainland. J. Hydrol. 2021, 595, 126111. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z.; Ma, D.; Wang, W. Evaluation of ERA5-Land reanalysis datasets for extreme temperatures in the Qilian Mountains of China. Front. Ecol. Evol. 2023, 11, 968216. [Google Scholar] [CrossRef]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M.; et al. How well does the ERA5 reanalysis capture the extreme climate events over China? Part I: Extreme precipitation. Front. Environ. Sci. 2022, 10, 934487. [Google Scholar] [CrossRef]
- Wen, T.T.; Guo, Y.X.; Dong, S.R.; Dong, Y.Z.; Lai, X.L. 1979–2017 CRU, ERA5, CMFD gridded precipitation data in the Tibetan Plateau suitability evaluation. Arid Zone Res. 2022, 39, 684–697. [Google Scholar]
- Zhou, L.T.; Huang, R. An assessment of the quality of surface sensible heat flux derived from reanalysis data through comparison with station observations in Northwest China. Adv. Atmos. Sci. 2010, 27, 500–512. [Google Scholar] [CrossRef]
- Campozano, L.; Vazquez-Patino, A.; Tenelanda, D.; Feyen, J.; Samaniego, E.; Sanchez, E. Evaluating extreme climate indices from CMIP3 & 5 global climate models and reanalysis datasets: A case study for present climate in the Andes of Ecuador. Int. J. Climatol. 2017, 37, 363–379. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Su, T.; Feng, T.; Feng, G. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China. J. Geophys. Res. Atmos. 2015, 120, 8080–8098. [Google Scholar] [CrossRef]
- Du, J.; Wen, L.; Su, D. Reliability of three reanalysis datasets in simulation of three alpine lakes on the Qinghai-Tibetan Plateau. Plateau Meteorol. 2019, 38, 101–113. [Google Scholar]
- Zhang, T.; Gao, Q.; Sun, Y. Comparison of reanalysis data and observations about summer maximum temperature on different time scales in Eastern China. Plateau Meteorol. 2017, 36, 468–479. [Google Scholar]
- Wei, L.; Jiang, S.; Ren, L.; Wang, M.; Zhang, L.; Liu, Y.; Yuan, F.; Yang, X. Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring across mainland China. Atmos. Res. 2021, 263, 105371. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Zohaib, M. Assessment of merged satellite precipitation datasets in monitoring meteorological drought over Pakistan. Remote Sens. 2021, 13, 1662. [Google Scholar] [CrossRef]
- Bewket, W.; Amha, Y.; Degefu, M.A. Evaluating performance of 20 global and quasi-global precipitation products in representing drought events in Ethiopia I: Visual and correlation analysis. Weather Clim. Extrem. 2022, 35, 100344. [Google Scholar]
- Jiang, S.H.; Wei, L.Y.; Ren, L.L.; Xu, C.Y.; Zhong, F.; Wang, M.H.; Zhang, L.Q.; Yuan, F.; Liu, Y. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmos. Res. 2021, 247, 105126. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Liu, F.G.; Feng, H. SPEI and multi-threshold run theory based drought analysis using multi-source products in China. J. Hydrol. 2023, 616, 128036. [Google Scholar] [CrossRef]
- Yao, J.Q.; Zhao, Y.; Yu, X.J. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961–2015. PeerJ 2018, 6, e5474. [Google Scholar] [CrossRef] [PubMed]
- Saharwardi, M.S.; Kumar, P.; Dubey, A.K.; Kumari, A. Understanding spatiotemporal variability of drought in recent decades and its drivers over identified homogeneous regions of India. Q. J. R. Meteorol. Soc. 2022, 148, 2955–2972. [Google Scholar] [CrossRef]
- Saharwardi, M.S.; Dasari, H.P.; Gandham, H.; Ashok, K.; Hoteit, I. Spatiotemporal variability of hydro-meteorological droughts over the Arabian Peninsula and associated mechanisms. Sci. Rep. 2024, 14, 2205–2216. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Bian, J.J.; Ge, Q.S.; Hao, Z.X.; Yin, Y.H.; Liao, Y.M. The climate regionalization in China for 1981–2010. Chin. Sci. Bull. 2013, 58, 3088–3099. [Google Scholar]
- Xu, Y.; Zhang, L.; Hao, Z. Drying and wetting trend in Xinjiang and related circulations background over the past 60 years. Environ. Res. Commun. 2024, 6, 011001. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Long, Y.; Xu, C.; Liu, F.; Liu, Y.; Yin, G. Evaluation and projection of wind speed in the arid region of Northwest China based on CMIP6. Remote Sens. 2021, 13, 4076. [Google Scholar] [CrossRef]
- Pang, G.; Wang, X.; Chen, D.; Yang, M.; Liu, L. Evaluation of a climate simulation over the Yellow River basin based on a regional climate model (REMO) within the CORDEX. Atmos. Res. 2021, 254, 105427. [Google Scholar] [CrossRef]
- Liu, Z.; Di, Z.; Qin, P.; Zhang, S.; Ma, Q. Evaluation of six satellite precipitation products over the Chinese mainland. Remote Sens. 2022, 14, 6277. [Google Scholar] [CrossRef]
- Yang, L.; Liang, X.; Yin, J.; Xie, Y.; Fan, H. Evaluation of the precipitation of the East Asia Regional Reanalysis System mainly over mainland China. Int. J. Climatol. 2023, 43, 1676–1692. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Wang, H.; Shao, W.; Mei, C.; Ding, X. Performance evaluations of CMIP6 and CMIP5 models for precipitation simulation over the Hanjiang River Basin, China. J. Water Clim. Change 2022, 13, 2089–2106. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Ou, T.; Chen, D.; Chen, X.; Lin, C.; Yang, K.; Lai, H.W.; Zhang, F. Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Clim. Dyn. 2020, 54, 3525–3539. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Zhang, Y.; Gehne, M. Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeorol. 2017, 18, 1393–1412. [Google Scholar] [CrossRef]
- Ma, H.Y.; Xie, S.; Boyle, J.S.; Klein, S.A.; Zhang, Y. Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts. J. Clim. 2013, 26, 1516–1534. [Google Scholar] [CrossRef]
- Lin, C.; Chen, D.; Yang, K.; Ou, T. Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Clim. Dyn. 2018, 51, 3195–3207. [Google Scholar] [CrossRef]
- Lv, M.; Xu, Z.; Yang, Z.-L. Cloud resolving WRF simulations of precipitation and soil moisture over the central Tibetan Plateau: An assessment of various physics options. Earth Space Sci. 2020, 7, e2019EA000912. [Google Scholar] [CrossRef]
- Torralba, V.; Doblas-Reyes, F.J.; Gonzalez-Reviriego, N. Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett. 2017, 12, 104004. [Google Scholar] [CrossRef]
- Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 2019, 9, 979–984. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, K.; Chen, D.; Li, J.; Dickinson, R. Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the northern hemisphere lands. J. Clim. 2019, 32, 7421–7435. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Al Rashed, M.; Sefelnasr, A.; Sherif, M.; Murad, A.; Alshamsi, D.; Aliewi, A.; Ebraheem, A.A. Novel concept for water scarcity quantification considering nonconventional and virtual water resources in arid countries: Application in Gulf Cooperation Council countries. Sci. Total Environ. 2023, 882, 163478. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Gao, G.; Jim, C.Y.; Tan, M.L.; Shi, J.; Wang, W.; Zhao, Q. Spatio-temporal variability and trend of blue-green water resources in the Kaidu River Basin, an arid region of China. J. Hydrol. Reg. Stud. 2024, 51, 100340. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Guo, Z.; Ding, X.; Zhang, J.; Yu, R. Investigating agricultural water sustainability in arid regions with Bayesian network and water footprint theories. Sci. Total Environ. 2024, 951, 168287. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, X.; Ge, Q.; Hao, Z. Effect of meteorological drought on cotton yield in Central Asia. Acta Geogr. Sin. 2022, 77, 2338–2352. [Google Scholar]
- Xu, S.; Wang, J.; Altansukh, O.; Chuluun, T. Spatiotemporal evolution and driving mechanisms of desertification on the Mongolian Plateau. Sci. Total Environ. 2024, 941, 167552. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Jerez, S.; Donat, M.G.; Toreti, A.; Vicente-Serrano, S.M.; Doblas-Reyes, F.J. A global probabilistic dataset for monitoring meteorological droughts. Bull. Am. Meteorol. Soc. 2020, 101, E1628–E1644. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, Y.; Duan, J.; Jian, D.; Ma, Z. A daily drought index based on evapotranspiration and its application in regional drought analyses. Sci. China Earth Sci. 2022, 65, 317–336. [Google Scholar] [CrossRef]
- Liu, X.; Yu, S.; Yang, Z.; Dong, J.; Peng, J. The first global multi-timescale daily SPEI dataset from 1982 to 2021. Sci. Data 2024, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Jia, G.; Wang, H. Improving meteorological drought monitoring capability over tropical and subtropical water-limited ecosystems: Evaluation and ensemble of the microwave integrated drought index. Environ. Res. Lett. 2019, 14, 084017. [Google Scholar] [CrossRef]
Dataset | Record Length | Temporal Resolution | Spatial Resolution | Data Category | Variable | Source of Data |
---|---|---|---|---|---|---|
In situ stations | 1961–2020 | Daily | Point | Station (102) | temperature, precipitation, surface pressure, wind speed, relative humidity, sunshine duration | http://data.cma.cn/ (accessed on 15 January 2024) |
CN05.1 | 1961–present | Daily | 0.25° | Gauge-interpolated | temperature, precipitation, surface pressure, wind speed, relative humidity, sunshine duration | http://www.geophy.cn//article/doi/10.6038/cjg20130406 (accessed on 15 January 2024) |
CRU | 1901–present | Daily | 0.5° | Gauge-interpolated | temperature, precipitation, PET | http://www.cru.uea.ac.uk/data/ (accessed on 15 January 2024) |
ERA5 | 1940–present | Hourly | 0.25° | Reanalysis | temperature, precipitation, wind speed, radiation, dew point temperature | https://cds.climate.copernicus.eu/cdsapp#!/dataset/ (accessed on 15 January 2024) |
NCEP-NCAR | 1948–present | Daily | 2.5° | Reanalysis | temperature, precipitation, wind speed, radiation, relative humidity, surface pressure | https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 15 January 2024) |
SPEI Value | Classification |
---|---|
>1.5 | Severely wet |
1 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.99 to −1 | Moderate drought |
<−1.5 | Severe drought |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Yang, Z.; Zhang, L.; Zhang, J. An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang. Land 2025, 14, 219. https://doi.org/10.3390/land14020219
Xu Y, Yang Z, Zhang L, Zhang J. An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang. Land. 2025; 14(2):219. https://doi.org/10.3390/land14020219
Chicago/Turabian StyleXu, Yang, Zijiang Yang, Liang Zhang, and Juncheng Zhang. 2025. "An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang" Land 14, no. 2: 219. https://doi.org/10.3390/land14020219
APA StyleXu, Y., Yang, Z., Zhang, L., & Zhang, J. (2025). An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang. Land, 14(2), 219. https://doi.org/10.3390/land14020219