Geographic Information System and Multivariate Analysis Approach for Mapping Soil Contamination and Environmental Risk Assessment in Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Satellite Image and Statistical Analyses
2.4. Indices Calculations
3. Results
3.1. Soil Characteristics and HM Concentration
3.2. Risk Assessment of HMs
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, M.; Wu, Y.; Fu, Z.; Sun, G.; Shang, L.; Li, Z.; Wang, P. Distribution patterns and sources of heavy metals in soils from an industry undeveloped city in Southern China. Ecotoxicol. Environ. Saf. 2020, 205, 111115. [Google Scholar] [CrossRef]
- Tiecher, T.L.; Ceretta, C.A.; Tiecher, T.; Ferreira, P.A.; Nicoloso, F.T.; Soriani, H.H.; Rossato, L.V.; Mimmo, T.; Cesco, S.; Lourenzi, C.R.; et al. Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicol. Environ. Saf. 2016, 129, 109–119. [Google Scholar] [CrossRef]
- Alharbi, T.; El-Sorogy, A.S. Spatial distribution and risk assessment of heavy metals pollution in soils of marine origin in central Saudi Arabia. Mar. Pollut. Bull. 2021, 170, 112605. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy metals in agricultural soils: Sources, influencing factors, and remediation strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops, and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks, and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Deng, W.B.; Hao, G.L.; Liu, W.J. Source-specific risks apportionment and critical sources identification of potentially harmful elements in urban road dust combining positive matrix factorization model with multiple attribute decision-making method. Ecol. Indic. 2022, 144, 109449. [Google Scholar] [CrossRef]
- Alharbi, T.; El-Sorogy, A.S.; Al-Kahtany, K. Contamination and health risk assessment of potentially toxic elements in agricultural soil of the Al-Ahsa Oasis, Saudi Arabia using health indices and GIS. Arab. J. Chem. 2024, 17, 105592. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Chen, Z.F.; Ding, Y.F.; Jiang, X.Y.; Duan, H.J.; Ruan, X.L.; Li, Z.H.; Li, Y.P. Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils. Ecotoxicol. Environ. Saf. 2022, 234, 113369. [Google Scholar] [CrossRef]
- Deng, W.; Wang, F.; Liu, W. Identification of factors controlling heavy metals/metalloid distribution in agricultural soils using multi-source data. Ecotoxicol. Environ. Saf. 2023, 253, 114689. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 3, pp. 133–164. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Islam, M.A.; Dampare, S.B.; Parvez, L.; Suzuki, S. Assessment of heavy metal contamination in agricultural soil: A case study from Bangladesh. Environ. Monit. Assess. 2010, 168, 347–357. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Proshad, R.; Kormoker, T.; Islam, M.S.; Bhuyan, M.A.H.; Khadka, S. Contamination status and ecological risk assessment of heavy metals in agricultural soils: A case study from southwest Bangladesh. Ecotoxicol. Environ. Saf. 2021, 207, 111248. [Google Scholar] [CrossRef]
- Mohiuddin, K.M.; Zakir, H.M.; Otomo, K.; Sharmin, S.; Shikazono, N. Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 2010, 7, 17–28. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S.; Xu, D.; Sun, Q.; Cui, J. Using multivariate statistical analysis and geostatistics to identify sources and spatial distribution of heavy metals in agricultural soils. Environ. Pollut. 2020, 258, 113702. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Al-Kahtany, K.; Alharbi, T.; Alarifi, S.S. Distribution patterns, health hazards, and multivariate assessment of contamination sources of As, Pb, Ni, Zn, and Fe in agricultural soils. J. King Saud Univ.–Sci. 2024, 36, 103489. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Al Khathlan, M.H. Assessment of potentially toxic elements and health risks of agricultural soil in southwest Riyadh, Saudi Arabia. Open Chem. 2024, 22, 20240017. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; AlMesfer, M.K.; Singh, V.P.; Alsubih, M. Groundwater quality studies in the Kingdom of Saudi Arabia: Prevalent research and management dimensions. Water 2021, 13, 1266. [Google Scholar] [CrossRef]
- Interstate Technology & Regulatory Council (ITRC). Soil Sampling for Hazardous Materials: A Guide for Sampling and Analysis. 2020. Available online: https://ism-2.itrcweb.org/ (accessed on 15 March 2023).
- Reimann, C.; de Caritat, P. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sci. Total Environ. 2005, 337, 91–107. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Youssef, M.; Al Otaibi, S.; El-Sorogy, A.S. Distribution, source, and contamination of heavy metals in coastal sediments of Jeddah, Red Sea, Saudi Arabia. Bull. Environ. Contam. Toxicol. 2024, 113, 12. [Google Scholar] [CrossRef] [PubMed]
- El-Asa’ad, G.M. Callovian colonial corals from the Tuwaiq Mountain Limestone of Saudi Arabia. Palaeontol. Assoc. Lond. 1989, 32, 675–684. [Google Scholar]
- Powers, R.W.; Ramirez, L.F.; Redmond, C.D.; Elberg, E.L.J. Geology of the Arabian Peninsula: Sedimentary geology of Saudi Arabia. US Geol. Surv. Prof. Pap. 1966, 560, 147. [Google Scholar]
- Youssef, M.; El-Sorogy, A.S. Palaeoecology of benthic foraminifera in coral reefs recorded in the Jurassic Tuwaiq Mountain Formation of the Khashm Al-Qaddiyah area, central Saudi Arabia. J. Earth Sci. 2015, 26, 224–235. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Almadani, S.A.; Al-Dabbagh, M.E. Microfacies and diagenesis of the reefal limestone, Callovian Tuwaiq Mountain Limestone Formation, central Saudi Arabia. J. Afr. Earth Sci. 2016, 115, 63–70. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Galmed, M.A.; Al-Kahtany, K.; Al-Zahrani, A. Microfacies and diagenesis of the Middle Jurassic Dhruma carbonates, southwest Riyadh, Saudi Arabia. J. Afr. Earth Sci. 2017, 130, 125–133. [Google Scholar] [CrossRef]
- Tawfik, M.; Al-Dabbagh, M.E.; El-Sorogy, A.S. Sequence stratigraphy of the late middle Jurassic open shelf platform of the Tuwaiq Mountain Limestone Formation, central Saudi Arabia. Proc. Geol. Assoc. 2016, 127, 395–412. [Google Scholar] [CrossRef]
- Ashraf, A.M. The National Soil Survey and Land Classification Projects; PAO/Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 1991. [Google Scholar]
- Shadfan, H.; Mashhady, A.; Eter, A.; Hussen, A.A. Mineral composition of selected soils in Saudi Arabia. J. Soil Nutr. Soil Sci. 1987, 147, 649–802. [Google Scholar] [CrossRef]
- McCready, S.; Birch, G.F.; Long, E.R. Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity—A chemical dataset for evaluating sediment quality guidelines. Environ. Int. 2006, 32, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Christophoridis, C.; Dedepsidis, D.; Fytianos, K. Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece: Assessment using pollution indicators. J. Hazard. Mater. 2009, 168, 1082–1091. [Google Scholar] [CrossRef]
- Long, E.R.; Ingersoll, C.G.; MacDonald, D.D. Calculation and uses of mean sediment quality guideline quotients: A critical review. Environ. Sci. Technol. 2006, 40, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- Sinex, S.A.; Helz, G.R. Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ. Geol. 1981, 3, 315–323. [Google Scholar] [CrossRef]
- Leopold, M.; Heimsath, A.M.; Völkel, J. Assessing the contamination of heavy metals in soils using the Index of Geoaccumulation (IGEO): Methodology and applications. Environ. Geol. 2008, 55, 647–653. [Google Scholar]
- Yang, Q.C.H.; Zhang, L.M.; Wang, H.L.; Martin, J.D. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb, and Cd) in urban soils: A Monte Carlo simulation approach. Environ. Res. 2022, 214 Pt 1, 113772. [Google Scholar] [CrossRef] [PubMed]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Sharma, S. Applied Multivariate Techniques; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Zhang, C. Fundamentals of Environmental Sampling and Analysis; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Vineethkumar, V.; Narayana, A.C.; Prakash, T.N. Assessment of heavy metal contamination in coastal sediments using geochemical indices and spatial distribution patterns: A case study from southwest coast of India. Mar. Pollut. Bull. 2020, 153, 111006. [Google Scholar]
- El-Sheikh, M.A.; Al-Oteiby, S.A.; Alfarhan, A.H.; Barcelo, D.; Picó, Y.; Alatar, A.A.; Javed, S.B.; Eid, E.M. Distribution of soil organic carbon in Wadi Al-Thulaima, Saudi Arabia: A hyper-arid habitat altered by wastewater reuse. Catena 2018, 170, 266–271. [Google Scholar] [CrossRef]
- Aggag, A.M.; Alharbi, A. Spatial analysis of soil properties and site-specific management zone delineation for the South Hail region, Saudi Arabia. Sustainability 2022, 14, 16209. [Google Scholar] [CrossRef]
- Osman, H.E.; Elaidarous, A.A.; El-Morsy, M.H.; Eid, E.M.; Keshta, A.E. Soils with more clay and dense vegetation were rich in soil carbon along Wadi Al-Sharaea, Makkah, Saudi Arabia. Heliyon 2023, 9, e12988. [Google Scholar] [CrossRef] [PubMed]
- Al-Dosary, N.M.N. Evaluation of Soil Characteristics for Agricultural Machinery Management and Cropping Requirements in ALAflaj Oasis, Saudi Arabia. Sustainability 2022, 14, 7991. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soil constituents. J. Colloid Interf. Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Al-Kahtany, K.; El-Sorogy, A.S. Contamination and health risk assessment of surface sediments along Ras Abu Ali Island, Saudi Arabia. J. King Saud Univ. Sci. 2023, 35, 102509. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China: Weathering features, anthropogenic impact, and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Dai, L.; Wang, R. Heavy metal pollution and assessment of urban soils in a typical city of the Yangtze River Delta, China. Environ. Sci. 2008, 12, 94–103. [Google Scholar]
- Shater, A.H.; Nasir, S. Occurrence of chromite and associated heavy minerals in the sedimentary sequences of central Saudi Arabia. Sediment. Geol. 1999, 125, 169–184. [Google Scholar]
- Al-Harthy, A.; Ali, S.; Mahmoud, H.; Aldabbagh, G. Organic geochemistry and trace metal distribution in shales of Saudi Arabia. Mar. Petrol. Geol. 2018, 96, 137–148. [Google Scholar]
Indices | Classes | Al | As | Co | Cr | Cu | Mn | Ni | Pb | V | Zn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EF | EF < 2 | Deficiency to minimal enrichment | 35 | 35 | 24 | 35 | 31 | 33 | 27 | 33 | 35 | 19 | - |
EF = 2–5 | Moderate enrichment | 0 | 0 | 4 | 0 | 4 | 2 | 6 | 1 | 0 | 9 | - | |
EF = 5–20 | Significant enrichment | 0 | 0 | 5 | 0 | 0 | 0 | 2 | 1 | 0 | 7 | - | |
EF = 20–40 | Very high enrichment | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
EF > 40 | Extremely high enrichment | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
CF | Cf < 1 | Low contamination factor | 36 | 35 | 31 | 35 | 35 | 34 | 33 | 34 | 35 | 26 | 35 |
1 ≤ Cf < 3 | Moderate contamination factor | 0 | 0 | 3 | 0 | 0 | 1 | 2 | 1 | 0 | 8 | 0 | |
3 ≤ Cf < 6 | Considerable contamination factor | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
Cf ≥ 6 | Very high contamination factor | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Igeo | Igeo < 0 | Uncontaminated | 34 | 35 | 35 | 35 | 35 | 34 | 32 | 34 | 35 | 25 | 35 |
0 < Igeo < 1 | Unpolluted to moderately contaminated | 1 | 0 | 1 | 0 | 0 | 1 | 3 | 1 | 0 | 9 | 0 | |
1 < Igeo < 2 | Moderately contaminated | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
2 < Igeo < 3 | Moderately to strongly contaminated | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
3 < Igeo > 4 | Strongly contaminated | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
4 < Igeo < 5 | Strongly to extremely contaminated | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Igeo > 5 | Extremely high contamination | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Eri | Er < 40 | Low ecological risk | - | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | - |
40 < Er ≤ 80 | Moderate ecological risk | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
80 < Er ≤ 160 | Considerable ecological risk | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
160 < Er ≤ 320 | High ecological risk | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
Er > 320 | Serious ecological risk | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - |
Al | As | Co | Cr | Cu | Fe | Mn | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
Al | 1 | ||||||||||
As | 0.748 ** | 1 | |||||||||
Co | −0.062 | −0.103 | 1 | ||||||||
Cr | 0.929 ** | 0.735 ** | −0.122 | 1 | |||||||
Cu | 0.329 | 0.231 | 0.087 | 0.391 * | 1 | ||||||
Fe | 0.905 ** | 0.704 ** | 0.028 | 0.904 ** | 0.385 * | 1 | |||||
Mn | 0.422 * | 0.391 * | 0.263 | 0.461 ** | 0.521 ** | 0.627 ** | 1 | ||||
Ni | 0.243 | 0.216 | 0.913 ** | 0.208 | 0.305 | 0.308 | 0.448 ** | 1 | |||
Pb | 0.222 | 0.355 * | −0.131 | 0.259 | 0.558 ** | 0.206 | 0.071 | 0.105 | 1 | ||
V | 0.952 ** | 0.769 ** | −0.071 | 0.924 ** | 0.320 | 0.938 ** | 0.450 ** | 0.225 | 0.242 | 1 | |
Zn | −0.105 | −0.250 | 0.646 ** | −0.109 | 0.524 ** | −0.004 | 0.314 | 0.636 ** | 0.009 | −0.136 | 1 |
Component | |||
---|---|---|---|
1 | 2 | 3 | |
Al | 0.924 | −0.204 | −0.152 |
As | 0.804 | −0.261 | −0.053 |
Co | 0.069 | 0.884 | −0.337 |
Cr | 0.927 | −0.219 | −0.071 |
Cu | 0.536 | 0.378 | 0.670 |
Fe | 0.948 | −0.076 | −0.153 |
Mn | 0.645 | 0.367 | −0.025 |
Ni | 0.407 | 0.820 | −0.215 |
Pb | 0.369 | −0.028 | 0.784 |
V | 0.934 | −0.223 | −0.148 |
Zn | 0.063 | 0.890 | 0.165 |
% of Variance | 46.772 | 24.894 | 12.073 |
Cumulative % | 46.772 | 71.666 | 83.739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sorogy, A.S.; Al-Kahtany, K.; Alharbi, T.; Al Hawas, R.; Rikan, N. Geographic Information System and Multivariate Analysis Approach for Mapping Soil Contamination and Environmental Risk Assessment in Arid Regions. Land 2025, 14, 221. https://doi.org/10.3390/land14020221
El-Sorogy AS, Al-Kahtany K, Alharbi T, Al Hawas R, Rikan N. Geographic Information System and Multivariate Analysis Approach for Mapping Soil Contamination and Environmental Risk Assessment in Arid Regions. Land. 2025; 14(2):221. https://doi.org/10.3390/land14020221
Chicago/Turabian StyleEl-Sorogy, Abdelbaset S., Khaled Al-Kahtany, Talal Alharbi, Rakan Al Hawas, and Naji Rikan. 2025. "Geographic Information System and Multivariate Analysis Approach for Mapping Soil Contamination and Environmental Risk Assessment in Arid Regions" Land 14, no. 2: 221. https://doi.org/10.3390/land14020221
APA StyleEl-Sorogy, A. S., Al-Kahtany, K., Alharbi, T., Al Hawas, R., & Rikan, N. (2025). Geographic Information System and Multivariate Analysis Approach for Mapping Soil Contamination and Environmental Risk Assessment in Arid Regions. Land, 14(2), 221. https://doi.org/10.3390/land14020221