Assessment of Ecological Recovery Potential of Various Plants in Soil Contaminated by Multiple Metal(loid)s at Various Sites near XiKuangShan Mine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Soils and Plants
2.1.1. Descriptions for Sampling Sites of TM and TS
2.1.2. Sample Collections of TM, TS, and Plant Species Inhabited at TS
2.1.3. Sample Collections of Eight Crops and Associated Rhizosphere Soils
2.2. Analysis of Soil Physicochemical Properties
2.3. Element Concentration Determination of Soil and Plant Samples
2.3.1. Digestion of Soil and Plant Samples
2.3.2. Determination of Elemental Concentrations in Soil and Plant Samples
2.4. Quantitative Risk Analysis and Calculation
2.4.1. Geo-Accumulation Index (Igeo)
2.4.2. Potential Ecological Risk Index (RI)
2.5. DNA Extraction and 16S rRNA Genes Amplification
2.6. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Serious Multiple-Metal(loid) Pollution in the Environment Around XKS Mine
3.1.1. Concentrations of Metal(loid)s in TM, TS, MF, and PF
3.1.2. Pollution Level of TM, TS, MF, and PF
3.2. Vegetation Recovery of TS Using Six Plants
3.3. Ecological Recovery Using Different Crops in the Farmland
3.3.1. Capacities of Eight Crops to Accumulate Metal(loid)s in Different Tissues
3.3.2. Improvement of Soil Physicochemical Properties After Cultivation of Pepper or Maize
3.3.3. Changes in Soil Bacterial Community Structure of MF/PF Relative to TM/TS
OTU Numbers and Microbial Community Diversities
Bacterial Phyla and Genera Associated with OM Degradation
Bacterial Phyla and Genera Associated with the N Cycle
Bacterial Phyla and Genera Associated with the P Cycle
Bacterial Phyla and Genera Associated with the S Cycle
Bacterial Phyla and Genera Associated with Plant-Promoting Bacteria
BUGbase Phenotypic Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dupont, D.; Arnout, S.; Jones, P.T.; Binnemans, K. Antimony recovery from end–of–life products and industrial process residues: A critical review. J. Sustain. Metall. 2016, 2, 79–103. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Wu, F.C.; Mo, C.L.; Deng, Q.J.; Meng, W.; Giesy, J.P. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Sci. Total Environ. 2016, 539, 97–104. [Google Scholar] [CrossRef]
- Guo, W.J.; Zhang, Z.Y.; Wang, H.; Qin, H.J.; Fu, Z.Y. Exposure characteristics of antimony and coexisting arsenic from multi–path exposure in typical antimony mine area. J. Environ. Manag. 2021, 289, 112493. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.C.; Wu, F.C.; Deng, Q.J.; Liu, G.J.; Mo, C.L.; Liu, B.J.; Zhu, J. Distribution and accumulation of antimony in plants in the super–large Sb deposit areas, China. Microchem. J. 2011, 97, 44–51. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Zhu, Y.G.; He, J.W.; Li, X.; Luo, L.; Mulder, J. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms controlling soil sequestration and uptake in rice. Environ. Sci. Technol. 2012, 46, 3155–3162. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhang, W.; Liu, W.Y.; Xiang, G.H.; Zheng, Y.; Zhang, X.; Yang, Z.L.; Sushkova, S.; Minkina, T.; Duan, R. Implications of soil potentially toxic elements contamination, distribution and health risk at Hunan’s Xikuangshan Mine. Processes 2021, 9, 1532. [Google Scholar] [CrossRef]
- Xie, Q.; Ren, B.Z. Pollution and risk assessment of heavy metals in rivers in the antimony capital of Xikuangshan. Sci. Rep. 2022, 12, 14393. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Wang, Q.; Oremland, R.S.; Kulp, T.R.; Rensing, C.; Wang, G. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways. Appl. Environ. Microbiol. 2016, 82, 5482–5495. [Google Scholar] [CrossRef] [PubMed]
- Zadel, U.; Cruzeiro, C.; Raj Durai, A.C.; Nesme, J.; May, R.; Balázs, H.; Michalke, B.; Płaza, G.; Schröder, P.; Schloter, M.; et al. Exudates from Miscanthus x giganteus change the response of a root–associated Pseudomonas putida strain towards heavy metals. Environ. Pollut. 2022, 313, 119989. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.J.; Tang, Z.E.; Hou, B.L.; Ren, B.Z.; Wang, Z.H.; Zhu, C.Q.; Kelly, S.; Hursthouse, A. Microbial diversity in soils from antimony mining sites: Geochemical control promotes species enrichment. Environ. Chem. Lett. 2020, 18, 911–922. [Google Scholar] [CrossRef]
- Wang, N.N.; Zhang, S.H.; He, M.C. Bacterial community profile of contaminated soils in a typical antimony mining site. Environ. Sci. Pollut. Res. 2018, 25, 141–152. [Google Scholar] [CrossRef]
- Wang, W.N.; Xiao, S.S.; Amanze, C.; Anaman, R.; Zeng, W.M. Microbial community structures and their driving factors in a typical gathering area of antimony mining and smelting in South China. Environ. Sci. Pollut. Res. Int. 2022, 29, 50070–50084. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Q.; Wang, H.M.; Cheng, X.Y.; Wu, M.X.J.; Song, Y.Y.; Liu, X.Y.; Loni, P.C.; Tuovinen, O.H. Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb–contaminated soil. Environ. Pollut. 2022, 298, 118812. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.X.; Kong, T.L.; Xu, R.; Li, B.Q.; Sun, W.M. Comparative characterization of microbial communities that inhabit arsenic–rich and antimony–rich contaminated sites: Responses to two different contamination conditions. Environ. Pollut. 2020, 260, 114052. [Google Scholar] [CrossRef]
- Guo, D.C.; Fan, Z.Z.; Lu, S.Y.; Ma, Y.J.; Nie, X.H.; Tong, F.P.; Peng, X.W. Changes in rhizosphere bacterial communities during remediation of heavy metal–accumulating plants around the Xikuangshan mine in southern China. Sci. Rep. 2019, 9, 1947. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.Y.; Lin, Y.X.; Zhang, J.N.; Huang, M.Y.; Du, Y.H.; Yang, L.; Bai, J.; Xiang, G.H.; Wang, Z.G.; Zhang, Y.Q. Changes in diversity and composition of rhizosphere bacterial community during natural restoration stages in antimony mine. Peerj 2021, 9, 12302. [Google Scholar] [CrossRef]
- Xiao, E.Z.; Ning, Z.P.; Xiao, T.F.; Sun, W.M.; Qiu, Y.Q.; Zhang, Y.; Chen, J.Y.; Gou, Z.L.; Chen, Y.X. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump. Environ. Pollut. 2019, 253, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.Y.; Du, Y.H.; Chen, Z.W.; Zhang, Y.Q.; Hu, W.; Yang, L.; Xiang, G.H.; Luo, Y.C. Diversity and composition of soil bacteria between abandoned and selective–farming farmlands in an antimony mining area. Front. Microbiol. 2022, 13, 953624. [Google Scholar] [CrossRef] [PubMed]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Qi, Y.T.; Wei, X.D.; Zhao, M.J.; Pan, W.S.; Jiang, C.; Wu, J.B.; Li, W.C. Heavy metal pollution characteristics and potential ecological risk assessment of soils around three typical antimony mining areas and watersheds in China. Front. Environ. Sci. 2022, 10, 913293. [Google Scholar] [CrossRef]
- Shi, S.J.; Yang, J.G.; Lin, M.T.; Chen, Q.Y.; Wang, B.; Zhao, J.Y.; Rensing, C.; Liu, H.; Fan, Z.L.; Feng, R.W. Using silkworm excrement to restore vegetation and soil ecology in heavily contaminated mining soils by multiple metal(loid)s: A recyclable sericulture measure. J. Hazard. Mater. 2023, 459, 132184. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part II, Chemical and Microbiological Properties–Agronomy Monograph No. 9, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society Agronomy, Soil Science Society America: Madison, WI, USA, 1983; pp. 539–579. [Google Scholar]
- Edwards, A.H. The semi–micro Kjeldahl method for the determination of nitrogen in coal. J. Appl. Chem. 1954, 4, 330–340. [Google Scholar] [CrossRef]
- Chen, G.C.; He, Z.L. Determination of soil microbial biomass phosphorus in acid red soils from southern China. Biol. Fertil. Soils. 2004, 39, 446–451. [Google Scholar] [CrossRef]
- Fixen, P.E.; Grove, J.H. Testing soils for phosphorus. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 141–180. [Google Scholar]
- Jones, J.B. Soil testing in the United States. Commun. Soil Sci. Plant Analysis 1973, 4, 307–322. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine river. GeoJournal 1969, 2, 109–118. [Google Scholar]
- China National Environmental Monitoring Centre. China Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Song, Z.Z.; Gao, H.Y.; Zhang, W.J.; Wang, D.S. Influence of flocculation conditioning on environmental risk of heavy metals in dredged sediment. J. Environ. Manag. 2021, 297, 113313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Zhang, J.W.; Shi, B.H.; Li, B.; Du, Z.K.; Wang, J.; Zhu, L.S.; Wang, J.H. Effects of cloransulam–methyl and diclosulam on soil nitrogen and carbon cycle–related microorganisms. J. Hazard. Mater. 2021, 418, 126395. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Yang, J.G.; Wang, L.Z.; Lin, Z.T.; Dai, J.X.; Wang, R.J.; Yu, Y.S.; Liu, H.; Rensing, C.; Feng, R.W. Factors influencing the uptake and speciation transformation of antimony in the soil–plant system, and the redistribution and toxicity of antimony in plants. Sci. Total Environ. 2020, 738, 140232. [Google Scholar] [CrossRef]
- Zhou, S.J.; Hursthouse, A.; Chen, T.S. Pollution characteristics of Sb, As, Hg, Pb, Cd, and Zn in soils from different zones of Xikuangshan antimony mine. J. Anal. Methods Chem. 2019, 2019, 2754385. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.J.; Wang, K.P.; He, M.C.; Liu, Z.W.; Yang, H.L.; Li, S.S. Antimony smelting process generating solid wastes and dust: Characterization and leaching behaviors. J. Environ. Sci. 2014, 26, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. Methods Assess. Soil Qual. 1997, 49, 169–185. [Google Scholar]
- Kim, K.R.; Park, S.Y.; Kim, S.Y.; Oh, Y.T.; Yu, J.N. The complete chloroplast genome of Persicaria maackiana (Regel) Nakai ex T. Mori (Polygonaceae) in Korea. Mitochondrial DNA B 2022, 7, 1669–1671. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Rehman, M.Z.; Adrees, M.; Arshad, M.; Qayyum, M.F.; Ali, L.; Hussain, A.; Chatha, S.A.S.; Imran, M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 2019, 248, 358–367. [Google Scholar] [CrossRef]
- Vaculíková, M.; Vaculík, M.; Tandy, S.; Luxová, M.; Schulin, R. Alleviation of antimonate (SbV) toxicity in maize by silicon (Si). Environ. Exp. Bot. 2016, 128, 11–17. [Google Scholar] [CrossRef]
- Li, S.Z.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z.G. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Bloem, J.; Brussaard, L. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 1993, 57, 105–128. [Google Scholar] [CrossRef]
- Li, Y.H.; Gong, X.F.; Xiong, J.Q.; Sun, Y.H.; Shu, Y.; Niu, D.N.; Lin, Y.; Wu, L.; Zhang, R. Different dissolved organic matters regulate the bioavailability of heavy metals and rhizosphere microbial activity in a plant–wetland soil system. J. Environ. Chem. Eng. 2021, 96, 106823. [Google Scholar] [CrossRef]
- Coluccia, M.; Besaury, L. Acidobacteria members harbour an abundant and diverse carbohydrate–active enzymes (cazyme) and secreted proteasome repertoire, key factors for potential efficient biomass degradation. Mol. Genet. Genom. 2023, 298, 1135–1154. [Google Scholar] [CrossRef] [PubMed]
- Kanokratana, P.; Uengwetwanit, T.; Rattanachomsri, U.; Bunterngsook, B.; Nimchua, T.; Tangphatsornruang, S.; Plengvidhya, V.; Champreda, V.; Eurwilaichitr, L. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 2010, 61, 518–528. [Google Scholar] [CrossRef]
- Speirs, L.B.M.; Rice, D.T.F.; Petrovski, S.; Seviour, R.J. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front. Microbiol. 2019, 10, 2015. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.C.; Qaria, M.A.; Zhu, B.; Sun, J.Z.; Yang, B. Extremophiles and extremozymes in lignin bioprocessing. Renew. Sust. Energ. Rev. 2022, 157, 112069. [Google Scholar] [CrossRef]
- Kovaleva, O.L.; Merkel, A.Y.; Novikov, A.A.; Baslerov, R.V.; Toshchakov, S.V.; Bonch–Osmolovskaya, E.A. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int. J. Syst. Evol. Microbiol. 2015, 65 Pt 2, 549–555. [Google Scholar] [CrossRef]
- Bill, M.; Chidamba, L.; Gokul, J.K.; Labuschagne, N.; Korsten, L. Bacterial community dynamics and functional profiling of soils from conventional and organic cropping systems. Appl. Soil Ecol. 2021, 157, 103734. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Ding, C.J.; Fan, J.M.; Li, Y.T.; Yao, L.Z.; Yang, M.S.; Su, X.H.; Wang, J.M. Effects of three regeneration methods on the growth and bacterial community diversity of Populus × euramericana. PLoS ONE 2022, 17, 0273306. [Google Scholar] [CrossRef]
- De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. Bio–electrochemical COD removal for energy–efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water. Res. 2020, 185, 116223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yue, S.J.; Bilal, M.; Hu, H.B.; Wang, W.; Zhang, X.H. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci. Total Environ. 2017, 609, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Martins, D.P.; Frank, J.; Jetten, M.S.M.; Op den Camp, H.J.M.; Welte, C.U. Mimicking microbial interactions under nitrate–reducing conditions in an anoxic bioreactor: Enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environ. Microbiol. 2017, 19, 4965–4977. [Google Scholar] [CrossRef]
- Takaichi, S.; Maoka, T.; Takasaki, K.; Hanada, S. Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): Identification of a novel carotenoid, deoxyoscillol 2–rhamnoside, and proposed biosynthetic pathway of oscillol 2,2′–dirhamnoside. Microbiology 2010, 156, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Eo, J.; Park, K.C. Long–term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agric. Ecosyst. Environ. 2016, 231, 176–182. [Google Scholar] [CrossRef]
- George, T.S.; Gregory, P.J.; Wood, M.; Read, D.; Buresh, R.J. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol. Biochem. 2002, 34, 1487–1494. [Google Scholar] [CrossRef]
- Zhang, K.D.; Wang, Y.; Tang, Y.L.; Dai, J.; Zhang, L.; An, H.L.; Luo, G.C.; Rahman, E.; Fang, C.X. Niastella populi sp. nov., isolated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella. Int. J. Syst. Evol. Microbiol. 2010, 60, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, M.K.; Jing, R.; Bai, L.Q.; Zhou, B.; Zhao, M.J.; Pei, X.J.; Wei, L.; Chen, G.H. Thiosulfate as the electron acceptor in Sulfur Bioconversion–Associated Process (SBAP) for sewage treatment. Water Res. 2019, 163, 114850. [Google Scholar] [CrossRef]
- Watanabe, T.; Kojima, H.; Fukui, M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: Genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst. Appl. Microbiol. 2014, 37, 387–395. [Google Scholar] [CrossRef]
- Wang, H.X.; Zhang, M.L.; Pang, D.; Xue, J.B.; Liu, L.L. Bioremediation of acid mine drainage using sulfate–reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Chemosphere 2024, 349, 140789. [Google Scholar] [CrossRef]
- Wen, B.; Zhou, J.W.; Tang, P.D.; Jia, X.C.; Zhou, W.Q.; Huang, J.B. Antimony (Sb) isotopic signature in water systems from the world’s largest Sb mine, central China: Novel insights to trace Sb source and mobilization. J. Environ. Sci. 2023, 446, 130622. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, C.Y.; Liu, D.; Ma, L.Y.; Qiu, X.; Wang, H.M.; Lu, X.L. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS–1. J. Environ. Sci. 2022, 111, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.F.; Chen, H.P.; Wang, J.I.; Zeng, S.M.; Wang, Y.; Mo, Z.Q.; Dan, X.M.; Li, Y.W. Response signatures of Litopenaeus vannamei to natural Enterocytozoon hepatopenaei infection revealed by the integration of the microbiome and transcriptome. Aquaculture 2021, 15, 736885. [Google Scholar] [CrossRef]
- Visioli, G.; Sanangelantoni, A.M.; Vamerali, T.; Dal Cortivo, C.; Blandino, M. 16S rDNA profiling to reveal the influence of seed–applied biostimulants on the rhizosphere of young maize plants. Molecules 2018, 23, 1461. [Google Scholar] [CrossRef]
- She, J.Y.; Wang, J.; Wei, X.D.; Zhang, Q.; Xie, Z.Y.; Beiyuan, J.Z.; Xiao, E.Z.; Yang, X.; Liu, J.; Zhou, Y.T.; et al. Survival strategies and dominant phylotypes of maize–rhizosphere microorganisms under metal(loid)s contamination. Sci. Total Environ. 2021, 774, 145143. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.B.; Chen, L.; Wang, D. Responses of soil microbial communities and their network interactions to saline–alkaline stress in Cd–contaminated soils. Environ. Pollut. 2019, 252, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Y.; Ji, Y.; Li, C.R.; Luo, P.P.; Wang, W.K.; Zhang, Y.; Nover, D. Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum–contaminated soils. Int. J. Environ. Res. Public Health 2018, 15, 2168. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.Q.; Zhang, X.; Guo, D.D.; Zhou, W.; Huang, S.M. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Kannan, V.M.; Saritha, V.N.; Loganathachetti, D.S.; Mohan, M.; Krishnan, K.P. Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic. Ecol. Indic. 2021, 126, 107704. [Google Scholar]
- Lee, S.W.; Kim, H.J.; Yang, J.E.; Ryu, H.S.; Moon, J.; Lee, J.Y.; Lee, H. Comparison of microbial gene diversity in grassland topsoil depending on soil quality. Appl. Sci. 2021, 11, 9569. [Google Scholar] [CrossRef]
- Aghnatios, R.; Drancourt, M. Gemmata species: Planctomycetes of medical interest. Future Microbiol. 2016, 11, 659–667. [Google Scholar] [CrossRef]
- Jogler, C.; Waldmann, J.; Huang, X.L.; Jogler, M.; Glöckner, F.O.; Mascher, T.; Kolter, R. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J. Bacteriol. 2012, 194, 6419–6430. [Google Scholar] [CrossRef]
- Liu, B.; Su, G.R.; Yang, Y.R.; Yao, Y.; Huang, Y.J.; Hu, L.; Zhong, H.; He, Z.G. Vertical distribution of microbial communities in chromium–contaminated soil and isolation of Cr(VI)–Reducing strains. Ecotoxicol. Environ. Saf. 2019, 180, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.J.; Sierra–Alvarez, R.; Field, J.A. Long term performance of an arsenite–oxidizing–chlorate–reducing microbial consortium in an upflow anaerobic sludge bed (UASB) bioreactor. Bioresour. Technol. 2011, 102, 5010–5016. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hosokawa, H.; Sadakane, T.; Kuroda, M.; Inoue, D.; Nishikawa, H.; Ike, M. Isolation and characterization of facultative–anaerobic antimonate–reducing bacteria. Microorganisms 2020, 8, 1435. [Google Scholar] [CrossRef]
- Yamamura, S.; Iida, C.; Kobayashi, Y.; Watanabe, M.; Amachi, S. Production of two morphologically different antimony trioxides by a novel antimonate–reducing bacterium, Geobacter sp. SVR. J. Hazard. Mater. 2021, 411, 125100. [Google Scholar] [CrossRef]
- Wang, J.J.; Muyzer, G.; Bodelier, P.L.; Laanbroek, H.J. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella–related bacteria. ISME J. 2009, 3, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Gao, J.; Wang, N.; Liu, Y.; Wang, Y.W.; Bai, Z.H.; Zhuang, X.L.; Zhuang, G.Q. Differences in soil microbial response to anthropogenic disturbances in Sanjiang and Momoge Wetlands, China. FEMS Microbiol. Ecol. 2019, 95, fiz110. [Google Scholar] [CrossRef]
- Al–Ansari, M.M. Influence of blue light on effective removal of arsenic by photosynthetic bacterium Rhodobacter sp. BT18. Chemosphere 2022, 292, 133399. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.S.; Zhang, F.J.; Wang, Q.; Zheng, S.X.; Guo, W.; Feng, L.; Wang, G.J. Flavihumibacter stibioxidans sp. nov., an antimony–oxidizing bacterium isolated from antimony mine soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 4676–4680. [Google Scholar] [CrossRef]
- Ma, B.; Song, W.L.; Zhang, X.X.; Chen, M.X.; Li, J.P.; Yang, X.Q.; Zhang, L. Potential application of novel cadmium–tolerant bacteria in bioremediation of Cd–contaminated soil. Ecotoxicol. Environ. Saf. 2023, 255, 114766. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, J.S.; Marques, T.V.; Barone, R.S.C.; Cyrino, J.E.P.; Kublik, S.; Nesme, J.; Schloter, M.; Rath, S.; Vestergaard, G. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish piaractus mesopotamicus. Microbiome 2019, 7, 24. [Google Scholar] [CrossRef]
- Qiao, R.X.; Sheng, C.; Lu, Y.F.; Zhang, Y.; Ren, H.Q.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Himani, K.; Durgesh, N.S.; Anoop, S.; Yogendra, S.; Rup, L.; Ram, K.N. Gut microbiome of endangered Tor putitora (ham.) As a reservoir of antibiotic resistance genes and pathogens associated with fish health. BMC Microbiol. 2020, 20, 249. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yang, J.; Zhang, J.; Tong, Y.; Su, H.; Rensing, C.; Feng, R.; Zheng, S. Assessment of Ecological Recovery Potential of Various Plants in Soil Contaminated by Multiple Metal(loid)s at Various Sites near XiKuangShan Mine. Land 2025, 14, 223. https://doi.org/10.3390/land14020223
Zhu Y, Yang J, Zhang J, Tong Y, Su H, Rensing C, Feng R, Zheng S. Assessment of Ecological Recovery Potential of Various Plants in Soil Contaminated by Multiple Metal(loid)s at Various Sites near XiKuangShan Mine. Land. 2025; 14(2):223. https://doi.org/10.3390/land14020223
Chicago/Turabian StyleZhu, Yanming, Jigang Yang, Jiajia Zhang, Yiran Tong, Hailan Su, Christopher Rensing, Renwei Feng, and Shunan Zheng. 2025. "Assessment of Ecological Recovery Potential of Various Plants in Soil Contaminated by Multiple Metal(loid)s at Various Sites near XiKuangShan Mine" Land 14, no. 2: 223. https://doi.org/10.3390/land14020223
APA StyleZhu, Y., Yang, J., Zhang, J., Tong, Y., Su, H., Rensing, C., Feng, R., & Zheng, S. (2025). Assessment of Ecological Recovery Potential of Various Plants in Soil Contaminated by Multiple Metal(loid)s at Various Sites near XiKuangShan Mine. Land, 14(2), 223. https://doi.org/10.3390/land14020223