Spatiotemporal Assessment of Habitat Quality in Sicily, Italy
Abstract
:1. Introduction
- (i)
- (ii)
- Detect hot and cold spots, as well as global and local spatial agglomeration effects through the application of Getis-Ord Gi* statistics, and global and local Moran’s statistics;
- (iii)
- Examine the impact of socioeconomic, topographic, climatic, and ecological variables on habitat quality (HQ) at both global and local levels, using the Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models [42].
2. Material and Methods
2.1. Study Context
2.2. Material and Methods
2.2.1. InVEST Model
- -
- j represents the key habitat type (with j = 1,…, 5);
- -
- HQxj represents the HQ index of the grid unit x and for the j habitat;
- -
- , which ranges between 0 and 1, represents the habitat suitability score of the j key habitat, with 1 indicating the highest suitability to species;
- -
- is the degree of habitat degradation of grid unit x for the j key habitat;
- -
- kz is the semi-saturation constant.
- -
- r is the threat source;
- -
- R is the number of threat sources;
- -
- y indexes all grid cells on r’s raster map;
- -
- Yr is the set of grid cells on r’s raster map;
- -
- wr is the relative weight of each rth threat and indicates the relative destructiveness of a source of degradation relative to all habitats;
- -
- ry is a dummy that equals 1 if in the yth grid cell the rth threat is present in the yth grid cell, and 0 otherwise (this information is uploaded in the model through threat raster maps representing the spatial distribution of each threat);
- -
- irxy represents the influence of threat rth on the yth grid in the xth grid habitat, assuming that the degree of threat decreases with the increasing of the distance between the grid and the source of the threat;
- -
- βx represents the xth grid vulnerability to threats, which depends on the level of legal, institutional, social, and physical protections. It equals 1 if grid vulnerability is maximum because it is not protected, and 0 otherwise;
- -
- Sjr is the sensitivity of the key habitat j to the rth threat.
2.2.2. Validation of the HQ Estimates
- -
- Protected areas;
- -
- Unprotected areas with value of 1 in H or B;
- -
- Unprotected areas with value of 2 in H and B;
- -
- Areas with degradation level as presented in Table 5.
2.2.3. Transfer Matrix
2.2.4. Spatial Statistical and Econometric Analysis
- High–high-value cluster (HH): area with a high value that is surrounded by other areas with high values (hotspot);
- Low–low-value cluster (LL): area with a low value that is surrounded by other areas with low values (coldspot);
- High–low outlier (HL): area with a high value that is surrounded by areas with low values;
- Low–high outlier (LH): area with a low value that is surrounded by areas with high values.
2.2.5. Data Sources
3. Results and Discussion
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niquisse, S.; Cabral, P. Assessment of changes in ecosystem service monetary values in Mozambique. Environ. Dev. 2018, 25, 12–22. [Google Scholar] [CrossRef]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Root, K.V. Evaluating the effects of habitat quality, connectivity, and catastrophes on a threatened species. Ecol. Appl. 1998, 8, 854–865. [Google Scholar] [CrossRef]
- Prenda, J.; López-Nieves, P.; Bravo, R. Conservation of otter (Lutra lutra) in a Mediterranean area: The importance of habitat quality and temporal variation in water availability. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.J.; Kideghesho, J.R.; Said, M.Y.; Nzunda, E.F. Spatio-temporal changes in wildlife habitat quality in the greater Serengeti ecosystem. Sustainability 2020, 12, 2440. [Google Scholar] [CrossRef]
- Gilroy, J.J.; Anderson, G.Q.A.; Vickery, J.A.; Grice, P.V.; Sutherland, W.J. Identifying mismatches between habitat selection and habitat quality in a ground-nesting farmland bird. Anim. Conserv. 2011, 14, 620–629. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Song, Y.; Wang, M.; Sun, X.; Fan, Z. Quantitative assessment of the habitat quality dynamics in Yellow River Basin, China. Environ. Monit. Assess. 2021, 193, 614. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Rowe, E.C.; Ford, A.E.; Smart, S.M.; Henrys, P.A.; Ashmore, M.R. Using qualitative and quantitative methods to choose a habitat quality metric for air pollution policy evaluation. PLoS ONE 2016, 11, e0161085. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Requena-Mullor, J.M.; Lopez, E.; Castro, A.J.; Alcaraz-Segura, D.; Castro, H.; Reyes, A.; Cabello, J. Remote-sensing based approach to forecast habitat quality under climate change scenarios. PLoS ONE 2017, 12, e0172107. [Google Scholar] [CrossRef]
- Tallis, H.; Fargione, J.; Game, E.; McDonald, R.; Baumgarten, L.; Bhagabati, N.; Cortez, R.; Griscom, B.; Higgins, J.; Kennedy, C.M.; et al. Prioritizing actions: Spatial action maps for conservation. Ann. N. Y. Acad. Sci. 2021, 1505, 118–141. [Google Scholar] [CrossRef]
- Hermoso, V.; Carvalho, S.B.; Giakoumi, S.; Goldsborough, D.; Katsanevakis, S.; Leontiou, S.; Markantonatou, V.; Rumes, B.; Vogiatzakis, I.N.; Yates, K.L. The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery. Environ. Sci. Policy 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Stephens, T. The Kunming–Montreal Global Biodiversity Framework. Int. Leg. Mater. 2023, 62, 868–887. [Google Scholar] [CrossRef]
- Hughes, A.C.; Grumbine, R.E. The Kunming-Montreal Global Biodiversity Framework: What it does and does not do, and how to improve it. Front. Environ. Sci. 2023, 11, 1281536. [Google Scholar] [CrossRef]
- He, Y.; Mo, Y.; Ma, J. Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China. Int. J. Environ. Res. Public Health 2022, 20, 748. [Google Scholar] [CrossRef]
- Ciarleglio, M.; Wesley Barnes, J.; Sarkar, S. ConsNet: New software for the selection of conservation area networks with spatial and multi-criteria analyses. Ecography 2009, 32, 205–209. [Google Scholar] [CrossRef]
- Lehtomäki, J.; Moilanen, A. Methods and workflow for spatial conservation prioritization using Zonation. Environ. Model. Softw. 2013, 47, 128–137. [Google Scholar] [CrossRef]
- Villa, F.; Ceroni, M.; Bagstad, K.; Johnson, G.; Krivov, S. ARIES (Artificial Intelligence for Ecosystem Services): A new tool for ecosystem services assessment, planning, and valuation. In Proceedings of the 11th Annual BIOECON Conference on Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity, Venice, Italy, 21–22 September 2009; pp. 21–22. [Google Scholar]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H. Social Values for Ecosystem Services (SolVES): Open-source spatial modeling of cultural services. Environ. Model. Softw. 2022, 148, 105259. [Google Scholar] [CrossRef]
- Pressey, R.L.; Bottrill, M.C. Approaches to landscape-and seascape-scale conservation planning: Convergence, contrasts and challenges. Oryx 2009, 43, 464–475. [Google Scholar] [CrossRef]
- Chen, C.; Liu, J.; Bi, L. Spatial and temporal changes of habitat quality and its influential factors in China based on the InVEST model. Forests 2023, 14, 374. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Hu, T.; Zhang, M.; Ren, X.; Hou, L. Exploration of roadway factors and habitat quality using InVEST. Transp. Res. Part D: Transp. Environ. 2020, 87, 102551. [Google Scholar] [CrossRef]
- Zhao, L.; Su, M.; Wang, X.; Li, X.; Chang, X.; Zhang, P. Spatial–Temporal Evolution and Prediction of Habitat Quality in Beijing–Tianjin–Hebei Region Based on Land Use Change. Land 2023, 12, 667. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.; Xu, Z.; Zhang, J.; Chi, M.; Lan, S.; Gan, Q. Interactive Effects on Habitat Quality Using InVEST and GeoDetector Models in Wenzhou, China. Land 2022, 11, 630. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, W. Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST Model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Adnan, N.; Mamat, M.P. Spatial Analysis Model Assessing Habitat Quality of Selangor. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 549, p. 012049. [Google Scholar]
- Dashtbozorgi, F.; Hedayatiaghmashhadi, A.; Dashtbozorgi, A.; Ruiz–Agudelo, C.A.; Fürst, C.; Cirella, G.T.; Naderi, M. Ecosystem services valuation using InVEST modeling: Case from southern Iranian mangrove forests. Reg. Stud. Mar. Sci. 2023, 60, 102813. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Di Febbraro, M.; Sallustio, L.; Vizzarri, M.; De Rosa, D.; De Lisio, L.; Loy, A.; Eichelberger, B.A.; Marchetti, M. Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Glob. Ecol. Conserv. 2018, 16, e00513. [Google Scholar] [CrossRef]
- Di Pirro, E.; Sallustio, L.; Capotorti, G.; Marchetti, M.; Lasserre, B. A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy. Ecol. Model. 2021, 448, 109533. [Google Scholar] [CrossRef]
- Salata, S.; Özkavaf-Şenalp, S.; Velibeyoğlu, K. Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities? Urban Sci. 2022, 6, 19. [Google Scholar] [CrossRef]
- Scorza, F.; Pilogallo, A.; Saganeiti, L.; Murgante, B. Natura 2000 areas and sites of national interest (SNI): Measuring (un) integration between naturalness preservation and environmental remediation policies. Sustainability 2020, 12, 2928. [Google Scholar] [CrossRef]
- Hoffman, R.; Wynne, M.J. Tetrasporangial plants of Monosporus indicus (Ceramiales, Rhodophyta): A new alien in the Mediterranean Sea. Eur. J. Phycol. 2016, 51, 461–468. [Google Scholar] [CrossRef]
- MedECC. Climate and environmental change in the Mediterranean Basin—Current situation and risks for the future. In First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean: Marseille, France, 2020; p. 632. [Google Scholar]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Wyatt, K. InVEST 3.8. 7. User’s Guide. The Natural Capital Project. 2020. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest/3.9.0/userguide/index.html (accessed on 21 January 2025).
- Lemelin, L.V.; Darveau, M. Coarse and fine filters, gap analysis, and systematic conservation planning. For. Chron. 2006, 82, 802–805. [Google Scholar] [CrossRef]
- Jenkins, D.G.; Boughton, E.H.; Bohonak, A.J.; Noss, R.F.; Simovich, M.A.; Bauder, E.T. Indicator-species and coarse-filter approaches in conservation appear insufficient alone. Glob. Ecol. Conserv. 2021, 28, e01667. [Google Scholar] [CrossRef]
- Tingley, M.W.; Darling, E.S.; Wilcove, D.S. Fine-and coarse-filter conservation strategies in a time of climate change. Ann. N. Y. Acad. Sci. 2014, 1322, 92–109. [Google Scholar] [CrossRef]
- Griffith, D.A.; Chun, Y.; O’Kelly, M.E.; Berry, B.J.; Haining, R.P.; Kwan, M.P. Geographical Analysis: Its First 40 Years. Geogr. Anal. 2013, 45, 1–27. [Google Scholar] [CrossRef]
- Baiamonte, G.; Domina, G.; Raimondo, F.M.; Bazan, G. Agricultural landscapes and biodiversity conservation: A case study in Sicily (Italy). Biodivers. Conserv. 2015, 24, 3201–3216. [Google Scholar] [CrossRef]
- Medail, F.; Quezel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Manachini, B.; Bazan, G.; Schicchi, R. Potential impact of genetically modified Lepidoptera-resistant Brassica napus in biodiversity hotspots: Sicily as a theoretical model. Insect Sci. 2018, 25, 562–580. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: https://cordis.europa.eu/article/id/1052-council-directive-on-the-conservation-of-natural-habitats-and-of-wild-fauna-and-flora (accessed on 21 January 2025).
- Cullotta, S.; Marchetti, M. Forest types for biodiversity assessment at regional level: The case study of Sicily (Italy). Eur. J. For. Res. 2007, 126, 431–447. [Google Scholar] [CrossRef]
- Raimondo, F.M.; Domina, G.; Spadaro, V. Checklist of the vascular flora of Sicily. Quad. Bot. Amb. Appl. 2010, 21, 189–252. [Google Scholar]
- Barredo, J.I.; Caudullo, G.; Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 2016, 75, 83–92. [Google Scholar] [CrossRef]
- Marquez Torres, A.; Signorello, G.; Kumar, S.; Adamo, G.; Villa, F.; Balbi, S. Fire risk: An integrated modelling approach. EGUsphere 2023, 2023, 1–37. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Hill, S.L.; Arnell, A.; Maney, C.; Butchart, S.H.; Hilton-Taylor, C.; Ciciarelli, C.; Davis, C.; Dinerstein, E.; Purvis, A.; Burgess, N.D. Measuring forest biodiversity status and changes globally. Front. For. Glob. Change 2019, 2, 70. [Google Scholar] [CrossRef]
- Kulaixi, Z.; Chen, Y.; Wang, C.; Xia, Q. Spatial differentiation of ecosystem service value in an arid region: A case study of the Tarim River Basin, Xinjiang. Ecol. Indic. 2023, 151, 110249. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Zhou, G. Impact of land use change on habitat quality and regional biodiversity capacity: Temporal and spatial evolution and prediction analysis. Front. Environ. Sci. 2022, 10, 1041573. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Getis, A. Cliff, AD and Ord, JK 1973: Spatial autocorrelation. London: Pion. Prog. Hum. Geogr. 1995, 19, 245–249. [Google Scholar] [CrossRef]
- Li, W.; Zhu, C.; Wang, H.; Xu, B. Multi-scale spatial autocorrelation analysis of cultivated land quality in Zhejiang province. Trans. Chin. Soc. Agric. Eng. 2016, 32, 239–245. [Google Scholar]
- Anselin, L. Interactive techniques and exploratory spatial data analysis. In Regional Research Institute Working Papers; West Virginia University: Morgantown, WV, USA, 1996. [Google Scholar]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Charlton, M.; Fotheringham, S.; Brunsdon, C. Geographically weighted regression. J. R. Stat. Soc. Ser. D 1998, 47, 431–443. [Google Scholar]
- Hayashi, F. Econometrics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [Google Scholar] [CrossRef]
- Sahr, K.; White, D.; Kimerling, A.J. Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [Google Scholar] [CrossRef]
- Esri Land Cover 2050. Environmental Systems Research Institute. Available online: https://livingatlas.arcgis.com/landcover-2050/ (accessed on 21 January 2025).
- European Commission; Directorate-General for Communication. Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. Copernicus: Europe’s Eyes on Earth. Brussels. 2015. Available online: https://data.europa.eu/doi/10.2873/70140 (accessed on 21 January 2025).
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Regione Siciliana. Sistema Informativo Forestale (SIF). Regione Siciliana. 2024. Available online: https://sif.regione.sicilia.it/ilportale/home (accessed on 21 January 2025).
- Regione Siciliana. Piano stralcio di Bacino per L’assetto Idrogeologico (S.I.T.R). 2024. Available online: https://www.sitr.regione.sicilia.it/pai/ (accessed on 21 January 2025).
- Ministero dell’Ambiente e della Sicurezza Energetica (MASE). Available online: http://www.pcn.minambiente.it/viewer/ (accessed on 21 January 2025).
- Doe, J. Nightlight Raster Data. Figshare. 2023. Available online: https://figshare.com/browse (accessed on 21 January 2025).
- ISTAT. Istituto Nazionale di Statistica—Densità di Popolazione. 2023. Available online: https://demo.istat.it/ (accessed on 21 January 2025).
- Geoportale Regione Siciliana. 2020. Available online: https://www.sitr.regione.sicilia.it/geoportale (accessed on 21 January 2025).
- Regione Siciliana. Report Siccità. 2020. Available online: https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/siti-tematici/risorse-idriche/report-siccit%C3%A0 (accessed on 21 January 2025).
- Regione Siciliana. Annuali idrogeologici Sicilia. 2020. Available online: https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/annali-idrologici (accessed on 21 January 2025).
- Analytical Tools Interface for Landscape Assessments (ATtILA). Available online: https://www.epa.gov/enviroatlas/attila-toolbox (accessed on 21 January 2025).
- UNEP-WCMC; IUCN. World Database on Protected Areas (WDPA). United Nations Environment Programme World Conservation Monitoring Centre. 2020. Available online: https://www.protectedplanet.net/en (accessed on 21 January 2025).
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers, In: Climate Change 2021: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 18 March 2024).
- Convention on Biological Diversity, Decision 15/4, U.N. Doc. CBD/COP/DEC/15/4 (2022) The Kunming-Montreal Global Biodiversity Framework. Available online: https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf (accessed on 21 January 2025).
- European Commission: Directorate-General for Environment, EU Biodiversity Strategy for 2030—Bringing Nature Back into Our Lives, Publications Office of the European Union. 2021. Available online: https://data.europa.eu/doi/10.2779/677548 (accessed on 21 January 2025).
Threat | Description | Decay Function | drmax | Wr |
---|---|---|---|---|
Intensive agriculture | Arable land in irrigated and non-irrigated areas, vineyards, olive groves, citrus groves | linear | 1.0 | 1.0 |
Fire events | Fire at anthropogenic risk | exponential | 0.5 | 1.0 |
Main roads | Primary roads (highways and provincial roads) | linear | 0.6 | 0.5 |
Urban | Urbanized areas (continuous and discontinuous urban fabric), industrial and commercial areas | exponential | 2.0 | 1.0 |
Hunting | Areas where hunting is allowed | linear | 1.0 | 0.8 |
Bare land | Areas which are in natural state | exponential | 1.0 | 0.5 |
Hydrogeological risk | Areas vulnerable to flooding | exponential | 0.5 | 0.8 |
Geomorphological risk | Areas vulnerable to landslides | exponential | 0.5 | 0.8 |
ID | Key Habitat | Habitat Weight | Intensive Agricultural | Fire Events | Main Roads | Urban | Hunting | Bare Land | Hydrogeological Risk | Geomorphological Risk |
---|---|---|---|---|---|---|---|---|---|---|
1 | Forest | 1.0 | 0.2 | 0.8 | 0.3 | 0.4 | 0.8 | 0.8 | 0.2 | 0.2 |
2 | Sparse vegetation | 0.9 | 0.5 | 0.5 | 0.6 | 0.8 | 0.6 | 0.8 | 0.4 | 0.4 |
3 | Wetland | 0.9 | 0.5 | 0.2 | 0.4 | 0.2 | 0.8 | 0.3 | 0.3 | 0.3 |
4 | Agroecosystem | 0.5 | 0.2 | 0.2 | 0.2 | 0.8 | 0.8 | 0.7 | 0.8 | 0.8 |
5 | No vegetation area | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Levels | Reclassification | Value |
---|---|---|
1 | Low | 0.00 |
2 | Low–medium | 0.01–0.50 |
3 | Medium–high | 0.51–0.90 |
4 | High | 0.91–1.00 |
Levels | Reclassification | Value |
---|---|---|
1 | Low | 0.001–0.046 |
2 | Low–medium | 0.047–0.104 |
3 | Medium | 0.105–0.130 |
4 | Medium–high | 0.131–0.161 |
5 | High | 0.162–0.231 |
Label | Level of HQ in 2018 | Level of HQ in 2050 | Degradation/Improvement in HQ |
---|---|---|---|
0.51–0.90 | 0.00 | Significant degradation | |
0.91–1.00 | 0.00 | Significant degradation | |
0.01–0.50 | 0.00 | Slight degradation | |
0.51–0.90 | 0.01–0.50 | Slight degradation | |
0.91–1.00 | 0.01–0.50 | Slight degradation | |
0.91–1.00 | 0.51–0.90 | Slight degradation | |
0.00 | 0.00 | Stable | |
0.01–0.50 | 0.01–0.50 | Stable | |
0.51–0.90 | 0.51–0.90 | Stable | |
0.91–1.00 | 0.91–1.00 | Stable | |
0.00 | 0.01–0.50 | Slight improvement | |
0.00 | 0.51–0.90 | Slight improvement | |
0.01–0.50 | 0.51–0.90 | Slight improvement | |
0.51–0.90 | 0.91–1.00 | Slight improvement | |
0.00 | 0.91–1.00 | Significant improvement | |
0.01–0.50 | 0.91–1.00 | Significant improvement |
Key Habitats | Surface in 2018 (ha) | Surface in 2050 (ha) | Change (ha) | |
Forest | Mostly deciduous forest | 113,408 | 112,898 | 510 |
Mostly needleleaf | 20,866 | 20,640 | 226 | |
Shrubs | Sparse vegetation | 2660 | 2660 | 0 |
Wetland | Swampy | 7676 | 7676 | 0 |
Surface water | 4852 | 4852 | 0 | |
Agroecosystem | Mostly crop | 1,887,410 | 1,889,570 | −2160 |
Grass | 377,588 | 374,703 | 2885 | |
No vegetation area | Artificial surface | 97,775 | 110,709 | −12,934 |
bare area | 52,013 | 40,540 | 11,473 |
Input Data | 2018 | 2050 | Data Type | Source |
---|---|---|---|---|
Land use/Land cover | The layer displays a single global land cover map with a pixel resolution of 300 m | The layer displays a single global land cover map with a pixel resolution of 300 m | Raster | ESRI—Clark labs and European space agency climate change initiative [65] (https://livingatlas.arcgis.com/landcover-2050/, accessed on 21 January 2025). |
Intensive agricultural | Areas with intensive agriculture | Areas with intensive agriculture | Raster | ESRI—Clark labs and European space agency climate change initiative [65] (https://livingatlas.arcgis.com/landcover-2050/, accessed on 21 January 2025). |
Burned area | Areas having low, medium, or high probability of fire occurrence | Areas having low, medium, or high probability of fire occurrence | Raster | Regione Sicilia [68] (https://data.europa.eu/doi/10.2873/70140, accessed on 21 January 2025) |
Hydrogeological risk | Areas having high hydrogeological risk | Areas having low, medium, or high hydrogeological risk | Vectorial | Regione Sicilia [69] (https://www.sitr.regione.sicilia.it/pai/, accessed on 21 January 2025) |
Hunting | Area in which hunting is permitted | Area in which hunting is permitted net of potential new protected areas | Raster | Regione Sicilia [68] (https://data.europa.eu/doi/10.2873/70140, accessed on 21 January 2025) |
Roads | Main roads | Main roads | Vectorial | Regione Sicilia [68] (https://data.europa.eu/doi/10.2873/70140, accessed on 21 January 2025) |
Geomorphological risk | Areas having high geomorphological risk | Areas having low, medium, or high geomorphological risk | Vectorial | Ministero dell’Ambiente [70] (http://www.pcn.minambiente.it/viewer/, accessed on 21 January 2025) |
Urban area | Urban areas | Urban areas | Raster | ESRI—Clark labs and European space agency climate change initiative [65] (https://livingatlas.arcgis.com/landcover-2050/, accessed on 21 January 2025).) |
Variable | Description | Tool | Source |
---|---|---|---|
Nightlight (NTL) | Intensity of the socioeconomic activities and urbanization | Spatial analyst Tools—Zonal—Zonal Statistics as Table in ArcGIS 4.0.1 | [71] (https://figshare.com/browse, accessed on 21 January 2025) |
Population density (PD) | Population size per square kilometer of land area | Analysis toolbox—Statistics toolset—Summarize Within in ArcGIS 4.0.1 | ISTAT [72] (https://demo.istat.it/, accessed on 21 January 2025) |
Slope (SL) | Slope (gradient or steepness) from each cell of a raster | Slope (Spatial Analyst) in ArcGIS 4.0.1 | Regione Sicilia [73] (https://www.sitr.regione.sicilia.it/geoportale, accessed on 21 January 2025) |
Compass exposure (CE) | Values: 0° for north, 90° for east, 180° for south, and 270° for West | Aspect (Spatial Analyst) in ArcGIS 4.0.1 | Regione Sicilia [73] (https://www.sitr.regione.sicilia.it/geoportale, accessed on 21 January 2025) |
Temperature (T18) | Annual average temperature | Kriging tools in ArcGIS 4.0.1 | Regione Sicilia [74] (https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/siti-tematici/risorse-idriche/report-siccit%C3%A0, accessed on 21 January 2025) |
Precipitation (P18) | Average annual rainfall | Kriging tools in ArcGIS 4.0.1 | Regione Sicilia [75] (https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/annali-idrologici, accessed on 21 January 2025) |
H_Prime (H_P) | Shannon–Weaver index. It measures diversity within a biological community. The minimum value occurs when there is only one key habitat in the patch, and the maximum value when all key habitats are evenly distributed. | ArcGIS 4.0.1 (ATtILA)—CLC 2018 | [76] (https://www.epa.gov/enviroatlas/attila-toolbox—ATtILA, accessed on 21 January 2025) |
Level of protection (LP) | It indicates whether a portion of land is protected, taking a value of 0 when the percentage of hectares of protected areas is 0, 1 when the percentage of hectares of protected areas is between 0.1 and 50%, and 2 when the percentage of hectares of protected areas is >50% | Calculation of protected area surfaces within the hexagonal feature | The World Database on Protected Areas, 2020 [77] (https://www.protectedplanet.net/en, accessed on 21 January 2025) |
Patch richness (PR) | It describes the variety of habitat types or ecosystems in each geographic area | Command selects by location in ArcGIS 4.0.1 | [76] (https://www.epa.gov/enviroatlas/attila-toolbox—ATtILA, accessed on 21 January 2025) |
LULC 2050 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LULC 2018 | A | B | C | D | E | ||||||
A1 | A2 | B1 | C1 | C2 | D1 | D2 | E1 | E2 | |||
A | A1 | 510 | |||||||||
A2 | 226 | ||||||||||
B | B1 | ||||||||||
C | C1 | ||||||||||
C2 | |||||||||||
D | D1 | ||||||||||
D2 | 1424 | 1461 | |||||||||
E | E1 | ||||||||||
E2 | 11,473 |
Level of HQ | 2018 | 2050 | Changes in HQ Level | |||
---|---|---|---|---|---|---|
Area (in ha) | % | Surface (in ha) | % | Area (in ha) | % | |
0.00 | 1759.000 | 68.39 | 1759.396 | 68.41 | 396 | 0.00 |
0.01–0.50 | 514 | 0.02 | 222,641 | 8.66 | 222,127 | 432.15 |
0.51–0.90 | 616,103 | 23.96 | 456,043 | 17.73 | −16,006 | −0.26 |
0.91–1.00 | 196,269 | 7.63 | 133,454 | 5.20 | −62,815 | −0.32 |
Mean of HQ | 0.29 | 0.25 | 0.04 | |||
Standard Deviation of HQ | 0.42 | 0.39 | 0.02 |
Vulnerability Class | 2018 | 2050 | ||
---|---|---|---|---|
Area (ha) | % | Area (ha) | % | |
Low | 2,265,660 | 93.72 | 2,184,699 | 90.37 |
Medium–Low | 29,806 | 1.23 | 1,369,784 | 5.66 |
Medium | 68,703 | 2.84 | 517,404 | 2.14 |
Medium–High | 35,377 | 1.46 | 354,544 | 1.46 |
High | 17,930 | 0.74 | 86,034 | 0.35 |
Confidence Level | Getis-Ord Gi* | Filter Approach | Coarse Approach | ||
---|---|---|---|---|---|
Surface (ha) | % of Sicilian Surface | Surface (ha) | % of Sicilian Surface | ||
99% Coldspot | −3 | 9256 | 35.99 | 1,534,608 | 59.67 |
95% Coldspot | −2 | 53,991 | 2.10 | 18,091 | 0.70 |
90% Coldspot | −1 | 28,249 | 1.10 | 9181 | 0.36 |
Not significant | 0 | 300,023 | 11.67 | 90,325 | 3.51 |
90% hotspot | 1 | 2901 | 1.13 | 8132 | 0.32 |
95% hotspot | 2 | 55,986 | 2.18 | 15,302 | 0.59 |
99% hotspot | 3 | 973,213 | 37.84 | 894,836 | 34.79 |
Degradation | Areas with Relevant Biodiversity Value | Areas Without Relevant Biodiversity Value | ||||
---|---|---|---|---|---|---|
Medium | High | |||||
Surface (in ha) | % | Surface (in ha) | % | Surface (in ha) | % | |
High | 8040 | 5.57 | 9410 | 6.52 | 209 | 0.14 |
Medium–High | 13,992 | 9.70 | 19,285 | 13.37 | 806 | 0.56 |
Medium–Low | 25,565 | 17.72 | 36,990 | 25.64 | 3118 | 2.16 |
Low | 12,827 | 8.89 | 10,270 | 7.12 | 3777 | 2.62 |
Total | 60,424 | 41.88 | 75,955 | 52.65 | 7910 | 5.48 |
OLS—2018 | OLS—2050 | |||
---|---|---|---|---|
Estimate | t-Value | Estimate | t-Value | |
Intercept | 0.22828 | 11.65922 | −0.11174 | −7.39385 |
NHT | 0.000228 | 1.330921 | 0.000044 | 0.328888 |
PD | 0.000398 | 1.279157 | −0.00342 | −14.2504 |
SL | 0.00154 | 3.884854 | −0.00024 | −0.79765 |
CE | −0.000046 | −0.79362 | −0.00024 | −5.38672 |
T18 | 0.001015 | 1.4595230 | −0.00068 | −1.26005 |
P18 | 0.000029 | 2.241114 | 0.000223 | 22.643 |
H_P | −0.00725 | −0.82747 | 0.106683 | 15.77528 |
LP | −0.00361 | −1.0592 | 0.20175 | 76.73853 |
PR | 0.003641 | 0.896981 | 0.04277 | 13.64863 |
R2 | 0.001878 | 0.34516 | ||
Adjusted R2 | 0.001311 | 0.344788 |
GWR—2018 | GWR—2050 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | 1st_Qu. | Median | 3rd_Qu. | Max | Min | 1st_Qu. | Median | 3rd_Qu. | Max | |
Intercept | 2.64 × 103 | 2.64 × 103 | 2.64 × 103 | 2.64 × 103 | 0.2639 | 0.19251396 | 0.19251396 | 0.19251396 | 0.19251396 | 0.1925 |
PD | 4.24 | 4.24 | 4.24 | 4.24 | 0.0004 | −0.00470832 | −0.00470832 | −0.00470832 | −0.00470832 | −0.0047 |
CE | −3.59 × 10−1 | −3.59 × 10−1 | −3.59 × 10−1 | −3.59 × 10−1 | 0.0000 | −0.00024866 | −0.00024866 | −0.00024866 | −0.00024866 | −0.0002 |
T18 | 1.20 × 10 | 1.20 × 10 | 1.20 × 10 | 1.20 × 10 | 0.0012 | −0.00023412 | −0.00023412 | −0.00023412 | −0.00023412 | −0.0002 |
PR | 3.74 × 10 | 3.74 × 10 | 3.74 × 10 | 3.74 × 10 | 0.0037 | 0.08029601 | 0.08029601 | 0.08029602 | 0.08029602 | 0.0803 |
Bandwidth: 418 km | ||||||||||
R2 | 0.0004192298 | 0.04289 | ||||||||
AIC | 10662 | 8439 |
Variable | 2018 | 2050 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Sign (ha) | Negative Sign (ha) | Positive Sign (%) | Negative Sign (%) | 10% Significant Level (ha) | 10% Significant Level (%) | Positive Sign (ha) | Negative Sign (ha) | Positive Sign (%) | Negative Sign (%) | 10% Significant Level (ha) | 10% Significant Level (%) | |
PD | 1,363,879 | 1,208,138 | 53 | 46 | 360,132 | 14 | 0 | 2,572,017 | 0 | 100 | 2,462,645 | 95.75 |
CE | 1,129,161 | 1,442,856 | 43.9 | 56.09 | 254,648 | 9.9 | 1,399,564 | 1,172,453 | 54.41 | 45.58 | 1,284,909 | 49.96 |
T18 | 1,856,290 | 715,727 | 72.17 | 27.82 | 105,053 | 4.08 | 1,336,378 | 1,235,639 | 51.95 | 48.04 | 367,818 | 14.3 |
PR | 1,519,845 | 1,052,172 | 59.09 | 40.9 | 341,181 | 13.26 | 2,063,659 | 508,358 | 80.23 | 19.76 | 2,488,392 | 96.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrida, L.; Cerro, M.; Cucuzza, G.; Signorello, G.; De Salvo, M. Spatiotemporal Assessment of Habitat Quality in Sicily, Italy. Land 2025, 14, 243. https://doi.org/10.3390/land14020243
Giuffrida L, Cerro M, Cucuzza G, Signorello G, De Salvo M. Spatiotemporal Assessment of Habitat Quality in Sicily, Italy. Land. 2025; 14(2):243. https://doi.org/10.3390/land14020243
Chicago/Turabian StyleGiuffrida, Laura, Marika Cerro, Giuseppe Cucuzza, Giovanni Signorello, and Maria De Salvo. 2025. "Spatiotemporal Assessment of Habitat Quality in Sicily, Italy" Land 14, no. 2: 243. https://doi.org/10.3390/land14020243
APA StyleGiuffrida, L., Cerro, M., Cucuzza, G., Signorello, G., & De Salvo, M. (2025). Spatiotemporal Assessment of Habitat Quality in Sicily, Italy. Land, 14(2), 243. https://doi.org/10.3390/land14020243