Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Characteristics
2.2. Technical Arrangements for Data Collection and Processing
2.3. Substrates Properties
2.4. Measurement in Soils
2.5. Salinity Effects in Water Solutions and Soils
2.6. Measurements in Substrates
2.7. Statistical Tools for Performance Evaluation
3. Results and Discussion
3.1. Salinity Effects in Liquid Solutions
3.2. Soil and Substrate Specific Calibration for EC = 0.28 dS m−1
3.3. Salinity Effects in Soils
4. Conclusions
- For all soil samples and different ECw levels, soil-specific calibration was necessary for more accurate results, especially in high-salinity levels. The third-order manufacturer’s calibration equation did not accurately determine θ in cases of increasing soil salinity. The linear calibration procedure (Table 3 and Table 5), as evaluated with the RMSE, was the most effective method for all soil types for TEROS 10 compared with the other calibration methods. Cominelli’s calibration equation provided an improvement compared with the manufacturer’s cubic calibration equation.
- In liquids with increasing EC, there was an irregular behavior of TEROS 10 due to the strong effect of ECw, which was highly nonlinear with a reversed direction, from negative at small ECw to positive at large.
- An unusual phenomenon was observed in most soil samples, specifically at low and moderate salinity levels (from θm = 0 to θm = 0.20 cm3 cm−3). The values of εa were not affected by the increasing ECw of the samples, and the readings of TEROS 10 were higher for ECw = 0.28 than for ECw = 6 and 10 dS m−1. It must be highlighted that in sand and clay this phenomenon lasted until θm = 0.30 dS m−1. From θm = 0.25 cm3 cm−3 and beyond, there was a clear separation of the obtained values of εa, the increase of which followed the increasing ECw level.
- The CAL procedure seems to be the most effective calibration method for soilless porous media. A need for a specific calibration of the sensor device in substrates is necessary if the goal is the most accurate estimation of their moisture content.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inform. 2020, 17, 4324–4334. [Google Scholar] [CrossRef]
- Soulis, K.; Elmaloglou, S. Optimum soil water content sensors placement for surface drip irrigation scheduling in layered soils. Comput. Electron. Agric. 2018, 152, 1–8. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef]
- Dong, Y.; Miller, S.; Kelley, L. Performance evaluation of soil moisture sensors in coarse- and fine-textured michigan agricultural soils. Agriculture 2020, 10, 598. [Google Scholar] [CrossRef]
- Doungmanee, P. The nexus of agricultural water use and economic development level. Kasetsart J. Soc. Sci. 2016, 37, 38–45. [Google Scholar] [CrossRef]
- Hassoun, A.; Marvin, H.J.P.; Bouzembrak, Y.; Barba, F.J.; Castagnini, J.M.; Pallarés, N.; Rabail, R.; Aadil, R.M.; Bangar, S.P.; Bhat, R.; et al. Digital transformation in the agri-food industry: Recent applications and the role of the COVID-19 pandemic. Front. Sustain. Food Syst. 2023, 7, 1217813. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Ferre, P.A.; Topp, G.C. Time domain reflectometry. In Methods of Soil Analysis; Dane., J.H., Topp, G.C., Eds.; Part 4, Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002; pp. 434–446. [Google Scholar]
- Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor. Vadose Zone J. 2005, 4, 1070–1079. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P. Water content determination in mineral and organic porous media by ML2 theta probe. Irrig. Drain. 2008, 57, 435–449. [Google Scholar] [CrossRef]
- Topp, G.C.; Reynolds, W.D. Time domain reflectometry: A seminal technique for measuring mass and energy in soil. Soil Tillage Res. 1998, 47, 125–132. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K. Performance evaluation of a recently developed soil water content, dielectric permittivity, and bulk electrical conductivity electromagnetic sensor. Agric. Water Manag. 2019, 213, 568–579. [Google Scholar] [CrossRef]
- Nasta, P.; Coccia, F.; Lazzaro, U.; Bogena, H.R.; Huisman, J.A.; Sica, B.; Mazzitelli, C.; Vereecken, H.; Romano, N. Temperature-Corrected Calibration of GS3 and TEROS-12 Soil Water Content Sensors. Sensors 2024, 24, 952. [Google Scholar] [CrossRef]
- Wyseure, G.; Mojid, M.A.; Manzoor, A.M. Measurement of volumetric water content by TDR in saline soils. Eur. J. Soil Sci. 2005, 48, 347–354. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Casanova, J.; Pelletier, M.; Evett, S.; Baumhardt, R. Soil Permittivity Response to Bulk Electrical Conductivity for Selected Soil Water Sensors. Vadose Zone J. 2013, 12, 1–13. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; Paleologos, E.K. Dielectric Permittivity and Moisture Content. In Fundamentals of Geoenvironmental Engineering; Mohamed, A.-M.O., Paleologos, E.K., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; Chapter 16; pp. 581–637. [Google Scholar]
- Qi, Q.; Yang, H.; Zhou, Q.; Han, X.; Jia, Z.; Jiang, Y.; Chen, Z.; Hou, L.; Mei, S. Performance of Soil Moisture Sensors at Different Salinity Levels: Comparative Analysis and Calibration. Sensors 2024, 24, 6323. [Google Scholar] [CrossRef]
- Delta-T Devices. Available online: https://delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-version-2.1.pdf (accessed on 2 April 2024).
- Meter Group. Available online: https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf (accessed on 2 April 2024).
- Topp, G.C.; Parkin, G.W.; Ferre, P.A. Soil Water Content in Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.R., Eds.; Canadian Society of Soil Science: Vancouver, BC, Canada, 2008; pp. 939–961. [Google Scholar]
- Peranić, J.; Čeh, N.; Arbanas, Ζ. The Use of Soil Moisture and Pore-Water Pressure Sensors for the Interpretation of Landslide Behavior in Small-Scale Physical Models. Sensors 2022, 22, 7337. [Google Scholar] [CrossRef]
- Millán, S.; Montesinos, C.; Campillo, C. Evaluation of Different Commercial Sensors for the Development of Their Automatic Irrigation System. Sensors 2024, 24, 7468. [Google Scholar] [CrossRef] [PubMed]
- Cominelli, S.; Rivera, L.D.; Brown, W.G.; Ochsner, T.E.; Patrignani, A. Calibration of TEROS 10 and TEROS 12 electromagnetic soil moisture sensors. Soil Sci. Soc. Am. J. 2024, 88, 2104–2122. [Google Scholar] [CrossRef]
- Meter Group. User Guide for TEROS 10. Available online: https://publications.metergroup.com/Manuals/20788_TEROS10_Manual_Web.pdf (accessed on 2 April 2024).
- Fragkos, A.; Loukatos, D.; Kargas, G.; Arvanitis, K.G. Response of the TEROS 12 Soil Moisture Sensor under Different Soils and Variable Electrical Conductivity. Sensors 2024, 24, 2206. [Google Scholar] [CrossRef]
- Loukatos, D.; Fragkos, A.; Kargas, G.; Arvanitis, K.G. Implementation and Evaluation of a Low-Cost Measurement Platform over LoRa and Applicability for Soil Monitoring. Future Internet 2024, 16, 443. [Google Scholar] [CrossRef]
- Fragkos, A.; Loukatos, D.; Kargas, G.; Symeonaki, E.; Arvanitis, K.G. Assessment of the TEROS 10 and TEROS 12 sensors in soil moisture measurement. E3S Web Conf. 2024, 551, 03005. [Google Scholar] [CrossRef]
- peatman.eu. Available online: https://peatman.eu/neutralized-peat-for-landscaping-ptn-2-0/ (accessed on 2 April 2024).
- perlite-hellas.gr. Available online: https://perlite-hellas.gr/en/service/ (accessed on 2 April 2024).
- grodan.com. Available online: https://www.grodan.com/global/solutions/product-overview/vegetable-solutions/grodan-classic-my/ (accessed on 2 April 2024).
- Nurgul, K.; Ertan, Y.; Üstün, Ş.; Metin, T.; Melek, E.; Selda, O.; Raziye, K.; Hüsnü, Ü.; Halime, Ü. Chapter 5—Peat Use in Horticulture. In Peat; Topcuoğlu, B., Turan, M., Eds.; InTech: London, UK, 2018; Chapter 5; pp. 75–90. [Google Scholar]
- Markoska, V.; Spalevic, V.; Gulaboski, R. A research on the influence of porosity on perlite substrate and its interaction on porosity of two types of soil and peat substrate. Agric. For. 2018, 64, 15–29. [Google Scholar] [CrossRef]
- O’Kelly, B.C.; Sivakumar, V. Water Content Determinations for Peat and Other Organic Soils Using the Oven-Method. Dry. Technol. 2014, 32, 631–643. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Murdock, M.D. Measurement of soil content with a 50 MHz soil dielectric sensor. Soil Sci. Soc. Am. J. 2004, 68, 394–403. [Google Scholar]
- Hilhorst, M.A. A pore water conductivity sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. [Google Scholar] [CrossRef]
- Kargas, G.; Κerkides, P.; Seyfried, M.S. Response of Three Soil Water Sensors to Variable Solution Electrical Conductivity in Different Soils. Vadose Zone J. 2014, 13, 1–13. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Huisman, J.A.; Vrba, I.; Vereecken, H.; Bogena, H.R. Correction of temperature and electrical conductivity effects on dielectric permittivity measurements with ECH2O sensors. Vadose Zone J. 2011, 10, 582–593. [Google Scholar] [CrossRef]
- Cosh, M.H.; Ochsner, T.E.; McKee, L.; Dong, J.; Basara, J.B.; Evett, S.R.; Hatch, C.E.; Small, E.E.; Steele-Dunne, S.C.; Zreda, M.; et al. The Soil Moisture Active Passive Marena, Oklahoma, In Situ Sensor Testbed (SMAP-MOISST): Testbed Design and Evaluation of In Situ Sensors. Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
Soil Type | Clay | Silt | Sand | Dry Bulk Density |
---|---|---|---|---|
% | % | % | (g/cm3) | |
Sand | 100 | 1.66 ± 0.01 | ||
Sandy Loam | 16 | 11 | 73 | 1.24 ± 0.01 |
Loam | 19 | 32 | 49 | 1.23 ± 0.01 |
Clay | 48 | 12 | 40 | 1.13 ± 0.01 |
Sandy Clay Loam | 25 | 12 | 63 | 1.26 ± 0.01 |
Silty Clay Loam | 31 | 49 | 20 | 1.11 ± 0.01 |
Peat | 0.177 ± 0.01 | |||
Perlite | 0.084 ± 0.01 | |||
Stone Wool | 0.094 ± 0.01 |
Soil Type | b | a | R2 | RMSE (CAL) | RMSE (Manuf. CAL) |
---|---|---|---|---|---|
Sand | −0.213 | 0.174 | 0.964 | 0.022 | 0.061 |
Sandy Loam | −0.155 | 0.135 | 0.980 | 0.018 | 0.052 |
Loam | −0.118 | 0.127 | 0.905 | 0.040 | 0.060 |
Clay | −0.089 | 0.080 | 0.956 | 0.027 | 0.046 |
Silty Clay Loam | −0.129 | 0.124 | 0.954 | 0.028 | 0.047 |
Sandy Clay Loam | −0.102 | 0.094 | 0.965 | 0.024 | 0.033 |
Perlite | −0.070 | 0.091 | 0.923 | 0.028 | 0.058 |
Peat | −0.015 | 0.108 | 0.955 | 0.043 | 0.081 |
Stone Wool | -0.113 | 0.122 | 0.993 | 0.022 | 0.096 |
Substrate Type | b | a | R2 | RMSE (Manuf) | RMSE (Cominelli) | RMSE (CAL) | RMSE (Linear) |
---|---|---|---|---|---|---|---|
Sand | −5.66 × 10−1 | 5.56 × 10−4 | 0.981 | 0.061 | 0.063 | 0.022 | 0.018 |
Sandy Loam | −4.89 × 10−1 | 4.81 × 10−4 | 0.981 | 0.052 | 0.046 | 0.018 | 0.020 |
Loam | −4.87 × 10−1 | 4.92 × 10−4 | 0.974 | 0.060 | 0.060 | 0.040 | 0.024 |
Clay | −5.01 × 10−1 | 4.68 × 10−4 | 0.964 | 0.046 | 0.047 | 0.027 | 0.028 |
Silty Clay Loam | −4.83 × 10−1 | 4.76 × 10−4 | 0.987 | 0.047 | 0.044 | 0.028 | 0.017 |
Sandy Clay Loam | −4.08 × 10−1 | 3.92 × 10−4 | 0.962 | 0.033 | 0.027 | 0.024 | 0.028 |
Perlite | −2.63 × 10−1 | 3.19 × 10−4 | 0.887 | 0.058 | - | 0.028 | 0.040 |
Peat | −4.74 × 10−1 | 5.29 × 10−4 | 0.961 | 0.081 | - | 0.043 | 0.044 |
Stone Wool | −7.37 × 10−1 | 6.70 × 10−4 | 0.963 | 0.096 | - | 0.022 | 0.053 |
Soil Type | ECw (dS m−1) | b | a | R2 |
---|---|---|---|---|
0.28 | −0.213 | 0.174 | 0.964 | |
Sand | 6 | −0.209 | 0.197 | 0.828 |
10 | −0.104 | 0.132 | 0.875 | |
0.28 | −0.155 | 0.135 | 0.980 | |
Sandy Loam | 6 | −0.122 | 0.124 | 0.951 |
10 | −0.108 | 0.114 | 0.953 | |
0.28 | −0.118 | 0.127 | 0.905 | |
Loam | 6 | −0.101 | 0.106 | 0.956 |
10 | −0.033 | 0.089 | 0.803 | |
0.28 | −0.089 | 0.080 | 0.956 | |
Clay | 6 | −0.067 | 0.073 | 0.935 |
10 | −0.061 | 0.073 | 0.935 |
Soil Type | ECw (dS m−1) | b | a | R2 |
---|---|---|---|---|
0.28 | −5.66 × 10−1 | 5.56 × 10−4 | 0.981 | |
Sand | 6 | −6.00 × 10−1 | 6.22 × 10−4 | 0.903 |
10 | −4.37 × 10−1 | 4.77 × 10−4 | 0.933 | |
0.28 | −4.89 × 10−1 | 4.81 × 10−4 | 0.981 | |
Sandy Loam | 6 | −4.51 × 10−1 | 4.60 × 10−4 | 0.976 |
10 | −4.28 × 10−1 | 4.36 × 10−4 | 0.975 | |
0.28 | −4.87 × 10−1 | 4.92 × 10−4 | 0.974 | |
Loam | 6 | −4.20 × 10−1 | 4.22 × 10−4 | 0.980 |
10 | −3.52 × 10−1 | 3.93 × 10−4 | 0.896 | |
0.28 | −5.07 × 10−1 | 4.68 × 10−4 | 0.965 | |
Clay | 6 | −4.09 × 10−1 | 3.72 × 10−4 | 0.963 |
10 | −4.12 × 10−1 | 3.79 × 10−4 | 0.981 |
Manufacturer Calibration | Cominelli’s Equation | CAL | Linear Calibration | ||||||
---|---|---|---|---|---|---|---|---|---|
Soil type | ECw (dS m−1) | RMSE | Average | RMSE | Average | RMSE | Average | RMSE | Average |
0.28 | 0.061 | 0.063 | 0.022 | 0.018 | |||||
Sand | 6 | 0.094 | 0.081 | 0.102 | 0.084 | 0.047 | 0.038 | 0.041 | 0.032 |
10 | 0.088 | 0.086 | 0.046 | 0.038 | |||||
Sandy Loam | 0.28 | 0.052 | 0.046 | 0.018 | 0.020 | ||||
6 | 0.055 | 0.051 | 0.051 | 0.046 | 0.028 | 0.025 | 0.023 | 0.022 | |
10 | 0.046 | 0.041 | 0.028 | 0.023 | |||||
0.28 | 0.060 | 0.060 | 0.040 | 0.024 | |||||
Loam | 6 | 0.030 | 0.050 | 0.029 | 0.051 | 0.027 | 0.041 | 0.021 | 0.031 |
10 | 0.060 | 0.064 | 0.057 | 0.047 | |||||
0.28 | 0.046 | 0.047 | 0.027 | 0.028 | |||||
Clay | 6 | 0.056 | 0.050 | 0.052 | 0.047 | 0.033 | 0.031 | 0.028 | 0.025 |
10 | 0.048 | 0.041 | 0.033 | 0.020 | |||||
Silty Clay Loam | 0.28 | 0.047 | 0.044 | 0.028 | 0.017 | ||||
Sandy Clay Loam | 0.28 | 0.033 | 0.027 | 0.024 | 0.028 | ||||
Peat | 0.28 | 0.081 | - | 0.043 | 0.044 | ||||
Perlite | 0.28 | 0.058 | - | 0.028 | 0.040 | ||||
Stone Wool | 0.28 | 0.096 | - | 0.022 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkos, A.; Loukatos, D.; Kargas, G.; Arvanitis, K.G. Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings. Land 2025, 14, 242. https://doi.org/10.3390/land14020242
Fragkos A, Loukatos D, Kargas G, Arvanitis KG. Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings. Land. 2025; 14(2):242. https://doi.org/10.3390/land14020242
Chicago/Turabian StyleFragkos, Athanasios, Dimitrios Loukatos, Georgios Kargas, and Konstantinos G. Arvanitis. 2025. "Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings" Land 14, no. 2: 242. https://doi.org/10.3390/land14020242
APA StyleFragkos, A., Loukatos, D., Kargas, G., & Arvanitis, K. G. (2025). Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings. Land, 14(2), 242. https://doi.org/10.3390/land14020242