Comprehensive Comparative Analysis and Innovative Exploration of Green View Index Calculation Methods
Abstract
:1. Introduction
2. Literature Review
2.1. Exploring the Concept of GVI
2.2. Current Status of the GVI Planning and Application
3. Overview of Sampling Methods
3.1. Overview of Existing Sampling Methods and Applications
- A.
- Four-quadrant view method
- B.
- Six-quadrant View Method
- C.
- Eighteen-quadrant View Method
- D.
- Panoramic View Method
- E.
- Fisheye View Method
- F.
- Pedestrian View Method
- G.
- Comparative Analysis of Existing Sampling Methods
3.2. Novel Sampling Method: Three-Quadrant View Method
- Reduction in computational complexity: while conventional methods require the processing of numerous images, this method requires only three images, thereby significantly decreasing the computational burden.
- Alignment with the human visual perspective: the 120° field of view closely mirrors the natural sightline of the human eye, which makes the results more relevant and applicable to real-world scenarios [72].
4. Methodology
4.1. Research Framework
4.2. Data Acquisition
4.3. Sampling Methods
4.4. GVI Extraction
4.5. GVI Calculation
5. Results
5.1. Visual Analysis
5.2. Descriptive Statistics
5.3. Difference Analysis
5.4. Correlation Analysis
6. Construction and Evaluation of the “Green View Circle” Model Based on Optimized Sampling
6.1. Problem Statement
- Test Location: Longitude 36.578949; latitude 140.61494869.
- Experimental Groups:
- Group A: Vertical angle of 60°; horizontal angle of 120°.
- Group B: Vertical angle of 60°; horizontal angle of 90°.
- Group C: Vertical angle of 60°; horizontal angle of 60°.
- Sampling Method: Data were collected from 360 distinct initial sampling angles ranging from 0° (true north) to 360°, resulting in 360 street view images and corresponding GVI calculations.
- Calculation Method: The GVI was computed for each group using their respective viewing methods. Group A produced GVI values for 120 different initial angles, Group B for 90 angles, and Group C for 60 angles.
6.2. Model Overview
6.3. Model Construction and Formula Derivation
6.4. Evaluation of the “Green View Circle” Model
- The GVI values vary across different directions. Regardless of the initial sampling angle selected for traditional GVI calculation, the GVI value cannot represent the actual greening condition at the site, nor can it provide spatial information on the greening around the sampling point based on the calculated values.
- Due to the overlapping viewing angles between adjacent points, the GVC presents an irregular shape, similar to a curve, with no points suddenly increasing or decreasing in size.
- As the road progresses from southwest to northeast, the GVC edge is closer to the outer side, indicating denser vegetation in the northeastern direction. Conversely, vegetation is sparse in the southwestern direction of the sampling point.
- Along the road’s normal direction, the GVC curve is closer to the outer side of the circle, indicating abundant vegetation on both sides of the road. However, as the curve deviates slightly from the normal direction, it sharply contracts inward, indicating that the dense vegetation in the normal direction is farther from the sampling point and not related to the vegetation along the road.
6.5. Advantages and Disadvantages of the Model
- High Accuracy: Subdividing the viewing angles at observation points allows for the individual sampling of each angle, significantly enhancing the precision of GVI calculations, particularly in heterogeneous environments.
- Broad Applicability: This method is particularly well-suited for urban areas with complex vegetation patterns, as it accurately represents greenery from various perspectives and provides a more comprehensive dataset for urban greening assessments.
- Result Visualization: Visualization techniques, such as radar charts, help present the GVI distribution and variation across different angles, improving the interpretability and dissemination of the research findings.
- Lack of established evaluation standards: Since the GVC concept introduced in this study is novel and has not been explored in previous research, its practical application may be challenging due to the absence of established evaluation standards.
- Increased Computational Complexity: Unlike traditional methods, the GVC method involves the calculation of polygon areas, leading to a more complex computation process that may not be suitable for real-time analysis.
7. Discussion
7.1. Comparison and Analysis of the Application of Different Sampling Methods
7.2. Current Challenges in GVI Research
7.3. GVC Model Application Scenarios
8. Conclusions
8.1. Key Findings
8.2. Research Limitations
8.3. Future Research Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aoki, Y. Relationship between perceived greenery and width of visual fields. J. Jpn. Inst. Landsc. Arch. 1987, 51, 1–10. [Google Scholar] [CrossRef]
- Toikka, A.; Willberg, E.; Mäkinen, V.; Toivonen, T.; Oksanen, J. The green view dataset for the capital of Finland, Helsinki. Data Brief 2020, 30, 105601. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, Y.; Zhao, J. How green are the streets within the sixth ring road of Beijing? An analysis based on tencent street view pictures and the green view index. Int. J. Environ. Res. Public Health 2018, 15, 1367. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Miao, S.; Xiao, Y. Exploring the spatial trade-off effects of green space on older people’s physical inactivity: Evidence from Shanghai. Landsc. Urban Plan. 2024, 251, 105155. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Gou, A. Numerical characteristics and spatial distribution of panoramic Street Green View index based on SegNet semantic segmentation in Savannah. Urban For. Urban Green. 2022, 69, 127488. [Google Scholar] [CrossRef]
- Chen, S.; He, P.; Yu, B.; Wei, D.; Chen, Y. The challenge of noise pollution in high-density urban areas: Relationship between 2D/3D urban morphology and noise perception. Build. Environ. 2024, 253, 111313. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Q.; Huang, B. Street trees and crime: What characteristics of trees and streetscapes matter. Urban For. Urban Green. 2021, 65, 127366. [Google Scholar] [CrossRef]
- Huang, D.; Kyttä, M.; Kajosaari, A.; Xie, X.; Zhang, J. One approach does not fit all settings: Exploring the effects of natural and built environments on running pleasantness across places. Build. Environ. 2023, 245, 110961. [Google Scholar] [CrossRef]
- Chen, K.; Tian, M.; Zhang, J.; Xu, X.; Yuan, L. Evaluating the seasonal effects of building form and street view indicators on street-level land surface temperature using random forest regression. Build. Environ. 2023, 245, 110884. [Google Scholar] [CrossRef]
- Dang, H.; Li, J. The integration of urban streetscapes provides the possibility to fully quantify the ecological landscape of urban green spaces: A case study of Xi’an city. Ecol. Indic. 2021, 133, 108388. [Google Scholar] [CrossRef]
- Wang, B.; Xu, T.; Gao, H.; Ta, N.; Chai, Y.; Wu, J. Can daily mobility alleviate green inequality from living and working environments? Landsc. Urban Plan. 2021, 214, 104179. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, L.; Su, Y.; Guo, Q.; Hu, T.; Bao, H.D.X.; Luo, J.; Wu, S.; Xu, Q.; Wang, Z.; et al. Disentangling the effects of the surrounding environment on street-side greenery: Evidence from Hangzhou. Ecol. Indic. 2022, 143, 109153. [Google Scholar] [CrossRef]
- Tong, M.; She, J.; Tan, J.; Li, M.; Ge, R.; Gao, Y. Evaluating Street Greenery by Multiple Indicators Using Street-Level Imagery and Satellite Images: A Case Study in Nanjing, China. Forests 2020, 11, 1347. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Biljecki, F.; Zhao, T.; Liang, X.; Hou, Y. Sensitivity of measuring the urban form and greenery using street-level imagery: A comparative study of approaches and visual perspectives. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103385. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Y.; Yang, G.; Huang, Y.; Chen, Y. Analysing gender differences in the perceived safety from street view imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103537. [Google Scholar] [CrossRef]
- View. Available online: https://dictionary.cambridge.org/us/dictionary/english/view (accessed on 21 January 2025).
- Regus-Leidig, H.; Brandstätter, J.H. Structure and function of a complex sensory synapse. Acta Physiol. 2012, 204, 479–486. [Google Scholar] [CrossRef]
- Livingstone, M. Vision and Art: The Biology of Seeing. Nature 2002, 418, 918–919. [Google Scholar] [CrossRef]
- Smith, A. JOHANNES KEPLER, Optics. Paralipomena to Witelo & Optical Part of Astronomy. English translation by William H. Donahue. Sante Fe: Green Lion Press, 2000. Pp. xv+459. ISBN 1-888009-12-8. $55.00. Br. J. Hist. Sci. 2002, 35, 213–250. [Google Scholar] [CrossRef]
- Tulving, E. Episodic Memory and Autonoesis: Uniquely Human? In The Missing Link in Cognition: Origins of self-Reflective Consciousness; Oxford University Press: Oxford, UK, 2005; pp. 3–56. [Google Scholar] [CrossRef]
- Martins, D.M.; Manda, J.M.; Goard, M.J.; Parker, P.R.L. Building egocentric models of local space from retinal input. Curr. Biol. 2024, 34, R1185–R1202. [Google Scholar] [CrossRef] [PubMed]
- Dey, A. Perceptual Characteristics of Visualizations for Occluded Objects in Handheld Augmented Reality. Ph.D. Thesis, University of South Australia, Adelaide, Australia, 2013. [Google Scholar]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Bourke, P.D. Synthetic Stereoscopic Panoramic Images. In Proceedings of the International Conference on Virtual Systems and MultiMedia, Xi’an, China, 18–20 October 2006. [Google Scholar]
- Gilge, C.R. Google Street View and the Image as Experience. GeoHumanities 2016, 2, 469–484. [Google Scholar] [CrossRef]
- Li, L.; Yao, J.; Xie, R.; Xia, M.; Zhang, W. A Unified Framework for Street-View Panorama Stitching. Sensors 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Museum of GIS Technology. Available online: http://mogist.kkc.co.jp/word/40ed3667-af74-4cc0-b89a-546e02f34f1f.html (accessed on 10 December 2024).
- Kyoto City: “Kyoto City Green Master Plan” [2010–2025]. Available online: https://www.city.kyoto.lg.jp/kensetu/page/0000077122.html (accessed on 10 December 2024).
- New Osaka City Green Master Plan Formulated (…Master Plan of> Afforestation >Osaka City Green). Available online: https://www.city.osaka.lg.jp/kensetsu/page/0000239835.html (accessed on 10 December 2024).
- Shinjuku City Green Master Plan: Shinjuku City. Available online: https://www.city.shinjuku.lg.jp/seikatsu/file14_04_00001.html (accessed on 10 December 2024).
- Detailed Control Plan for the Capital Functional Core Area (Block Level) (2018–2035)_Municipal Detailed Plan_Beijing Municipal Planning and Natural Resources Commission. Available online: https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/ghcg/xxgh/sj/202008/t20200829_1993379.html (accessed on 10 December 2024).
- DB11/T 1877-2021; Technical Specification of Ecological and Environmental Quality Evaluation. Beijing Municipal Administration for Market Regulation: Beijing, China, 2021.
- Notice of the General Office of the Guangzhou Municipal People’s Government on the issuance of the Guangzhou Green Space System Plan (2021–2035). Available online: https://www.gz.gov.cn/gkmlpt/content/9/9224/post_9224694.html#12624 (accessed on 10 December 2024).
- Notice of the Shenzhen Municipal People’s Government on Issuing the Shenzhen Park City Construction Master Plan and Three-Year Action Plan (2022–2024). Available online: https://www.sz.gov.cn/zfgb/2023/gb1272/content/post_10389162.html (accessed on 10 December 2024).
- Seoul Solution. Available online: https://www.seoulsolution.kr/en/content/2030-seoul-plan (accessed on 10 December 2024).
- Ki, D.; Kim, S.; Lee, S. Analysis of the Green Equity Using Google Street View and Deep Learning in Seoul, Korea: Focused on the Comparison between NDVI and Street Image-Based Green Calculation Method. J. Korea Plan. Assoc. 2021, 56, 194–211. [Google Scholar] [CrossRef]
- Google Maps Platform|Google for Developers. Available online: https://developers.google.com/maps (accessed on 16 June 2024).
- Treepedia:: MIT Senseable City Lab. Available online: http://senseable.mit.edu/treepedia (accessed on 10 December 2024).
- Hu, K.; Zhang, Z.; Li, Y.; Wang, S.; Ye, T.; Song, J.; Zhang, Y.; Wei, J.; Cheng, J.; Shen, Y. Urban overall and visible greenness and diabetes among older adults in China. Landsc. Urban Plan. 2023, 240, 104881. [Google Scholar] [CrossRef]
- Pan, J.; Hu, K.; Yu, X.; Li, W.; Shen, Y.; Song, Z.; Guo, Y.; Yang, M.; Hu, F.; Xia, Q. Beneficial associations between outdoor visible greenness at the workplace and metabolic syndrome in Chinese adults. Environ. Int. 2024, 183, 108327. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Sun, Y.; Tao, P.; Kuang, X. Does green space really matter for residents’ obesity? A new perspective from Baidu street view. Front. Public Health 2020, 8, 332. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Y.; Wang, R.; Qian, Z.; Knibbs, L.D.; Jalaludin, B.; Schootman, M.; McMillin, S.E.; Howard, S.W.; Lin, L.-Z. Associations between trees and grass presence with childhood asthma prevalence using deep learning image segmentation and a novel green view index. Environ. Pollut. 2021, 286, 117582. [Google Scholar] [CrossRef]
- Yu, H.; Hu, L.-W.; Zhou, Y.; Qian, Z.; Schootman, M.; LeBaige, M.H.; Zhou, Y.; Xiong, S.; Shen, X.; Lin, L.-Z. Association between eye-level greenness and lung function in urban Chinese children. Environ. Res. 2021, 202, 111641. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Liu, Q.; Li, G. Establishing a reliable assessment of the green view index based on image classification techniques, estimation, and a hypothesis testing route. Land 2023, 12, 1030. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, G.; Chang, C.; Yuan, X.; Heng, F. Bgvi: A new index to estimate street-side greenery using baidu street view image. Forests 2018, 10, 3. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, H. Spatial differentiation characteristics and influencing factors of the green view index in urban areas based on street view images: A case study of Futian District, Shenzhen, China. Urban For. Urban Green. 2024, 93, 128219. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Yang, W.; Hu, J. Exploring nonlinear effects of built environment on jogging behavior using random forest. Appl. Geogr. 2023, 156, 102990. [Google Scholar] [CrossRef]
- Yang, W.; Chen, H.; Li, J.; Guo, W.; Fei, J.; Li, Y.; He, J. How does visual environment affect outdoor jogging behavior? Insights from large-scale city images and GPS trajectories. Urban For. Urban Green. 2024, 95, 128291. [Google Scholar] [CrossRef]
- Yang, W.; Hu, J.; Liu, Y.; Guo, W. Examining the influence of neighborhood and street-level built environment on fitness jogging in Chengdu, China: A massive GPS trajectory data analysis. J. Transp. Geogr. 2023, 108, 103575. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, L.; Qiao, P.; He, J.; Su, H. Socioecological justice in urban street greenery based on green view index-A case study within the Fuzhou Third Ring Road. Urban For. Urban Green. 2024, 95, 128313. [Google Scholar] [CrossRef]
- Yutian, L.; Running, C.; Bin, C.; Jiayu, W. Inclusive green environment for all? An investigation of spatial access equity of urban green space and associated socioeconomic drivers in China. Landsc. Urban Plan. 2024, 241, 104926. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, A. Analyzing green view index and green view index best path using Google street view and deep learning. J. Comput. Des. Eng. 2022, 9, 2010–2023. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, B.; Yuan, L. Analyzing the effects of nature exposure on perceived satisfaction with running routes: An activity path-based measure approach. Urban For. Urban Green. 2022, 68, 127480. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, H.; Yang, S.; Tian, P.; Ma, X.; Tang, Z.; Wang, H.; Wang, W. Characterizing street trees in three metropolises of central China by using Street View data: From individual trees to landscape mapping. Ecol. Inform. 2024, 80, 102480. [Google Scholar] [CrossRef]
- Qi, L.; Hu, Y.; Bu, R.; Xiong, Z.; Li, B.; Zhang, C.; Liu, H.; Li, C. Spatial-temporal patterns and influencing factors of the Building Green View Index: A new approach for quantifying 3D urban greenery visibility. Sustain. Cities Soc. 2024, 111, 105518. [Google Scholar] [CrossRef]
- Tang, J.-H.; Huang, Y.-J.; Lee, P.-H.; Lee, Y.-T.; Wang, Y.-C.; Chan, T.-C. Associations between community green view index and fine particulate matter from Airboxes. Sci. Total Environ. 2024, 921, 171213. [Google Scholar] [CrossRef]
- Puppala, H.; Tamvada, J.P.; Kim, B.; Peddinti, P.R. Enhanced green view index. MethodsX 2022, 9, 101824. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, C.; Li, F. Quantifying the green view indicator for assessing urban greening quality: An analysis based on Internet-crawling street view data. Ecol. Indic. 2020, 113, 106192. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Deng, Z.; Fan, X.; Xu, Z.; Kang, X.; Pan, K.; Guo, Z. Research on Green View Index of Urban Roads Based on Street View Image Recognition: A Case Study of Changsha Downtown Areas. Sustainability 2022, 14, 16063. [Google Scholar] [CrossRef]
- Tsai, V.J.; Chang, C.T. Three-dimensional positioning from Google street view panoramas. IET Image Process. 2013, 7, 229–239. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Z. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Li, L.; Wang, X.; Cheng, J.; Gao, C.; Ling, J. An estimation method for multidimensional urban street walkability based on panoramic semantic segmentation and domain adaptation. Eng. Appl. Artif. Intell. 2024, 136, 108905. [Google Scholar] [CrossRef]
- Huang, C.; Hu, T.; Duan, Y.; Li, Q.; Chen, N.; Wang, Q.; Zhou, M.; Rao, P. Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning. Build. Environ. 2022, 219, 109173. [Google Scholar] [CrossRef]
- Hu, Y.; Qian, F.; Yan, H.; Middel, A.; Wu, R.; Zhu, M.; Han, Q.; Zhao, K.; Wang, H.; Shao, F. Which street is hotter? Street morphology may hold clues-thermal environment mapping based on street view imagery. Build. Environ. 2024, 262, 111838. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, C.; Ma, B.; Liu, N.; Li, W. Coupling effects of building-vegetation-land on seasonal land surface temperature on street-level: A study from a campus in Beijing. Build. Environ. 2024, 262, 111790. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Basu, R.; Li, X.; Kalvo, R. A big data approach to understanding pedestrian route choice preferences: Evidence from San Francisco. Travel Behav. Soc. 2021, 25, 41–51. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, Z.; Liu, X.; Li, W.; Li, X.; Xu, X.; Huang, X. Subjective or objective measures of street environment, which are more effective in explaining housing prices? Landsc. Urban Plan. 2022, 221, 104358. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, C.; Feng, H.; Niu, Y. Research on the Exploration and Algorithm on Dynamic Visible Green Index Model. Urban Dev. Stud. 2022, 29, 22–28. [Google Scholar]
- Human Eye. Available online: https://en.wikipedia.org/w/index.php?title=Human_eye&oldid=1270413881 (accessed on 22 January 2025).
- Hitachi, Ibaraki. Available online: https://en.wikipedia.org/w/index.php?title=Hitachi,_Ibaraki&oldid=1267581805 (accessed on 22 January 2025).
- OpenStreetMap. Available online: https://en.wikipedia.org/w/index.php?title=OpenStreetMap&oldid=1240279893 (accessed on 4 May 2024).
- Kim, J.H.; Lee, S.; Hipp, J.R.; Ki, D. Decoding urban landscapes: Google street view and measurement sensitivity. Comput. Environ. Urban Syst. 2021, 88, 101626. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; SegNet, R.C. A deep convolutional encoder-decoder architecture for image segmentation. arXiv 2015. [Google Scholar] [CrossRef]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef]
- Chen, F.-C. Back-propagation neural networks for nonlinear self-tuning adaptive control. IEEE Control Syst. Mag. 1990, 10, 44–48. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Recent Research|Urban Research Department Urban Development Laboratory. Available online: https://www.nilim.go.jp/lab/jeg/current-fields.html (accessed on 10 December 2024).
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. arXiv 2019, arXiv:1905.02244. [Google Scholar]
- de la Iglesia Martinez, A.; Labib, S.M. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res. 2023, 220, 115155. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Wang, Z.; Li, D.; Wang, X.; Jian, Y. The relationships between 2D and 3D green index altered by spatial attributes at high spatial resolution. Urban For. Urban Green. 2024, 101, 128540. [Google Scholar] [CrossRef]
- Su, L.; Chen, W.; Zhou, Y.; Fan, L.; Li, J. Exploring Urban Street Green Perception from the Perspective of Combining GVI and NDVI: A Case Study of Zhongshan City, Guangdong Province. bioRxiv 2023. [Google Scholar] [CrossRef]
- Hao, X.; Long, Y. Street Greenery: A New Indicator for Evaluating Walkability. Shanghai Urban Plan. Rev. 2017, 1, 32–36. [Google Scholar]
Class | Number of Sample Points | Class | Number of Sample Points |
---|---|---|---|
motorway | 10 | residential | 10 |
Motorway link | 10 | service | 10 |
trunk | 10 | track | 10 |
Trunk link | 10 | cycleway | 10 |
primary | 10 | pedestrian | 10 |
secondary | 10 | path | 10 |
Secondary link | 10 | steps | 10 |
tertiary | 10 | unknown | 10 |
Tertiary link | 10 | footway | 10 |
unclassified | 10 | SUM | 190 |
NO. | Sampling Method | Horizontal Coverage Angle | Vertical Coverage Angle | Horizontal Angle | Number of Captured Images |
---|---|---|---|---|---|
1 | Three- quadrant view method | 120 | 60 | 0 | 3 |
2 | Four-quadrant view method | 90 | 60 | 0 | 4 |
3 | Six-quadrant view method | 60 | 60 | 0 | 6 |
4 | Eighteen-quadrant view method | 60 | 60 | 0 | 6 |
60 | 60 | 45 | 6 | ||
60 | 60 | −45 | 6 | ||
5 | Panoramic view method | 360 | 90 | 0 | 1 |
6 | Fisheye view method | 1 | |||
7 | Pedestrian view method | 120 | 60 | 0 | 1 |
Three-Quadrant View Method | Four-Quadrant View Method | Six-Quadrant View Method | Eighteen-Quadrant View Method | Panoramic View Method | Fisheye View Method | Pedestrian View Method | |
---|---|---|---|---|---|---|---|
motorway | 31.84 | 34.81 | 35.60 | 18.80 | 25.99 | 42.68 | 27.94 |
motorway link | 29.69 | 32.58 | 33.31 | 15.63 | 24.66 | 42.84 | 28.64 |
trunk | 22.59 | 22.96 | 23.98 | 21.59 | 18.56 | 32.67 | 22.17 |
trunk link | 6.16 | 5.48 | 5.20 | 9.28 | 4.33 | 12.80 | 10.10 |
primary | 42.70 | 45.55 | 45.48 | 24.73 | 35.77 | 52.20 | 41.14 |
secondary | 28.48 | 28.59 | 27.98 | 24.28 | 23.62 | 31.88 | 24.88 |
secondary link | 33.05 | 32.36 | 31.73 | 31.93 | 31.12 | 26.17 | 30.01 |
tertiary | 25.96 | 27.81 | 27.49 | 20.61 | 21.41 | 33.41 | 27.94 |
tertiary link | 18.20 | 19.47 | 19.55 | 13.05 | 14.67 | 27.43 | 20.25 |
unclassified | 36.07 | 37.92 | 39.55 | 24.80 | 30.60 | 46.23 | 34.13 |
residential | 25.22 | 26.00 | 25.52 | 18.34 | 19.25 | 30.52 | 25.35 |
service | 29.17 | 31.25 | 31.22 | 20.26 | 25.85 | 37.55 | 29.83 |
track | 39.10 | 38.69 | 37.73 | 25.41 | 37.60 | 44.16 | 37.76 |
cycleway | 18.65 | 18.24 | 16.89 | 11.30 | 18.28 | 29.82 | 28.09 |
pedestrian | 19.81 | 19.68 | 19.64 | 19.96 | 12.40 | 15.54 | 21.05 |
path | 57.04 | 59.29 | 59.99 | 38.06 | 50.98 | 58.06 | 52.49 |
steps | 36.54 | 37.11 | 37.50 | 28.32 | 31.47 | 37.91 | 27.49 |
unknown | 30.04 | 32.59 | 31.63 | 20.65 | 25.64 | 37.71 | 25.20 |
footway | 33.87 | 36.64 | 37.49 | 22.80 | 29.08 | 42.66 | 36.75 |
Value | Minimum | Maximum | Mean | Standard Deviation | |
---|---|---|---|---|---|
Three-quadrant view method | 19 | 6.164 | 57.037 | 29.69 | 10.85 |
Four-quadrant view method | 19 | 5.484 | 59.293 | 30.90 | 11.52 |
Six-quadrant view method | 19 | 5.199 | 59.989 | 30.92 | 11.80 |
Eighteen-quadrant view method | 19 | 9.282 | 38.059 | 21.57 | 6.90 |
Panoramic view method | 19 | 4.327 | 50.984 | 25.33 | 10.29 |
Fisheye view method | 19 | 12.800 | 58.060 | 35.91 | 11.29 |
Pedestrian view method | 19 | 10.096 | 52.486 | 29.01 | 9.00 |
Sum of Squares | Degrees of Freedom | Mean Square | F-Statistic | p-Value | |
---|---|---|---|---|---|
Between groups | 2358.592 | 6 | 393.099 | 3.661 | 0.002 |
Within groups | 13,528.047 | 126 | 107.365 |
(I) Method | (J) Method | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
1 | 2 | −1.202555 | 3.361789 | 1 | −11.27628 | 8.87117 |
3 | −1.225575 | 3.361789 | 1 | −11.29930 | 8.84815 | |
4 | 8.124892 | 3.361789 | 0.200 | −1.94883 | 18.19861 | |
5 | 4.362664 | 3.361789 | 0.852 | −5.71106 | 14.43638 | |
6 | −6.213324 | 3.361789 | 0.518 | −16.28704 | 3.86040 | |
7 | 0.683932 | 3.361789 | 1 | −9.38979 | 10.75765 | |
2 | 1 | 1.202555 | 3.361789 | 1 | −8.87117 | 11.27628 |
3 | −0.023020 | 3.361789 | 1 | −10.09674 | 10.05070 | |
4 | 9.327447 | 3.361789 | 0.089 | −0.74627 | 19.40117 | |
5 | 5.565219 | 3.361789 | 0.647 | −4.50850 | 15.63894 | |
6 | −5.010769 | 3.361789 | 0.750 | −15.08449 | 5.06295 | |
7 | 1.886487 | 3.361789 | 0.998 | −8.18723 | 11.96021 | |
3 | 1 | 1.225575 | 3.361789 | 1 | −8.84815 | 11.29930 |
2 | 0.023020 | 3.361789 | 1 | −10.0507 | 10.09674 | |
4 | 9.350467 | 3.361789 | 0.088 | −0.72325 | 19.42419 | |
5 | 5.588238 | 3.361789 | 0.642 | −4.48548 | 15.66196 | |
6 | −4.987749 | 3.361789 | 0.754 | −15.06147 | 5.08597 | |
7 | 1.909507 | 3.361789 | 0.998 | −8.16421 | 11.98323 | |
4 | 1 | −8.124892 | 3.361789 | 0.200 | −18.19861 | 1.94883 |
2 | −9.327447 | 3.361789 | 0.089 | −19.40117 | 0.74627 | |
3 | −9.350467 | 3.361789 | 0.088 | −19.42419 | 0.72325 | |
5 | −3.762229 | 3.361789 | 0.921 | −13.83595 | 6.31149 | |
6 | −14.338216 * | 3.361789 | 0.001 | −24.41194 | −4.26450 | |
7 | −7.440960 | 3.361789 | 0.296 | −17.51468 | 2.63276 | |
5 | 1 | −4.362664 | 3.361789 | 0.852 | −14.43638 | 5.71106 |
2 | −5.565219 | 3.361789 | 0.647 | −15.63894 | 4.50850 | |
3 | −5.588238 | 3.361789 | 0.642 | −15.66196 | 4.48548 | |
4 | 3.762229 | 3.361789 | 0.921 | −6.31149 | 13.83595 | |
6 | −10.575988 * | 3.361789 | 0.033 | −20.64971 | −0.50227 | |
7 | −3.678731 | 3.361789 | 0.929 | −13.75245 | 6.39499 | |
6 | 1 | 6.213324 | 3.361789 | 0.518 | −3.86040 | 16.28704 |
2 | 5.010769 | 3.361789 | 0.750 | −5.06295 | 15.08449 | |
3 | 4.987749 | 3.361789 | 0.754 | −5.08597 | 15.06147 | |
4 | 14.338216 * | 3.361789 | 0.001 | 4.26450 | 24.41194 | |
5 | 10.575988 * | 3.361789 | 0.033 | 0.50227 | 20.64971 | |
7 | 6.8972560 | 3.361789 | 0.388 | −3.17646 | 16.97098 | |
7 | 1 | −0.683932 | 3.361789 | 1 | −10.75765 | 9.38979 |
2 | −1.886487 | 3.361789 | 0.998 | −11.96021 | 8.18723 | |
3 | −1.909507 | 3.361789 | 0.998 | −11.98323 | 8.16421 | |
4 | 7.440960 | 3.361789 | 0.296 | −2.63276 | 17.51468 | |
5 | 3.678731 | 3.361789 | 0.929 | −6.39499 | 13.75245 | |
6 | −6.897256 | 3.361789 | 0.388 | −16.97098 | 3.17646 |
Three-Quadrant View Method | Four-Quadrant View Method | Six-Quadrant View Method | Eighteen-Quadrant View Method | Panoramic View Method | Fisheye View Method | Pedestrian View Method | |
---|---|---|---|---|---|---|---|
Three-quadrant view method | 1 | 0.995 ** | 0.990 ** | 0.861 ** | 0.985 ** | 0.887 ** | 0.936 ** |
Four-quadrant view method | 0.995 ** | 1 | 0.998 ** | 0.823 ** | 0.972 ** | 0.915 ** | 0.933 ** |
Six-quadrant view method | 0.990 ** | 0.998 ** | 1 | 0.819 ** | 0.963 ** | 0.919 ** | 0.925 ** |
Eighteen-quadrant view method | 0.861 ** | 0.823 ** | 0.819 ** | 1 | 0.852 ** | 0.570 * | 0.737 ** |
Panoramic view method | 0.985 ** | 0.972 ** | 0.963 ** | 0.852 ** | 1 | 0.875 ** | 0.941 ** |
Fisheye view method | 0.887 ** | 0.915 ** | 0.919 ** | 0.570 * | 0.875 ** | 1 | 0.879 ** |
Pedestrian view method | 0.936 ** | 0.933 ** | 0.925 ** | 0.737 ** | 0.941 ** | 0.879 ** | 1 |
Group | Count | Mean | Maximum | Minimum | Range | Standard Deviation |
---|---|---|---|---|---|---|
Group A | 120 | 28.484 | 31.267 | 24.821 | 6.446 | 2.095 |
Group B | 90 | 25.728 | 27.842 | 23.470 | 4.372 | 1.401 |
Group C | 60 | 23.327 | 23.661 | 22.779 | 0.882 | 0.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Hirata, T. Comprehensive Comparative Analysis and Innovative Exploration of Green View Index Calculation Methods. Land 2025, 14, 289. https://doi.org/10.3390/land14020289
Yin D, Hirata T. Comprehensive Comparative Analysis and Innovative Exploration of Green View Index Calculation Methods. Land. 2025; 14(2):289. https://doi.org/10.3390/land14020289
Chicago/Turabian StyleYin, Dongmin, and Terumitsu Hirata. 2025. "Comprehensive Comparative Analysis and Innovative Exploration of Green View Index Calculation Methods" Land 14, no. 2: 289. https://doi.org/10.3390/land14020289
APA StyleYin, D., & Hirata, T. (2025). Comprehensive Comparative Analysis and Innovative Exploration of Green View Index Calculation Methods. Land, 14(2), 289. https://doi.org/10.3390/land14020289