Geohazard Plugin: A QGIS Plugin for the Preliminary Analysis of Landslides at Medium–Small Scale
Abstract
:1. Introduction
2. Materials and Methods
- Groundmotion–C index: This algorithm evaluates the reliability of SAR data for monitoring slope movements by calculating the C index [29], a parameter that quantifies satellite observation accuracy. The result is a map of the representativeness of InSAR data for slow landslide monitoring, useful for accurate data interpretation in terms of magnitude and velocity of the slope displacements;
- Landslide–Shalstab: This algorithm evaluates slope susceptibility to shallow landslide triggering by calculating a critical rainfall infiltration, based on the hydro-mechanical model developed by [23]. The result allows the preliminary identification of areas prone to shallow landslide under different infiltration conditions at a medium/small scale;
- Rockfall–Droka_Basic and Rockfall–Droka_Flow: These two algorithms estimate zones potentially impacted by rockfall events originating from distributed source points on a slope. The estimation is based on the energy line concept and employs two approaches: Droka_Basic utilizes the Cone Method to identify areas that can be reached from one or more rockfall source points [30]; Droka_Flow is based on a hydrological model to simulate rockfall trajectories, resembling the path of a water droplet descending along the steepest gradient. Both algorithms provide a spatial representation of rockfall phenomena, including indications of the invasion zone, block velocities, and kinetic energy levels reached in the exposed areas. Such results can provide a preliminary assessment of rockfall susceptibility and relative spatial hazard at a medium–small scale.
2.1. Groundmotion–C Index
Example of Application and Validation of the Model
2.2. Landslide–Shalstab
- Infinite slope;
- Planar failure surface, parallel to the slope, located at the interface between the shallow layer and the underlying layer of lower permeability;
- Mohr–Coulomb shear strength criterion expressed in terms of effective stresses;
- Steady flow parallel to the slope;
- Absence of deep drainage and flow within the underlying substrate.
- a is the contributing upslope area draining across the contour length b;
- and Ks is the permeability coefficient of saturated soil;
- and q is effective rainfall.
Example of Application and Validation of the Model
2.3. Rockfall–Droka
2.3.1. Rockall–Droka_Basic
2.3.2. Rockfall–Droka_Flow
2.3.3. Validation of the Modules
3. Results
3.1. Parameter Calibration
- The detachment occurred at approximately 1940 m a.s.l;
- A block of approximately 30 m3 struck and destroyed a building located at about 1750 m a.s.l., with visible traces along its trajectory (Figure 8a,c);
- This path was influenced by other blocks and debris on the slope, displaced during all the collapses;
- Additional smaller blocks of approximately 1–2 m3 reached the bottom of the valley, with clearly defined trajectories. The stopping position of some of these blocks is shown in Figure 8b.
3.2. Susceptibility and Relative (Spatial) Hazard Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seneviratne, S.I.N.; Nicholls, D.; Easterling, C.M.; Goodess, S.; Kanae, J.; Kossin, Y.; Luo, J.; Marengo, K.; McInnes, M.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Crozier, M.J. Deciphering the effect of climate change on landslide activity: A review. Geomorphology 2010, 124, 260–267. [Google Scholar] [CrossRef]
- Picarelli, L.; Lacasse, S.; Ho, K.K. The impact of climate change on landslide hazard and risk. In Understanding and Reducing Landslide Disaster Risk: Volume 1 Sendai Landslide Partnerships and Kyoto Landslide Commitment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 131–141. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 2008, 102, 99–111. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Ferlisi, S.; Gullà, G.; Nicodemo, G.; Peduto, D. A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy. EuroMediterr. J. Environ. Integr. 2019, 4, 1–15. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide types and processes. Landslides Eng. Pract. 1958, 24, 20–47. [Google Scholar]
- Hungr, O. Dynamics of rapid landslides. In Progress in Landslide Science; Sassa, K., Fukuoka, H., Wang, F., Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Lacasse, S.; Nadim, F.; Lacasse, S.; Nadim, F. Landslide risk assessment and mitigation strategy. In Landslides—Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 31–61. [Google Scholar] [CrossRef]
- Scavia, C.; Barbero, M.; Castelli, M.; Marchelli, M.; Peila, D.; Torsello, G.; Vallero, G. Evaluating rockfall risk: Some critical aspects. Geosciences 2020, 10, 98. [Google Scholar] [CrossRef]
- Van Westen, C.J. Remote sensing and GIS for natural hazards assessment and disaster risk management. Treatise Geomorphol. 2013, 3, 259–298. [Google Scholar]
- Filipello, A.; Giuliani, A.; Mandrone, G. Rock Slopes Failure Susceptibility Analysis: From Remote Sensing Measurements to Geographic Information System Raster Modules. Am. J. Environ. Sci. 2010, 6, 489–494. [Google Scholar]
- Poursanidis, D.; Chrysoulakis, N. Remote Sensing, natural hazards and the contribution of ESA Sentinels missions. Remote Sens. Appl. Soc. Environ. 2017, 6, 25–38. [Google Scholar] [CrossRef]
- Noviello, C.; Verde, S.; Zamparelli, V.; Fornaro, G.; Pauciullo, A.; Reale, D.; Nicodemo, G.; Ferlisi, S.; Gullà, G.; Peduto, D. Monitoring buildings at landslide risk with SAR: A methodology based on the use of multipass interferometric data. IEEE Geosci. Remote Sens. Mag. 2020, 8, 91–119. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of different approaches. Earth Sci. Rev. 2005, 79, 147–181. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report. Spec. Rep. Natl. Res. Counc. Transp. Res. Board 1996, 247, 36–75. [Google Scholar]
- Evans, S.G.; Hungr, O.; Clague, J.J. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes. Eng. Geol. 2001, 61, 29–51. [Google Scholar] [CrossRef]
- Meissl, G. Modelling the runout distances of rockfall using a geographic information system. Z. Geomorphol. Suppl. 2001, 125, 129–137. [Google Scholar]
- Wichmann, V. The Gravitational Process Path (GPP) model (v1. 0)—A GIS-based simulation framework for gravitational processes. Geosci. Model Dev. 2017, 10, 3309–3327. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. Geographical Information Systems and Multivariate Model in Landslide Hazard Evaluation. Alps 1990, 90, 17–28. [Google Scholar]
- Castelli, M.; Tosello, G.; Vallero, G. Preliminary Modeling of Rockfall Runout: Definition of the Input Parameters for the QGIS Plugin QPROTO. Geosciences 2021, 11, 88. [Google Scholar] [CrossRef]
- Pack, R.T.; Tarboton, D.G.; Goodwin, C.N. The SINMAP Approach to Terrain Stability Mapping. In 8th Congress of the International Association of Engineering Geology, Vancouver, BC, Canada, 21–25 September 1998; Moore, D., Hungr, O., Eds.; Vol. 2: Engineering Geology and Natural Hazards; A A Balkema: Amsterdam, The Netherlands, 1998; pp. 1157–1166, ISBN-10: 9054109920. [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E. A physically-based model for the topographic control of shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Ji, J.; Cui, H.; Zhang, T.; Song, J.; Gao, Y. A GIS-based tool for probabilistic physical modelling and prediction of landslides: GIS-FORM landslide susceptibility analysis in seismic areas. Landslides 2022, 19, 2213–2223. [Google Scholar] [CrossRef]
- Alvioli, M.; Baum, R.L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ. Model. Softw. 2016, 81, 122–135. [Google Scholar] [CrossRef]
- R.slope.stability. Available online: https://www.landslidemodels.org/r.slope.stability/manual.php (accessed on 15 January 2025).
- R.slopeunits. Available online: https://geomorphology.irpi.cnr.it/tools/slope-units (accessed on 15 January 2025).
- Geohazard Plugin. Available online: https://github.com/Arpapiemonte/geohazard (accessed on 15 January 2025).
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Labiouse, V. Preliminary estimation of rockfall runout zones. Nat. Hazards Earth Syst. Sci. 2011, 11, 819–828. [Google Scholar] [CrossRef]
- Copernicus—European Ground Motion Service. Available online: https://egms.land.copernicus.eu/ (accessed on 15 January 2025).
- Montini, G. Linee Guida per L’utilizzo dei Dati di Deformazione (PS) Derivati da Analisi Multi-Interferometrica di Immagini Radar Satellitari; Technical Report; Geoprofessioni sas: Francavilla al Mare, Italy, 2019; pp. 2–5, 8–9, 15–19, 30–34. (In Italian) [Google Scholar]
- Ren, T.; Gong, W.; Bowa, V.M.; Tang, H.; Chen, J.; Zhao, F. An improved R-Index model for terrain visibility analysis for landslide monitoring with InSAR. Remote Sens. 2021, 13, 1938. [Google Scholar] [CrossRef]
- Cignetti, M. State of activity classification of deep-seated gravitational slope deformation at regional scale based on Sentinel-1 data. Landslide 2023, 20, 7–9. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasoski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Plank, S.; Singer, J.; Minet, C.; Thuro, K. Pre-survey suitability evaluation of the differential synthetic aperture radar interferometry method for landslide monitoring. Int. J. Remote Sens. 2012, 33, 6623–6637. [Google Scholar] [CrossRef]
- Regione Piemonte Geoportal. Available online: https://geoportale.igr.piemonte.it/cms/ (accessed on 15 January 2025).
- Dietrich, W.E.; Montgomery, D.R. SHALSTAB: A Digital Terrain Model for Mapping Shallow Landslide Potential. Technical Report NCAS. 1998. Available online: https://calm.geo.berkeley.edu/geomorph/shalstab/index.htm (accessed on 15 January 2025).
- Campus, C.; Forlati, F.; Nicolò, G. Note illustrative della Carta della pericolosità per instabilità dei versanti. Foglio 211 (DEGO). APAT, Agenzia Regionale per la Protezione dell’Ambiente e per i Servizi Tecnici. Litografia Geda, Nichelino (TO). Foglio 2005, 211, 234. (In Italian) [Google Scholar]
- Interreg, B., III. CatchRisk-Mitigation of Hydro-geological Risk in Alpine Catchments. 2005. Available online: https://www.arpa.piemonte.it/sites/default/files/media/2023-10/catch2005.pdf (accessed on 15 January 2025).
- Green, W.H.; Ampt, G. Studies of soil physics, part I—The flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Campus, S.; Forlati, F.; Nicolò, G.; Fontan, D.; Gelati, R.; Joannas, J.; Morelli, M.; Piana, F.; Rabuffetti, D. Note illustrative della carta della pericolosità per instabilità dei versanti alla scala 1:50.000, foglio 211 DEGO. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/211_Dego.pdf (accessed on 15 January 2025). (In Italian)
- R.drain. Available online: https://grass.osgeo.org/grass-stable/manuals/r.drain.html (accessed on 15 January 2025).
- GeoAlpi Consulting. Site Survey Report, 28 June 2024. 2024. Available online: https://geoalpiconsulting.it/ (accessed on 15 January 2025). (In Italian).
- Geoportal of the Italian Ministry of the Environment. Available online: https://gn.mase.gov.it/portale/en/data-distribution-services-pst (accessed on 15 January 2025).
- Interreg 3a Alpi Latine. Progetto 165 PROVIALP, Protezione della Viabilità Alpina—Final Report; ARPA Piemonte: Turin, Italy, 2008; Available online: https://www.arpa.piemonte.it/pubblicazione/progetto-n165-provialp-protezione-della-viabilita-alpina (accessed on 15 January 2025)(In Italian and French).
- Sbroglia, R.; Reginatto, G.; Higashi, R.; Guimarães, R. Mapping susceptible landslide areas using geotechnical homogeneous zones with different DEM resolutions in Ribeirão Baú basin, Ilhota/SC/Brazil. Landslides 2018, 15, 2093–2106. [Google Scholar] [CrossRef]
- Yuke, H.; Song, L.; Khan, U.; Zhang, B. Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province, China. Environ. Earth Sci. 2023, 82, 35. [Google Scholar]
- Trigila, A.; Iadanza, C.; Lastoria, B.; Bussettini, M.; Barbano, A. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio—Edizione 2021; ISPRA Rapporti: Roma, Italy, 2021. (In Italian) [Google Scholar]
Input | Format | Description |
DTM | Raster | DTM of the area |
Cell size | Number | DTM cell size (m) |
Track angle φ | Number | Track angle of each measurement point; range (0–360°) |
Incidence angle θ | Number | Incidence angle of each measurement point; range (0–90°) |
Output | Format | Description |
C index | Raster | C index computed in each DTM cell (−1; 1) |
Percentage of visibility | Raster | VREAL percentage (0; 100) |
Class of visibility | Raster | Classification of VREAL: Class 1: 0–20% |
Class 2: 20–40% | ||
Class 3: 40–60% | ||
Class 4: 60–80% | ||
Class 5: 80–100% |
Aspect β (°) | Slope α (°) | Incidence Angle θ (°) | Track Angle φ + 90 (°) | C index (Excel) | C index (Model) |
---|---|---|---|---|---|
79 | 15 | 39 | 350 | 0.81 | 0.81 |
291 | 39 | 39 | 350 | 0.04 | 0.03 |
252 | 11 | 39 | 350 | −0.46 | −0.47 |
159 | 22 | 35 | 310 | 0.05 | 0.04 |
43 | 48 | 35 | 310 | 0.99 | 0.99 |
118 | 41 | 35 | 310 | 0.63 | 0.62 |
133 | 35 | 37 | 330 | 0.60 | 0.60 |
243 | 12 | 37 | 330 | −0.42 | −0.42 |
260 | 24 | 37 | 330 | −0.19 | −0.19 |
Input | Format | Description |
---|---|---|
DTM | Raster | DTM of the area |
Cell size | Number | DTM cell size (m) |
Depth z | Raster | Thickness of the potentially unstable layer (m) |
Unit weight γ | Raster | Soil unit weight (N/m3) |
Friction angle φ′ | Raster | Soil friction angle (°) |
Permeability Ks | Raster | Soil permeability coefficient (m/h) |
Soil cohesion csoil | Raster | Soil cohesion (N/m2) |
Root cohesion croot | Raster | Root cohesion (N/m2) |
Class | log(qcr/T) (1/m) | |
---|---|---|
1 | −inf | −3.4 |
2 | −3.4 | −3.1 |
3 | −3.1 | −2.8 |
4 | −2.8 | −2.5 |
5 | −2.5 | −2.2 |
6 | −2.2 | −1.9 |
7 | −1.9 | +inf |
Input | Value |
---|---|
DTM | [37] |
Cell size | 10 m |
Depth z | 0.52–1.09 m |
Unit weigth γ | 22,000 N/m3 |
Friction angle φ′ | 24–32° |
Permeability Ks | 0.144 m/h |
Soil and root cohesion c | 20,000–35,000 N/m2 |
ID | qcr Shalstab (mm/day) | qcr Carg (mm/day) | Difference (mm/day) |
---|---|---|---|
1 | 39.04 | 37.04 | −2.00 |
2 | 56.13 | 57.87 | −1.74 |
3 | 87.76 | 88.45 | −0.69 |
4 | 62.68 | 63.34 | −0.66 |
5 | 117.52 | 116.64 | 0.88 |
6 | 37.49 | 40.90 | −3.41 |
7 | 87.33 | 90.57 | −3.24 |
8 | 61.82 | 63.12 | −1.30 |
9 | 19.33 | 24.70 | −5.37 |
10 | 216.83 | 211.98 | 4.85 |
11 | 167.18 | 164.83 | 2.35 |
12 | 66.49 | 68.53 | −2.04 |
13 | No data | No data | No data |
14 | 77.45 | 81.81 | −4.36 |
15 | 146.66 | 143.79 | 2.87 |
16 | 198.60 | 190.48 | 8.12 |
17 | 40.20 | 42.33 | −2.13 |
18 | 18.89 | 18.87 | 0.02 |
19 | 3.98 | 1.76 | 2.22 |
20 | 40.67 | 40.08 | 0.59 |
DTM 10 m | DTM 5 m | Difference | |||
---|---|---|---|---|---|
ID | qcr,10 (mm/day) | Class | qcr,5 (mm/day) | Class | qcr,5–qcr,10 (mm/day) |
1 | 39.04 | 1 | 112.02 | 1 | 72.98 |
2 | 56.13 | 1 | 52.74 | 1 | −3.39 |
3 | 87.76 | 2 | 96.64 | 3 | 8.88 |
4 | 62.68 | 1 | 54.19 | 1 | −8.49 |
5 | 117.52 | 3 | 334.85 | 7 | 217.33 |
6 | 37.49 | 1 | No data | - | No data |
7 | 87.33 | 1 | 352.74 | 3 | 265.41 |
8 | 61.82 | 1 | 84.97 | 2 | 23.15 |
9 | 19.33 | 1 | 0.55 | 1 | −18.78 |
10 | 216.83 | 6 | 140.22 | 4 | −76.61 |
11 | 167.18 | 3 | 103.28 | 2 | −63.9 |
12 | 66.49 | 1 | 124.89 | 1 | 58.4 |
13 | No data | - | No data | - | No data |
14 | 77.45 | 2 | 80.96 | 2 | 3.51 |
15 | 146.66 | 3 | 173.97 | 3 | 27.31 |
16 | 198.60 | 5 | 285.56 | 7 | 86.96 |
17 | 40.20 | 1 | 77.27 | 2 | 37.07 |
18 | 18.89 | 1 | 13.31 | 1 | −5.58 |
19 | 3.98 | 1 | 2.43 | 1 | −1.55 |
20 | 40.67 | 1 | 27.41 | 1 | −13.26 |
Input | Format | Description |
DTM | Raster | DTM of the area |
Cell size | Number | DTM cell size (m) |
Source points | Point vector layer | Selected source points |
Mass m | Number | Block mass (kg) |
Energy angle φp | Number | Energy angle (°) |
Lateral spreading angle α | Number | Lateral spreading angle (°) |
Output | Format | Description |
Fid, ID | Number | Points identification |
Count | Number | Number of overlapped cones |
Energy_min, max, mean | Number | Minimum, maximum, mean kinetic energy (kJ) |
Velocity_min, max, mean | Number | Minimum, maximum, mean velocity (m/s) |
Percent | Number | Number of overlapping cones at the point as a proportion of the total number of generated cones |
Input | Format | Description |
DTM | Raster | DTM of the area |
Cell size | Number | DTM cell size (m) |
Source points | Point vector layer | Selected source points |
Mass m | Number | Block mass (kg) |
Energy angle φp | Number | Energy angle (°) |
Mean of the normal distribution | Number | Height difference from DTM (m) |
Standard deviation | Number | Standard deviation of the normal distribution of DTM elevation (m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelli, M.; Filipello, A.; Fasciano, C.; Torsello, G.; Campus, S.; Pispico, R. Geohazard Plugin: A QGIS Plugin for the Preliminary Analysis of Landslides at Medium–Small Scale. Land 2025, 14, 290. https://doi.org/10.3390/land14020290
Castelli M, Filipello A, Fasciano C, Torsello G, Campus S, Pispico R. Geohazard Plugin: A QGIS Plugin for the Preliminary Analysis of Landslides at Medium–Small Scale. Land. 2025; 14(2):290. https://doi.org/10.3390/land14020290
Chicago/Turabian StyleCastelli, Marta, Andrea Filipello, Claudio Fasciano, Giulia Torsello, Stefano Campus, and Rocco Pispico. 2025. "Geohazard Plugin: A QGIS Plugin for the Preliminary Analysis of Landslides at Medium–Small Scale" Land 14, no. 2: 290. https://doi.org/10.3390/land14020290
APA StyleCastelli, M., Filipello, A., Fasciano, C., Torsello, G., Campus, S., & Pispico, R. (2025). Geohazard Plugin: A QGIS Plugin for the Preliminary Analysis of Landslides at Medium–Small Scale. Land, 14(2), 290. https://doi.org/10.3390/land14020290