Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation
Abstract
:1. Introduction
2. Mathematical Preliminaries
2.1. Boolean Differential Equations
2.2. Boolean Chaos
2.3. Lyapunov Exponents for ABNs
3. The Proposed Boolean Chaos Oscillators (BCOs) and Their Fixed Points
3.1. BCO-1
3.2. BCO-2
3.3. Boolean Sensitivity Caused by Asymmetric Logic Functions
4. Boolean Chaos Robust to Different Incommensurate Time-Delays
Boolean Chaos Robust to Distinct Discrete Physical Implementation
5. An Application Specific Integrated Circuit for the Proposed Boolean Chaos Oscillators
5.1. Chip Design
5.2. Experimental Results of the Integrated BCO-1 and BCO-2
5.3. Comparison with Similar Implementations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yin, Q.; Wang, C. A new chaotic image encryption scheme using breadth-first search and dynamic diffusion. Int. J. Bifurc. Chaos 2018, 28, 1850047. [Google Scholar] [CrossRef]
- Kaddoum, G. Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 2016, 4, 2621–2648. [Google Scholar] [CrossRef]
- Kocamaz, U.E.; Çiçek, S.; Uyaroğlu, Y. Secure communication with chaos and electronic circuit design using passivity-based synchronization. J. Circuits Syst. Comput. 2018, 27, 1850057. [Google Scholar] [CrossRef]
- Herceg, M.; Miličević, K.; Matić, T. Frequency-translated differential chaos shift keying for chaos-based communications. J. Frankl. Inst. 2016, 353, 2966–2979. [Google Scholar]
- Dmitriev, A.; Efremova, E.; Nikishov, A.Y. Generating dynamic microwave chaos in self-oscillating ring system based on complementary metal-oxide-semiconductor structure. Tech. Phys. Lett. 2010, 36, 430–432. [Google Scholar] [CrossRef]
- Herceg, M.; Vranješ, D.; Grbić, R.; Job, J. Chaos-Based transmitted-reference ultra-wideband communications. Int. J. Electron. 2019, 106, 160–172. [Google Scholar] [CrossRef]
- Gomez-Pavon, L.; Munoz-Pacheco, J.; Luis-Ramos, A. Synchronous Chaos Generation in an Er+3-Doped Fiber Laser System. IEEE Photonics J. 2015, 7, 1–6. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, X.; Hu, W.; Jiang, F. Principles of chaotic signal radar. Int. J. Bifurc. Chaos 2007, 17, 1735–1739. [Google Scholar] [CrossRef]
- Xu, H.; Li, L.; Li, Y.; Zhang, J.; Han, H.; Liu, L.; Li, J. Chaos-Based Through-Wall Life-Detection Radar. Int. J. Bifurc. Chaos 2019, 29, 1930020. [Google Scholar] [CrossRef]
- Qiao, J.; Xu, H.; Zhang, J.; Han, H.; Wang, B. High-resolution and anti-jamming chaotic guided radar prototype for perimeter intrusion detection. J. Electromagn. Waves Appl. 2019, 33, 1060–1069. [Google Scholar] [CrossRef]
- Fortuna, L.; Frasca, M.; Rizzo, A. Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans. Instrum. Meas. 2003, 52, 1809–1814. [Google Scholar] [CrossRef]
- Shin, S.; Kim, M.H.; Choi, S.B. Ultrasonic distance measurement method with crosstalk rejection at high measurement rate. IEEE Trans. Instrum. Meas. 2018, 68, 972–979. [Google Scholar] [CrossRef]
- Honglad, S.; San-Um, W. Automatic stand-alone liquid mixer with chaotic PWM control using diode-based Rössler system. In Proceedings of the IEEE 2014 International Electrical Engineering Congress (iEECON), Chonburi, Thailand, 19–21 March 2014; pp. 1–4. [Google Scholar]
- Xie, T.; Chen, M.; Xu, C.; Chen, J. High-throughput extraction and separation of Ce (III) and Pr (III) using a chaotic advection microextractor. Chem. Eng. J. 2019, 356, 382–392. [Google Scholar] [CrossRef]
- Murali, K.; Sinha, S.; Mohamed, I.R. Chaos computing: Experimental realization of NOR gate using a simple chaotic circuit. Phys. Lett. A 2005, 339, 39–44. [Google Scholar] [CrossRef]
- Kia, B.; Mobley, K.; Ditto, W.L. An integrated circuit design for a dynamics-based reconfigurable logic block. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 715–719. [Google Scholar] [CrossRef]
- Wannaboon, C.; Tachibana, M.; San-Um, W. A 0.18-μm CMOS high-data-rate true random bit generator through ΔΣ modulation of chaotic jerk circuit signals. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 063126. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liao, X.; Jiang, Y. A novel image encryption scheme based on improved random number generator and its implementation. Nonlinear Dyn. 2019, 95, 1781–1805. [Google Scholar] [CrossRef]
- Minati, L. Experimental implementation of networked chaotic oscillators based on cross-coupled inverter rings in a CMOS integrated circuit. J. Circuits Syst. Comput. 2015, 24, 1550144. [Google Scholar] [CrossRef]
- Minati, L.; Frasca, M.; Yoshimura, N.; Ricci, L.; Oświecimka, P.; Koike, Y.; Masu, K.; Ito, H. Current-Starved Cross-Coupled CMOS Inverter Rings as Versatile Generators of Chaotic and Neural-Like Dynamics Over Multiple Frequency Decades. IEEE Access 2019, 7, 54638–54657. [Google Scholar] [CrossRef]
- Volos, C.K.; Kyprianidis, I.M.; Stouboulos, I.N. Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot. Auton. Syst. 2013, 61, 1314–1322. [Google Scholar] [CrossRef]
- Petavratzis, E.K.; Volos, C.K.; Stouboulos, I.N.; Nistazakis, H.E.; Kyritsi, K.G.; Valavanis, K.P. Coverage Performance of a Chaotic Mobile Robot Using an Inverse Pheromone Model. In Proceedings of the IEEE 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar]
- Ansari, U.; Bajodah, A.H.; Kada, B. Development and experimental investigation of a Quadrotor’s robust generalized dynamic inversion control system. Nonlinear Dyn. 2019, 96, 1541–1557. [Google Scholar] [CrossRef]
- Montero-Canela, R.; Zambrano-Serrano, E.; Tamariz-Flores, E.I.; Muñoz-Pacheco, J.M.; Torrealba-Meléndez, R. Fractional chaos based-cryptosystem for generating encryption keys in Ad Hoc networks. Ad Hoc Netw. 2020, 97, 102005. [Google Scholar] [CrossRef]
- Wang, T.; Wang, D.; Wu, K. Chaotic adaptive synchronization control and application in chaotic secure communication for industrial Internet of Things. IEEE Access 2018, 6, 8584–8590. [Google Scholar] [CrossRef]
- Mareca, P.; Bordel, B. Robust hardware-supported chaotic cryptosystems for streaming commutations among reduced computing power nodes. Analog Integr. Circuits Signal Process. 2019, 98, 11–26. [Google Scholar] [CrossRef]
- Muñoz-Pacheco, J.M.; Zambrano-Serrano, E.; Félix-Beltrán, O.; Gómez-Pavón, L.C.; Luis-Ramos, A. Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems. Nonlinear Dyn. 2012, 70, 1633–1643. [Google Scholar] [CrossRef]
- Flores-Vergara, A.; Garcia-Guerrero, E.; Inzunza-González, E.; López-Bonilla, O.; Rodríguez-Orozco, E.; Cardenas-Valdez, J.; Tlelo-Cuautle, E. Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn. 2019, 96, 497–516. [Google Scholar] [CrossRef]
- Raza, S.F.; Satpute, V. A novel bit permutation-based image encryption algorithm. Nonlinear Dyn. 2019, 95, 859–873. [Google Scholar] [CrossRef]
- Zhang, R.; de S.Cavalcante, H.L.D.; Gao, Z.; Gauthier, D.J.; Socolar, J.E.S.; Adams, M.M.; Lathrop, D.P. Boolean chaos. Phys. Rev. E 2009, 80, 045202. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, H.L.; Gauthier, D.J.; Socolar, J.E.; Zhang, R. On the origin of chaos in autonomous Boolean networks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 495–513. [Google Scholar] [CrossRef]
- Bellido-Diaz, M.; Juan-Chico, J.; Acosta, A.; Valencia, M.; Huertas, J. Logical modelling of delay degradation effect in static CMOS gates. IEE Proc. Circuits Devices Syst. 2000, 147, 107–117. [Google Scholar] [CrossRef]
- Ghil, M.; Mullhaupt, A. Boolean delay equations. II. Periodic and aperiodic solutions. J. Stat. Phys. 1985, 41, 125–173. [Google Scholar] [CrossRef]
- Dee, D.; Ghil, M. Boolean difference equations, I: Formulation and dynamic behavior. SIAM J. Appl. Math. 1984, 44, 111–126. [Google Scholar] [CrossRef]
- Rosin, D.P. Dynamics of Complex Autonomous Boolean Networks; Springer: Berlin, Germany, 2014. [Google Scholar]
- Rivera-Durón, R.R.; Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, D.J. Forced synchronization of autonomous dynamical Boolean networks. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 083113. [Google Scholar] [CrossRef] [PubMed]
- Rosin, D.P.; Rontani, D.; Gauthier, D.J. Ultrafast physical generation of random numbers using hybrid Boolean networks. Phys. Rev. E 2013, 87, 040902. [Google Scholar] [CrossRef] [Green Version]
- Rosin, D.P.; Rontani, D.; Gauthier, D.J.; Schöll, E. Experiments on autonomous Boolean networks. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 025102. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Rodgers, J.C.; Lathrop, D.P. True random number generation using CMOS Boolean chaotic oscillator. Microelectron. J. 2015, 46, 1364–1370. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Luque, B.; Solé, R.V. Lyapunov exponents in random Boolean networks. Phys. A Stat. Mech. Appl. 2000, 284, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, C. A Novel Multi-Attractor Period Multi-Scroll Chaotic Integrated Circuit Based on CMOS Wide Adjustable CCCII. IEEE Access 2019, 7, 16336–16350. [Google Scholar] [CrossRef]
Case | Time-Delay | Lyapunov Exponent | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | - | 0.2306 |
2 | - | - | - | - | - | - | - | - | √ | 0.2079 |
3 | √ | - | - | - | - | - | - | - | - | 0.2275 |
4 | √ | - | - | - | - | - | - | - | √ | 0.2057 |
5 | √ | - | - | - | √ | - | - | - | √ | 0.2076 |
6 | √ | √ | √ | - | - | - | - | - | - | 0.2101 |
7 | - | - | - | - | - | - | √ | √ | √ | 0.2121 |
8 | √ | √ | √ | - | - | - | √ | √ | √ | 0.1774 |
9 | √ | √ | √ | √ | √ | √ | - | - | - | 0.1808 |
10 | √ | √ | √ | √ | √ | √ | √ | √ | √ | 0.1896 |
11 | - | √ | √ | √ | √ | √ | √ | √ | √ | 0.1862 |
12 | - | √ | √ | √ | √ | √ | √ | √ | - | 0.1707 |
Case | Time-Delay | Lyapunov Exponent | |||||
---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0.1644 |
2 | - | - | √ | - | - | - | 0.0960 |
3 | - | - | - | - | - | √ | 0.1495 |
4 | √ | - | - | √ | - | - | 0.1442 |
5 | - | √ | - | - | - | - | 0.1525 |
6 | - | - | - | - | √ | - | 0.1448 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz-Pacheco, J.M.; García-Chávez, T.; Gonzalez-Diaz, V.R.; de La Fuente-Cortes, G.; del Carmen Gómez-Pavón, L. Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation. Symmetry 2020, 12, 506. https://doi.org/10.3390/sym12040506
Munoz-Pacheco JM, García-Chávez T, Gonzalez-Diaz VR, de La Fuente-Cortes G, del Carmen Gómez-Pavón L. Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation. Symmetry. 2020; 12(4):506. https://doi.org/10.3390/sym12040506
Chicago/Turabian StyleMunoz-Pacheco, Jesus M., Tonatiuh García-Chávez, Victor R. Gonzalez-Diaz, Gisela de La Fuente-Cortes, and Luz del Carmen Gómez-Pavón. 2020. "Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation" Symmetry 12, no. 4: 506. https://doi.org/10.3390/sym12040506
APA StyleMunoz-Pacheco, J. M., García-Chávez, T., Gonzalez-Diaz, V. R., de La Fuente-Cortes, G., & del Carmen Gómez-Pavón, L. (2020). Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation. Symmetry, 12(4), 506. https://doi.org/10.3390/sym12040506