Fixed Point of (α,β)-Admissible Generalized Geraghty F-Contraction with Application
Abstract
:1. Introduction and Mathematical Preliminaries
2. Main Results
2.1. Fixed Point Results for -Admissible Generalized Geraghty -Contractions
2.2. Fixed Point Results for Graphic -Admissible Generalized Geraghty F-Contractions
3. An Application to the First Order Periodic Boundary Value Problem
4. Conclusions and Future Work
- (1)
- some new fixed figure results for such contractions can be investigated;
- (2)
- some new common fixed point (resp. coincidence point) results can be examined for the cases where the set is not a singleton.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les oprationes dans les ensembles abstraits et leur application aux quation integrales. Fund. Math. 1922, 3, 133–138. [Google Scholar] [CrossRef]
- Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
- Gordji, M.E.; Ramezani, M.; Cho, Y.J.; Pirbavafa, S. A generalization of Geraghtys theorem in partially ordered metric spaces and applications to ordinary differential equations. Fixed Point Theory Appl. 2012, 2012, 74. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Moreno, J.; Sintunavarat, W.; Cho, Y.J. Common fixed point theorems for Geraghtys type contraction mappings using the monotone property with two metrics. Fixed Point Theory Appl. 2015, 2015, 174. [Google Scholar] [CrossRef] [Green Version]
- Mongkolkehai, C.; Cho, Y.J.; Kumam, P. Best proximity points for Geraghtys proximal contraction mappings. Fixed Point Theory Appl. 2013, 2013, 180. [Google Scholar] [CrossRef] [Green Version]
- Bakhtin, I.A. The contraction mapping principle in quasi metric spaces. Funct. Anal. Gos. Ped. Inst. Ulianowsk 1989, 30, 26–37. [Google Scholar]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca 2014, 64, 941–960. [Google Scholar] [CrossRef]
- Aleksić, S.; Huang, H.; Mitrović, Z.; Radenović, S. Remarks on some fixed point results in b-metric space. J. Fixed Point Theory Appl. 2018, 20, 147. [Google Scholar] [CrossRef]
- Faraji, H.; Nourouzi, K.; O’Regan, D. A fixed point theorem in uniform spaces generated by a family of b-pseudometrics. Fixed Point Theory 2019, 20, 177–183. [Google Scholar] [CrossRef]
- Hussain, N.; Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Fisher in b-metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 2019, 113, 949–956. [Google Scholar] [CrossRef]
- Miculsecu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on the results of Suzuki, Miculescu and Mihail. J. Fixed Point Theory Appl. 2019, 21, 24. [Google Scholar] [CrossRef]
- Zoto, K.; Rhoades, B.; Radenović, S. Common fixed point theorems for a class of (s, q)-contractive mappings in b-metric-like spaces and applications to integral equations. Math. Slovaca 2019, 69, 233–247. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Hussain, N. On weak quasicontractions in b-metric spaces. Publ. Math. Debrecen 2019, 94, 29. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial metric topology, in Proceeding of the 8th summer conference on General Topology and Application. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Mustafa, Z.; Roshan, J.R.; Parvanesh, V.; Kadelburg, Z. Some common fixed point results in ordered partial b-metric spaces. J. Inequal. Appl. 2014, 1, 562. [Google Scholar] [CrossRef] [Green Version]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α- ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013, 2013, 19. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Bae, J.S.; Karapinar, E. Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2013, 2013, 329. [Google Scholar] [CrossRef] [Green Version]
- Chandok, S. Some fixed point theorems for (α,β)-admissible geraghty type contractive mappings and related results. Math. Sci. 2015, 9, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 1, 94. [Google Scholar] [CrossRef] [Green Version]
- Secelean, N.A. Iterated function system consisting of F-contractions. Fixed Point Theory Appl. 2013, 1, 277. [Google Scholar] [CrossRef] [Green Version]
- Secelean, N.A.; Wardowski, D. ψF-contractions: Not necessarily nonexspansive Picard operators. Results Math. 2016, 70, 415–431. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 1, 210. [Google Scholar] [CrossRef] [Green Version]
- Lukács, A.; Kajxaxntó, S. Fixed point results for various type F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Alsulami, H.H.; Karapinar, E.; Piri, H. Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces. Discrete Dyn. Nat. Soc. 2015, 2015, 969726. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Ali, B.; Vetro, C. Fuzzy fixed points of generalized F2-Geraghty type fuzzy mappings and complementary results. Nonlinear Anal. Model. Control 2016, 21, 274–292. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Jachymski, J. Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 2011, 74, 768–774. [Google Scholar] [CrossRef]
- Karapinar, E. Recent Advances on the Results for Nonunique Fixed in Various Spaces. Axioms 2019, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Özgür, N.Y.; Taş, N. Some fixed-circle theorems and discontinuity at fixed circle. AIP Conf. Proc. 2018, 1926, 020048. [Google Scholar]
- Özgür, N.Y.; Taş, N. Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 1433–1449. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Saleem, N.; Liu, X.; Ansari, A.H.; Zhou, M. Fixed Point of (α,β)-Admissible Generalized Geraghty F-Contraction with Application. Symmetry 2022, 14, 1016. https://doi.org/10.3390/sym14051016
Wang M, Saleem N, Liu X, Ansari AH, Zhou M. Fixed Point of (α,β)-Admissible Generalized Geraghty F-Contraction with Application. Symmetry. 2022; 14(5):1016. https://doi.org/10.3390/sym14051016
Chicago/Turabian StyleWang, Min, Naeem Saleem, Xiaolan Liu, Arslan Hojat Ansari, and Mi Zhou. 2022. "Fixed Point of (α,β)-Admissible Generalized Geraghty F-Contraction with Application" Symmetry 14, no. 5: 1016. https://doi.org/10.3390/sym14051016
APA StyleWang, M., Saleem, N., Liu, X., Ansari, A. H., & Zhou, M. (2022). Fixed Point of (α,β)-Admissible Generalized Geraghty F-Contraction with Application. Symmetry, 14(5), 1016. https://doi.org/10.3390/sym14051016