Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces
Abstract
:1. Introduction
2. Preliminaries
- if and only if
- (symmetric condition)
- A sequence in a controlled rectangular metric-like space is called convergent, if there exists such that
- A sequence is called Cauchy if and only if exists and finite.
- A controlled rectangular metric-like space is called D-complete if for every Cauchy sequence in X, if there exists such that
- For , an open ball in a controlled rectangular metric-like space define by
3. Main Results
4. Application
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Souayah, N.; Mrad, M. On Fixed-Point Results in Controlled Partial Metric Type Spaces with a Graph. Mathematics 2020, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Souayah, N.; Mrad, M. Some Fixed Point Results on Rectangular Metric-Like Spaces Endowed with a Graph. Symmetry 2019, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Abodayeh, K.; Karapınar, E.; Pitea, A.; Shatanawi, W. Hybrid contractions on Branciari type distance spaces. Mathematics 2019, 7, 994. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Aydi, H.; Shatanawi, W.; Vetro, C. Some integral type fixed-point theorems and an application to systems of functional equations. Vietnam. J. Math. 2014, 42, 17–37. [Google Scholar] [CrossRef]
- Laksaci, N.; Boudaoui, A.; Shatanawi, W. TAM Shatnawi Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness. Fractal Fract. 2022, 6, 130. [Google Scholar] [CrossRef]
- Shatanawi, W.; Karapinar, E.; Aydi, H.; Fulga, A. Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations. Univ. Politech. Buchar. Sci. Bull. Ser. Appl. 2020, 82, 157–170. [Google Scholar]
- Kamran, T.; Samreen, M.; Ul Ain, Q. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef] [Green Version]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 1–2, 31–37. [Google Scholar]
- George, R.; Rodenovic, S.; Rashma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principals. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Mlaiki, N.; Hajji, M.; Abdeljawad, T. A new extension of the rectangular-metric spaces. Adv. Math. Phys. 2020, 2020, 8319584. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Shukla, S. Partial Rectangular Metric Spaces and Fixed Point Theorems. Sci. World J. 2014, 2014, 756298. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, S.; Azmi, F.; Mlaiki, N. Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces. Symmetry 2022, 14, 991. https://doi.org/10.3390/sym14050991
Haque S, Azmi F, Mlaiki N. Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces. Symmetry. 2022; 14(5):991. https://doi.org/10.3390/sym14050991
Chicago/Turabian StyleHaque, Salma, Fatima Azmi, and Nabil Mlaiki. 2022. "Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces" Symmetry 14, no. 5: 991. https://doi.org/10.3390/sym14050991
APA StyleHaque, S., Azmi, F., & Mlaiki, N. (2022). Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces. Symmetry, 14(5), 991. https://doi.org/10.3390/sym14050991