Thermodynamics and Decay of de Sitter Vacuum
Abstract
:Contents | ||
1. | Introduction............................................................................................................................................................................................................................... | 3 |
2. | de Sitter State as Heat Bath for Matter.................................................................................................................................................................................. | 5 |
2.1. Atom in de Sitter Environment as Thermometer............................................................................................................................................................ | 5 | |
2.2. Decay of Composite Particles in de Sitter Spacetime...................................................................................................................................................... | 6 | |
2.3. Triplication of Particles in de Sitter Spacetime................................................................................................................................................................ | 7 | |
2.4. Connection between the Local and Hawking Temperatures......................................................................................................................................... | 7 | |
2.5. Two Detectors: Exited Atom vs. Ionized Atom................................................................................................................................................................ | 8 | |
2.6. Radiation of Photons via Atom in de Sitter Environment.............................................................................................................................................. | 8 | |
2.7. Accelerating Detector: Is There a Connection between the Local Process and Unruh Radiation?............................................................................ | 9 | |
3. | Thermodynamics of the de Sitter State.................................................................................................................................................................................. | 10 |
3.1. de Sitter Symmetry and de Sitter Heat Bath..................................................................................................................................................................... | 10 | |
3.2. From Local Temperature to Local Entropy....................................................................................................................................................................... | 10 | |
3.3. de Sitter Vacuum, Fermi Liquid and Cosmological Constant Problem......................................................................................................................... | 10 | |
3.4. Hubble Volume Entropy vs. Entropy of the Cosmological Horizon............................................................................................................................. | 11 | |
4. | Thermodynamics from the Heat Transfer in the Multi-Metric Gravity Ensemble......................................................................................................... | 12 |
4.1. Multi-Metric Gravity........................................................................................................................................................................................................... | 12 | |
4.2. Heat Exchange in Multi-Metric Gravity............................................................................................................................................................................ | 13 | |
4.3. Thermodynamics from the Multi-Metric Ensemble......................................................................................................................................................... | 14 | |
4.4. Regularization vs. Thermalization..................................................................................................................................................................................... | 14 | |
4.5. Coherence vs. Thermalization............................................................................................................................................................................................ | 15 | |
4.6. de Sitter Contribution to Chiral Anomaly........................................................................................................................................................................ | 15 | |
5. | Thermodynamics of de Sitter State and f(R) Gravity........................................................................................................................................................... | 16 |
5.1. Thermodynamic Variables in f(R) Gravity........................................................................................................................................................................ | 16 | |
5.2. Gibbs–Duhem Relation in f(R) Gravity............................................................................................................................................................................. | 17 | |
5.3. Entropy of the Cosmological Horizon in Terms of Effective Gravitational Coupling................................................................................................. | 17 | |
5.4. Example of Quadratic Gravity............................................................................................................................................................................................ | 18 | |
6. | From de Sitter Thermodynamics to de Sitter Decay............................................................................................................................................................ | 19 |
6.1. de Sitter State as Thermal Bath for Matter........................................................................................................................................................................ | 19 | |
6.2. de Sitter Decay due to Thermalization of Matter via de Sitter Heat Bath..................................................................................................................... | 19 | |
6.3. Connection to Holographic Principle................................................................................................................................................................................ | 20 | |
6.4. de Sitter Decay and Zel’dovich Stiff Matter...................................................................................................................................................................... | 21 | |
6.5. Thermal Fluctuations in de Sitter State............................................................................................................................................................................. | 22 | |
6.6. Cosmological Constant Problems...................................................................................................................................................................................... | 23 | |
7. | From de Sitter to Black Hole Thermodynamics.................................................................................................................................................................... | 23 |
7.1. de Sitter vs. Black Hole....................................................................................................................................................................................................... | 23 | |
7.2. Entropy of Expanding, Contracting, and Static de Sitter................................................................................................................................................ | 23 | |
7.3. Gravastar—Black Hole with de Sitter Core...................................................................................................................................................................... | 24 | |
7.4. Entropy of Black Hole from Negative Entropy of Contracting de Sitter Core............................................................................................................. | 24 | |
7.5. White Hole and Anti-Gravastar......................................................................................................................................................................................... | 25 | |
7.6. Gibbs–Duhem and Black Hole Thermodynamics............................................................................................................................................................ | 25 | |
7.7. Entropy of the Schwarzschild–de Sitter Cosmological Horizon.................................................................................................................................... | 26 | |
7.8. Heat Exchange between Black Holes in the Multi-Metric Ensemble............................................................................................................................. | 26 | |
8. | Black and White Holes Entropy from Macroscopic Quantum Tunneling........................................................................................................................ | 27 |
8.1. Collective Canonically Conjugate Variables for Schwarzschild Black Hole................................................................................................................. | 27 | |
8.2. Modified First Law of Black Hole Thermodynamics....................................................................................................................................................... | 27 | |
8.3. Adiabatic Change in Coupling K and Adiabatic Invariant............................................................................................................................................ | 28 | |
8.4. A and K as Canonically Conjugate Variables and Black-Hole–White-Hole Quantum Tunneling............................................................................. | 28 | |
8.5. Negative Entropy of White Hole....................................................................................................................................................................................... | 29 | |
8.6. Black-Hole-to-White-Hole Transition as a Series of Hawking Radiation Co-Tunneling............................................................................................ | 30 | |
8.7. Emission of Small Black Holes vs. Hawking Radiation.................................................................................................................................................. | 30 | |
9. | Conclusions................................................................................................................................................................................................................................ | 32 |
10. | References................................................................................................................................................................................................................................... | 33 |
1. Introduction
2. de Sitter State as Heat Bath for Matter
2.1. Atom in de Sitter Environment as Thermometer
2.2. Decay of Composite Particles in de Sitter Spacetime
2.3. Triplication of Particles in de Sitter Spacetime
2.4. Connection between the Local and Hawking Temperatures
2.5. Two Detectors: Exited Atom vs. Ionized Atom
2.6. Radiation of Photons via Atom in de Sitter Environment
2.7. Accelerating Detector: Is There a Connection between the Local Process and Unruh Radiation?
3. Thermodynamics of the de Sitter State
3.1. de Sitter Symmetry and de Sitter Heat Bath
3.2. From Local Temperature to Local Entropy
3.3. de Sitter Vacuum, Fermi Liquid and Cosmological Constant Problem
3.4. Hubble Volume Entropy vs. Entropy of the Cosmological Horizon
4. Thermodynamics from the Heat Transfer in the Multi-Metric Gravity Ensemble
4.1. Multi-Metric Gravity
4.2. Heat Exchange in Multi-Metric Gravity
4.3. Thermodynamics from the Multi-Metric Ensemble
4.4. Regularization vs. Thermalization
4.5. Coherence vs. Thermalization
4.6. de Sitter Contribution to Chiral Anomaly
5. Thermodynamics of de Sitter State and Gravity
5.1. Thermodynamic Variables in Gravity
5.2. Gibbs–Duhem Relation in Gravity
5.3. Entropy of the Cosmological Horizon in Terms of Effective Gravitational Coupling
5.4. Example of Quadratic Gravity
6. From de Sitter Thermodynamics to de Sitter Decay
6.1. de Sitter State as Thermal Bath for Matter
6.2. de Sitter Decay Due to Thermalization of Matter via de Sitter Heat Bath
6.3. Connection to Holographic Principle
6.4. de Sitter Decay and Zel’dovich Stiff Matter
6.5. Thermal Fluctuations in de Sitter State
6.6. Cosmological Constant Problems
- (1)
- Why the cosmological constant is not large;
- (2)
- Why the dark energy is on the order of magnitude of dark matter;
- (3)
- Why they have the present value.
7. From de Sitter to Black Hole Thermodynamics
7.1. de Sitter vs. Black Hole
7.2. Entropy of Expanding, Contracting, and Static de Sitter
7.3. Gravastar—Black Hole with de Sitter Core
7.4. Entropy of Black Hole from Negative Entropy of Contracting de Sitter Core
7.5. White Hole and Anti-Gravastar
7.6. Gibbs–Duhem and Black Hole Thermodynamics
7.7. Entropy of the Schwarzschild–de Sitter Cosmological Horizon
7.8. Heat Exchange between Black Holes in the Multi-Metric Ensemble
8. Black and White Holes Entropy from Macroscopic Quantum Tunneling
8.1. Collective Canonically Conjugate Variables for Schwarzschild Black Hole
8.2. Modified First Law of Black Hole Thermodynamics
8.3. Adiabatic Change in Coupling K and Adiabatic Invariant
8.4. A and K as Canonically Conjugate Variables and Black-Hole–White-Hole Quantum Tunneling
8.5. Negative Entropy of White Hole
8.6. Black-Hole-to-White-Hole Transition as a Series of Hawking Radiation Co-Tunneling
8.7. Emission of Small Black Holes vs. Hawking Radiation
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. J. Exp. Theor. Phys. Lett. 2007, 86, 157–163. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Giannakoudi, I.; Fronimos, F.P.; Lymperiadou, E.C. Recent Advances on Inflation. Symmetry 2023, 15, 1701. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. f(R) cosmology from q–theory. J. Exp. Theor. Phys. Lett. 2008, 88, 289–294. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Dynamic vacuum variable and equilibrium approach in cosmology. Phys. Rev. D 2008, 78, 063528. [Google Scholar] [CrossRef]
- Hawking, S.W. The cosmological constant is probably zero. Phys. Lett. B 1984, 134, 403. [Google Scholar] [CrossRef]
- Chaichian, M.; Ghal’e, A.; Oksanen, M. Alternative approach to the Starobinsky model for inflation scenarios. Phys. Rev. D 2023, 107, 023527. [Google Scholar] [CrossRef]
- Brinkmann, M.; Cicolic, M.; Zito, P. Starobinsky inflation from string theory? J. High Energ. Phys. 2023, 2023, 38. [Google Scholar] [CrossRef]
- Lüst, D.; Masias, J.; Muntz, B.; Scalisi, M. Starobinsky Inflation in the Swampland. arXiv 2023, arXiv:2312.13210. [Google Scholar]
- Elizalde, E.; Odintsov, S.D.; Sebastiani, L.; Myrzakulov, R. Beyond-one-loop quantum gravity action yielding both inflation and late-time acceleration. Nucl. Phys. B 2017, 921, 411–435. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Sebastiani, L. Unification of Constant-roll Inflation and Dark Energy with Logarithmic R2-corrected and Exponential F(R) Gravity. Nucl. Phys. B 2017, 923, 608–632. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Odintsov, S.; Sebastiani, L. Inflationary universe from higher-derivative quantum gravity. Phys. Rev. D 2015, 91, 083529. [Google Scholar] [CrossRef]
- Bamba, K.; Myrzakulov, R.; Odintsov, S.D.; Sebastiani, L. Trace-anomaly driven inflation in modified gravity and the BICEP2 result. Phys. Rev. D 2014, 90, 043505. [Google Scholar] [CrossRef]
- Sebastiani, L.; Cognola, G.; Myrzakulov, R.; Odintsov, S.D.; Zerbini, S. Nearly Starobinsky inflation from modified gravity. Phys. Rev. D 2014, 89, 023518. [Google Scholar] [CrossRef]
- Ketov, S.V. Starobinsky inflation and Swampland conjectures. arXiv 2024, arXiv:2406.06923. [Google Scholar]
- Volovik, G.E. Analog Sommerfeld law in quantum vacuum. J. Exp. Theor. Phys. Lett. 2023, 118, 280–287. [Google Scholar] [CrossRef]
- Volovik, G.E. Gravity through the prism of condensed matter physics. J. Exp. Theor. Phys. Lett. 2023, 118, 531–541. [Google Scholar] [CrossRef]
- Volovik, G.E. On de Sitter radiation via quantum tunneling. Int. J. Mod. Phys. D 2009, 18, 1227–1241. [Google Scholar] [CrossRef]
- Volovik, G.E. Particle decay in de Sitter spacetime via quantum tunneling. J. Exp. Theor. Phys. Lett. 2009, 90, 1–6. [Google Scholar] [CrossRef]
- Volovik, G.E. On the global temperature of the Schwarzschild–de Sitter spacetime. J. Exp. Theor. Phys. Lett. 2023, 118, 8–13. [Google Scholar] [CrossRef]
- Volovik, G.E. de Sitter local thermodynamics in f(R) gravity. J. Exp. Theor. Phys. Lett. 2024, 119, 564–571. [Google Scholar] [CrossRef]
- Maxfield, H.; Zahraee, Z. Holographic solar systems and hydrogen atoms: Non-relativistic physics in AdS and its CFT dual. J. High Energy Phys. 2022, 11, 093. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Maldacena, J. Cosmological Collider Physics. arXiv 2015, arXiv:1503.08043. [Google Scholar]
- Reece, M.; Wang, L.T.; Xianyu, Z.Z. Large-field inflation and the cosmological collider. Phys. Rev. D 2023, 107, L101304. [Google Scholar] [CrossRef]
- Painlevé, P. La mécanique classique et la théorie de la relativité. Comptes Rendue Acad. Sci. 1921, 173, 677. [Google Scholar]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörper-problems in der Einsteinschen Gravitations-theorie. Arkiv. Mat. Astron. Fys. 1922, 16, 1–15. [Google Scholar]
- Volovik, G.E. The Universe in a Helium Droplet; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Jatkar, D.P.; Leblond, L.; Rajaraman, A. Decay of massive fields in de Sitter space. Phys. Rev. D 2012, 85, 024047. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Moschella, U. Lifetime of a massive particle in a de Sitter universe. J. Cosmol. Astropart. Phys. 2008, 802, 3. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Gaudin, M.; Moschella, U.; Pasquier, V. Triangular invariants, three-point functions and particle stability on the de Sitter universe. Commun. Math. Phys. 2010, 295, 261–288. [Google Scholar] [CrossRef]
- Parikh, M.K. New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. 2002, 546, 189–195. [Google Scholar] [CrossRef]
- Hooft, G.T. Quantum clones inside black holes. Universe 2022, 8, 537. [Google Scholar] [CrossRef]
- Hooft, G.T. How an exact discrete symmetry can preserve black hole information or Turning a black hole inside out. J. Phys. Conf. Ser. 2023, 2533, 012015. [Google Scholar] [CrossRef]
- Conroy, A. Unruh–DeWitt detectors in cosmological spacetimes. Phys. Rev. D 2022, 105, 123513. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Ben-Benjamin, J.S.; Scully, M.O.; Fulling, S.A.; Lee, D.M.; Page, D.N.; Svidzinsky, A.A.; Zubairy, M.S.; Duff, M.J.; Glauber, R.; Schleich, W.P.; et al. Unruh Acceleration Radiation Revisited. Int. J. Mod. Phys. 2019, 34, 1941005. [Google Scholar] [CrossRef]
- Scully, M.O.; Svidzinsky, A.; Unruh, W. Entanglement in Unruh, Hawking, and Cherenkov radiation from a quantum optical perspective. Phys. Rev. Res. 2022, 4, 033010. [Google Scholar] [CrossRef]
- Volovik, G.E. Double Hawking temperature: From black hole to de Sitter. Universe 2022, 8, 639. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Marianer, S.; Shklovskii, B.I. Effective temperature of hopping electrons in a strong electric field. Phys. Rev. B 1992, 46, 13100. [Google Scholar] [CrossRef] [PubMed]
- Shklovskii, B.I. Half-century of Efros-Shklovskii Coulomb gap. Romance with Coulomb interaction and disorder. arXiv 2024, arXiv:2403.19793. [Google Scholar]
- Gregori, G.; Marocco, G.; Sarkar, S.; Bingham, R.; Wang, C. Measuring Unruh radiation from accelerated electrons. Eur. Phys. J. C 2024, 84, 475. [Google Scholar] [CrossRef]
- Wang, C.H.-T.; Gregori, G.; Bingham, R.; Adamu, Y.; Eneh, B.N.; Rodriguez, M.C.; Twigg, S.-J. Observable Unruh Effect and Unmasked Unruh Radiation. arXiv 2022, arXiv:2212.13246. [Google Scholar]
- Matsuda, T. How to define the Unruh–DeWitt detector on manifolds. arXiv 2024, arXiv:2404.19160. [Google Scholar]
- Aldrovandi, R.; Almeida, J.P.B.; Pereira, J.G. de Sitter special relativity. Class. Quantum Grav. 2007, 24, 1385–1404. [Google Scholar] [CrossRef]
- Cacciatori, S.; Gorini, V.; Kamenshchik, A. Special relativity in the 21st century. Ann. Phys. 2008, 17, 728–768. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and Quantum Theory: Domains of Conflict and Contact. Int. J. Mod. Phys. D 2020, 29, 2030001. [Google Scholar] [CrossRef]
- Vergeles, S.N. Phase transition near the Big Bang in the lattice theory of gravity and some cosmological considerations. arXiv 2023, arXiv:2301.01692. [Google Scholar]
- Huhtala, P.; Volovik, G.E. Fermionic microstates within Painlevé–Gullstrand black hole. J. Exp. Theor. Phys. 2002, 94, 853–861. [Google Scholar] [CrossRef]
- Lewkowicz, M.; Zubkov, M. Classical Limit for Dirac Fermions with Modified Action in the Presence of a Black Hole. Symmetry 2019, 11, 1294. [Google Scholar] [CrossRef]
- Chu, C.S.; Miao, R.X. A Fermi Model of Quantum Black Hole. arXiv 2023, arXiv:2307.06164. [Google Scholar]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Barrow, J.D. Dimensionality. Phil. Trans. R. Soc. Lond. A 1983, 310, 337–346. [Google Scholar]
- Volovik, G.E. Dimensionless physics: Continuation. J. Exp. Theor. Phys. 2022, 135, 663–670. [Google Scholar] [CrossRef]
- Strasberg, P.; Schindler, J. Comparative microscopic study of entropies and their production. arXiv 2024, arXiv:2403.09403. [Google Scholar]
- Wood, K.; Saffin, P.M.; Avgoustidis, A. Black Holes in Multi-Metric Gravity. arXiv 2024, arXiv:2402.17835v1. [Google Scholar]
- Froggatt, C.D.; Nielsen, H.B. Origin of Symmetries; World Scientifc: Singapore, 1991. [Google Scholar]
- Obukhov, Y.N.; Volovik, G.E. Spacetime geometry from Dirac spinor theory. Phys. Rev. D 2024, 109, 064076. [Google Scholar] [CrossRef]
- Akama, K. An Attempt at Pregeometry: Gravity with Composite Metric. Prog. Theor. Phys. 1978, 60, 1900–1909. [Google Scholar] [CrossRef]
- Wetterich, C. Gravity from spinors. Phys. Rev. D 2004, 70, 105004. [Google Scholar] [CrossRef]
- Diakonov, D. Towards lattice-regularized Quantum Gravity. arXiv 2011, arXiv:1109.0091. [Google Scholar]
- Vladimirov, A.A.; Diakonov, D. Phase transitions in spinor quantum gravity on a lattice. Phys. Rev. D 2012, 86, 104019. [Google Scholar] [CrossRef]
- Vladimirov, A.A.; Diakonov, D. Diffeomorphism-invariant lattice actions. Phys. Part. Nucl. 2014, 45, 800. [Google Scholar] [CrossRef]
- Sindoni, L. Emergent Models for Gravity: An Overview of Microscopic Models. SIGMA Symmetry Integr. Geom. Methods Appl. 2012, 8, 027. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Hehl, F.W. Extended Einstein–Cartan theory a la Diakonov: The field equations. Phys. Lett. B 2012, 713, 321–325. [Google Scholar] [CrossRef]
- Volovik, G.E. Superfluid 3He-B and gravity. Phys. B 1990, 162, 222–230. [Google Scholar] [CrossRef]
- Lu, W. Clifford algebra Cl(0,6) approach to beyond the standard model and naturalness problems. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450089. [Google Scholar] [CrossRef]
- Volovik, G.E. Fermionic quartet and vestigial gravity. J. Exp. Theor. Phys. Lett. 2024, 119, 330–334. [Google Scholar] [CrossRef]
- Parhizkar, A.; Galitski, V. Strained bilayer graphene, emergent energy scales, and moire gravity. Phys. Rev. Res. 2022, 4, L022027. [Google Scholar] [CrossRef]
- Chadha, S.; Nielsen, H.B. Lorentz invariance as a low-energy phenomenon. Nucl. Phys. B 1983, 217, 125–144. [Google Scholar] [CrossRef]
- Bunkov, Y.M.; Volovik, G.E. Spin superfluidity and magnon Bose-Einstein condensation. In Novel Superfluids; Bennemann, K.H., Ketterson, J.B., Eds.; International Series of Monographs on Physics; Oxford Science Publications: Oxford, UK, 2013; Volume 1, Chapter 4; pp. 253–311. [Google Scholar]
- Vilenkin, A. Macroscopic parity-violating effect: Neutrino fluxes from rotating black holes and in rotating thermal radiation. Phys. Rev. D 1979, 20, 1807. [Google Scholar] [CrossRef]
- Vilenkin, A. Quantum field theory at finite temperature in a rotating system. Phys. Rev. D 1980, 21, 2260. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Liao, J.; Voloshin, S.A.; Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report. Prog. Part. Nucl. Phys. 2016, 88, 1–28. [Google Scholar] [CrossRef]
- Stone, M.; Kim, J. Mixed anomalies: Chiral vortical effect and the Sommerfeld expansion. Phys. Rev. D 2018, 98, 025012. [Google Scholar] [CrossRef]
- Abramchuk, R.A.; Selch, M. Non-perturbative suppression of chiral vortical effect in hot (s)QGP for hyperons spin polarization in heavy ion collisions. Eur. Phys. J. C 2024, 84, 107. [Google Scholar] [CrossRef]
- Flachi, A.; Fukushima, K. Chiral vortical effect with finite rotation, temperature, and curvature. Phys. Rev. D 2018, 98, 096011. [Google Scholar] [CrossRef]
- Khakimov, R.V.; Prokhorov, G.Y.; Teryaev, O.V.; Zakharov, V.I. Hydrodynamical dual of the gravitational axial anomaly and the cosmological constant. Phys. Rev. D 2024, 109, 105001. [Google Scholar] [CrossRef]
- Ambrus, V.E.; Winstanley, E. Vortical effects for free fermions on anti-de Sitter space-time. Symmetry 2021, 13, 2019. [Google Scholar] [CrossRef]
- Nissinen, J.; Volovik, G.E. Anomalous chiral transport with vorticity and torsion: Cancellation of two mixed gravitational anomaly currents in rotating chiral p + ip Weyl condensates. Phys. Rev. D 2022, 106, 045022. [Google Scholar] [CrossRef]
- Yamamoto, N. Generalized Bloch theorem and chiral transport phenomena. Phys. Rev. D 2015, 92, 085011. [Google Scholar] [CrossRef]
- Volovik, G.E. Chiral vortical effect generated by chiral anomaly in vortex-skyrmions. J. Exp. Theor. Phys. Lett. 2017, 105, 303–306. [Google Scholar] [CrossRef]
- Khaidukov, Z.V.; Zubkov, M.A. Chiral Torsional Effect. J. Exp. Theor. Phys. Lett. 2018, 108, 670–674. [Google Scholar] [CrossRef]
- Volovik, G.E. Macroscopic quantum tunneling: From quantum vortices to black holes and Universe. J. Exp. Theor. Phys. 2022, 135, 388–408. [Google Scholar] [CrossRef]
- Volovik, G.E. Varying Newton constant and black hole to white hole quantum tunneling. Universe 2020, 6, 133. [Google Scholar] [CrossRef]
- Hayward, S.A. Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Grav. 1998, 15, 3147–3162. [Google Scholar] [CrossRef]
- Hayward, S.A.; Mukohyama, S.; Ashworth, M.C. Dynamic black-hole entropy. Phys. Lett. A 1999, 256, 347–350. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D.; Paul, T.; SenGupta, S. Horizon entropy consistent with FLRW equations for general modified theories of gravity and for all EoS of the matter field. Phys. Rev. D 2024, 109, 043532. [Google Scholar] [CrossRef]
- Pronin, P.; Kulikov, I. Local quantum statistics in arbitrary curved space-time. Pramana 1987, 28, 355. [Google Scholar] [CrossRef]
- Kulikov, I.K.; Pronin, P.I. Low temperature properties of a quantum Fermi gas in curved space-time. Int. J. Theor. Phys. 1995, 34, 1843–1854. [Google Scholar] [CrossRef]
- Larkin, A.I.; Pikin, S.A. On phase transitions of the first order resembling those of the second order. J. Exp. Theor. Phys. 1969, 29, 891–896. [Google Scholar]
- Polyakov, A.M. Self-tuning fields and resonant correlations in 2d-gravity. Mod. Phys. Lett. A 1991, 6, 635–644. [Google Scholar] [CrossRef]
- Polyakov, A.M.; Popov, F.K. Kronecker anomalies and gravitational striction. In Dialogues Between Physics and Mathematics, 1st ed.; Ge, M.L., He, Y.H., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Self-tuning vacuum variable and cosmological constant. Phys. Rev. D 2008, 77, 085015. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. The equation of state at ultrahigh densities and its relativistic limitations. J. Exp. Theor. Phys. 1962, 14, 1143–1147. [Google Scholar]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. One-loop f(R) gravity in de Sitter universe. J. Cosmol. Astropart. Phys. 2005, 2005, 10. [Google Scholar] [CrossRef]
- Brustein, R.; Gorbonos, D.; Hadad, M. Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling. Phys. Rev. D 2009, 79, 044025. [Google Scholar] [CrossRef]
- Geng, C.Q.; Hsu, W.-C.; Lu, J.-R.; Luo, L.-W. Thermodynamics of f(R) gravity with disformal transformation. Entropy 2019, 21, 172. [Google Scholar] [CrossRef] [PubMed]
- Volovik, G.E. Discrete Z4 symmetry in quantum gravity. arXiv 2024, arXiv:2406.00718. [Google Scholar]
- Bondarenko, S. Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space. Universe 2022, 8, 497. [Google Scholar] [CrossRef]
- Bzowski, A.; McFadden, P.; Skenderis, K. Renormalisation of IR divergences and holography in de Sitter. J. High Energy Phys. 2024, 5, 53. [Google Scholar] [CrossRef]
- Boyle, L.; Turok, N. Thermodynamic solution of the homogeneity, isotropy and flatness puzzles (and a clue to the cosmological constant). Phys. Lett. B 2024, 849, 138442. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Starobinsky, A.A.; Vardanyan, T. Massive scalar field in de Sitter spacetime: A two-loop calculation and a comparison with the stochastic approach. Eur. Phys. J. C 2022, 82, 345. [Google Scholar] [CrossRef]
- Polyakov, A.M. Infrared instability of the de Sitter space. arXiv 2012, arXiv:1209.4135. [Google Scholar]
- Starobinsky, A.A.; Yokoyama, J. Equilibrium state of a self-interacting scalar field in the de Sitter background. Phys. Rev. D 1994, 50, 6357. [Google Scholar] [CrossRef] [PubMed]
- Polarski, D.; Starobinsky, A. Semiclassicality and decoherence of cosmological perturbations. Class. Quantum Grav. 1996, 13, 377. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.; Starobinsky, A.A. Towards the theory of reheating after inflation. Phys. Rev. D 1997, 56, 3258. [Google Scholar] [CrossRef]
- Jeong, H.; Kamada, K.; Starobinsky, A.A.; Yokoyama, J. Reheating process in the R2 inflationary model with the baryogenesis scenario. J. Cosmol. Astropart. Phys. 2023, 11, 23. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 1982, 117, 175–178. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Stochastic de Sitter (Inflationary) Stage in the Early Universe. Lect. Notes Phys. 1986, 246, 107–126. [Google Scholar]
- Pattison, C.; Vennin, V.; Assadullahi, H.; Wands, D. Stochastic inflation beyond slow roll. J. Cosmol. Astropart. Phys. 2019, 7, 31. [Google Scholar] [CrossRef]
- Cruces, D.; Germani, C. Stochastic inflation at all order in slow-roll parameters: Foundations. Phys. Rev. D 2022, 105, 023533. [Google Scholar] [CrossRef]
- Cruces, D. Review on Stochastic Approach to Inflation. Universe 2022, 8, 334. [Google Scholar] [CrossRef]
- Launay, Y.L.; Rigopoulos, G.I.; Shellard, E.P.S. Stochastic Inflation in General Relativity. arXiv 2024, arXiv:2401.08530. [Google Scholar] [CrossRef]
- Volovik, G.E. Double Hawking temperature in de Sitter Universe and cosmological constant problem. arXiv 2020, arXiv:2007.05988. [Google Scholar]
- Padmanabhan, T. Cosmological constant—The weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Phys. Rep. 2005, 406, 49–125. [Google Scholar] [CrossRef]
- Markkanen, T. De Sitter stability and coarse graining. Eur. Phys. J. C 2018, 78, 97. [Google Scholar] [CrossRef]
- Fairbairn, M.; Markkanen, T.; Roman, D.R. Horizon feedback inflation. Eur. Phys. J. C 2018, 78, 347. [Google Scholar] [CrossRef]
- Roman, D.R. Gravitational Particle Creation in the Early Universe. Ph.D. Thesis, King’s College, London, UK, 2020. [Google Scholar]
- Gong, J.-O.; Seo, M.S. Instability of de Sitter space under thermal radiation in different vacua. J. Cosmol. Astropart. Phys. 2021, 10, 42. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C. On exclusion of positive cosmological constant. Fortschritte Phys. 2019, 67, 1800092. [Google Scholar] [CrossRef]
- Berezhiani, L.; Dvali, G.; Sakhelashvili, O. de Sitter space as a BRST invariant coherent state of gravitons. Phys. Rev. D 2022, 105, 025022. [Google Scholar] [CrossRef]
- Padmanabhan, T. Emergence and Expansion of Cosmic Space as due to the Quest for Holographic Equipartition. arXiv 2012, arXiv:1206.4916. [Google Scholar]
- Krishna, P.B.; Basari, V.T.H.; Mathew, T.K. Emergence of cosmic space and its connection with thermodynamic principles. Gen. Relativ. Gravit. 2022, 54, 58. [Google Scholar] [CrossRef]
- Prasanthan, P.; Nelleri, S.; Poonthottathil, N.; Sreejith, E.K. Emergence of Cosmic Space and Horizon Thermodynamics from Kaniadakis Entropy. arXiv 2024, arXiv:2405.03592. [Google Scholar]
- Klinkhamer, F.R. On vacuum-energy decay from particle production. Mod. Phys. Lett. A 2012, 27, 1250150. [Google Scholar] [CrossRef]
- Volovik, G.E. From analogue models to gravitating vacuum. In Analogue Spacetimes: The First Thirty Years; Cardoso, V., Crispino, L.C.B., Liberati, S., de Oliveira, E.S., Visser, M., Eds.; Editoria Livraria da Fisica: Sao Paulo, Brazil, 2013; pp. 263–290. [Google Scholar]
- Klinkhamer, F.R.; Volovik, G.E. Dark matter from dark energy in q-theory. J. Exp. Theor. Phys. Lett. 2017, 105, 74–77. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A.; Hennigar, R.A. Regular Black Holes from Pure Gravity. arXiv 2024, arXiv:2403.04827. [Google Scholar]
- Cano, P.A. Inconsistency of modified gravity in cosmology. arXiv 2024, arXiv:2404.01376. [Google Scholar]
- Filippo, F.D.; Kolar, I.; Kubiznak, D. Inner-extremal regular black holes from pure gravity. arXiv 2024, arXiv:2404.07058. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, Part 1; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Volovik, G.E.; Zelnikov, A.I. Universal temperature corrections to the free energy for the gravitational field. J. Exp. Theor. Phys. Lett. 2003, 78, 751–756. [Google Scholar] [CrossRef]
- Cho, H.-T.; Hsiang, J.-T.; Hu, B.L. Quantum capacity and vacuum compressibility of spacetime: Thermal fields. Universe 2022, 8, 291. [Google Scholar] [CrossRef]
- Xie, Y.-C.; Hsiang, J.-T.; Hu, B.-L. Dynamical vacuum compressibility of space. Phys. Rev. D 2024, 109, 065027. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Xie, Y.-C.; Hu, B.-L. Heat Capacity and Quantum Compressibility of Dynamical Spacetimes with Thermal Particle Creation. arXiv 2024, arXiv:2405.00360. [Google Scholar]
- Widom, A.; Sassaroli, E.; Srivastava, Y.N.; Swain, J. The Casimir Effect and Thermodynamic Instability. arXiv 1998, arXiv:quant-ph/9803013. [Google Scholar]
- Unruh, W.G. Experimental Black-Hole Evaporation? Phys. Rev. Lett. 1981, 46, 1351. [Google Scholar] [CrossRef]
- Milekhin, A.; Xu, J. On scrambling, tomperature and superdiffusion in de Sitter space. arXiv 2024, arXiv:2403.13915. [Google Scholar]
- Chapline, G.; Hohlfeld, E.; Laughlin, R.B.; Santiago, D.I. Quantum phase transitions and the breakdown of classical general relativity. Int. J. Mod. Phys. A 2003, 18, 3587. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. Gravitational condensate stars: An alternative to black holes. Universe 2023, 9, 88. [Google Scholar] [CrossRef]
- Mottola, E. Gravitational vacuum condensate stars. In Regular Black Holes Towards a New Paradigm of Gravitational Collapse; Springer: Singapore, 2023; pp. 283–352. [Google Scholar]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quantum Grav. 2002, 19, 725. [Google Scholar] [CrossRef]
- Balasin, H.; Nachbagauer, H. The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry? Class. Quantum Grav. 1993, 10, 2271. [Google Scholar] [CrossRef]
- Fischler, W.; Racz, S. Plato Meets de Sitter, or de Sitter’s Allegory of the Cave. arXiv 2024, arXiv:2405.08080. [Google Scholar]
- Bousso, R.; Hawking, S.W. Pair creation of black holes during inflation. Phys. Rev. D 1996, 54, 6312. [Google Scholar] [CrossRef] [PubMed]
- Landau, L. Niels Bohr and the Development of Physics; Pauli, W., Ed.; McGraw-Hill: New York, NY, USA, 1955; p. 52. [Google Scholar]
- Akama, K. Pregeometry. In Gauge Theory and Gravitation; Nakanishi, N., Nariai, H., Eds.; Lecture Notes in Physics; Springer-Verlag: Berlin/Heidelberg, Germany, 1983; Volume 176, pp. 267–271. [Google Scholar]
- Akama, K.; Chikashige, Y.; Matsuki, T.; Terazawa, H. Gravity and electromagnetism as collective phenomena: A derivation of Einstein’s general relativity. Prog. Theor. Phys. 1978, 60, 868. [Google Scholar] [CrossRef]
- Terazawa, H. High energy physics in the 21st century. In Proceedings of the 22nd International Workshop on the Fundamental Problems of High Energy Physics and Field Theory, KEK Preprint 99-46, Protvino, Russia, 23–25 June 1999. [Google Scholar]
- Terazawa, H.; Chikashige, Y.; Akama, K.; Matsuki, T. Simple relation between the fine-structure and gravitational constants. Phys. Rev. D 1977, 15, 1181–1183. [Google Scholar] [CrossRef]
- Terazawa, H. Cosmological origin of mass scales. Phys. Lett. B 1981, 101, 43. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Merging gauge coupling constants without Grand Unification. J. Exp. Theor. Phys. Lett. 2005, 81, 551–555. [Google Scholar] [CrossRef]
- Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo C. 1974, 11, 467. [Google Scholar] [CrossRef]
- Gibbons, G.; Kallosh, R.; Kol, B. Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 1996, 77, 4992. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Strominger, A. Counting states of near extremal black holes. Phys. Rev. Lett. 1996, 77, 2368. [Google Scholar] [CrossRef]
- Barvinsky, A.; Das, S.; Kunstatter, G. Quantum mechanics of charged black holes. Phys. Lett. B 2001, 517, 415–420. [Google Scholar] [CrossRef]
- Barvinsky, A.; Das, S.; Kunstatter, G. Discrete spectra of charged black holes. Found. Phys. 2002, 32, 1851–1862. [Google Scholar] [CrossRef]
- Ansorg, M.; Hennig, J. The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 2008, 25, 22. [Google Scholar] [CrossRef]
- Visser, M. Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole. J. High Energ. Phys. 2012, 2012, 23. [Google Scholar] [CrossRef]
- Tharanath, R.; Kuriakose, V.C. Thermodynamics and spectroscopy of Schwarzschild black hole surrounded by Quintessence. Mod. Phys. Lett. A 2013, 28, 1350003. [Google Scholar] [CrossRef]
- Corda, C. Time dependent Schrödinger equation for black hole evaporation: No information loss. Ann. Phys. 2015, 353, 71–72. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Quantum black holes as atoms. arXiv 1997, arXiv:gr-qc/9710076. [Google Scholar]
- Carlip, S. Black hole thermodynamics. Int. J. Mod. Phys. D 2014, 23, 1430023. [Google Scholar] [CrossRef]
- Barcelo, C.; Carballo-Rubio, R.; Garay, L.J. Mutiny at the white-hole district. Int. J. Mod. Phys. D 2014, 23, 1442022. [Google Scholar] [CrossRef]
- Barcelo, C.; Carballo-Rubio, R.; Garay, L.J. Exponential fading to white of black holes in quantum gravity. Class. Quantum Grav. 2017, 34, 105007. [Google Scholar] [CrossRef]
- Martin-Dussaud, P.; Rovelli, C. Evaporating black-to-white hole. Class. Quantum Grav. 2019, 36, 245002. [Google Scholar] [CrossRef]
- Rovelli, C. Viewpoint: Black hole evolution traced out with loop quantum gravity. Physics 2018, 11, 127. [Google Scholar] [CrossRef]
- Achour, J.B.; Brahma, S.; Uzan, J.P. Bouncing compact objects. Part I. Quantum extension of the Oppenheimer-Snyder collapse. J. Cosmol. Astropart. Phys. 2020, 3, 41. [Google Scholar] [CrossRef]
- Achour, J.B.; Uzan, J.P. Bouncing compact objects. II. Effective theory of a pulsating Planck star. Phys. Rev. D 2020, 102, 124041. [Google Scholar] [CrossRef]
- Achour, J.B.; Brahma, S.; Mukohyama, S.; Uzan, J.P. Towards consistent black-to-white hole bounces from matter collapse. J. Cosmol. Astropart. Phys. 2020, 9, 20. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Mele, F.M.; Münch, J. Mass and horizon Dirac observables in effective models of quantum black-to-white hole transition. Class. Quantum Grav. 2021, 38, 095002. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Christodoulou, M.; Martin-Dussaud, P.; Rovelli, C.; Soltani, F. End of a black hole’s evaporation. Phys. Rev. D 2021, 103, 106014. [Google Scholar] [CrossRef]
- Bianchi, E.; Christodoulou, M.; D’Ambrosio, F.; Haggard, H.M.; Rovelli, C. White holes as remnants: A surprising scenario for the end of a black hole. Class. Quantum Grav. 2018, 35, 225003. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics; Statistical Physics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5. [Google Scholar]
- Keski-Vakkuri, E.; Kraus, P. Microcanonical D-branes and back reaction. Nucl. Phys. 1997, 491, 249–262. [Google Scholar] [CrossRef]
- Massar, S.; Parentani, R. Gravitational instanton for black hole radiation. Phys. Rev. Lett. 1997, 78, 3810. [Google Scholar] [CrossRef]
- Berezin, V.A.; Boyarsky, A.M.; Neronov, A.Y. On the mechanism of Hawking radiation. Gravit. Cosmol. 1999, 5, 16–22. [Google Scholar]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef] [PubMed]
- Feigel’man, M.V.; Ioselevich, A.S. Variable-range cotunneling and conductivity of a granular metal. J. Exp. Theor. Phys. Lett. 2005, 81, 277–283. [Google Scholar] [CrossRef]
- Glazman, L.I.; Pustilnik, M. Low-temperature transport through a quantum dot. In Nanophysics: Coherence and Transport; Bouchiat, H., Gefen, Y., Guéron, S., Montambaux, G., Dalibard, J., Eds.; Lectures Notes of the Les Houches Summer School; Elsevier: Amsterdam, The Netherlands, 2005; pp. 427–478. [Google Scholar]
- Hawking, S.W.; Horowitz, G.T. Entropy, area, and black hole pairs. Phys. Rev. 1995, 51, 4302. [Google Scholar] [CrossRef] [PubMed]
- Chung, H. Tunneling between single- and multicentered black hole configurations. Phys. Rev. D 2012, 86, 064036. [Google Scholar] [CrossRef]
- Kraus, P.; Wilczek, F. Self-interaction correction to black hole radiance. Nucl. Phys. 1995, 433, 403–420. [Google Scholar] [CrossRef]
- Baldovin, M.; Iubini, S.; Livi, R.; Vulpiani, A. Statistical Mechanics of Systems with Negative Temperature. Phys. Rep. 2021, 923, 1–50. [Google Scholar] [CrossRef]
- Oja, A.S.; Lounasmaa, O.V. Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures. Rev. Mod. Phys. 1997, 69, 1–136. [Google Scholar] [CrossRef]
- Volovik, G.E. Negative temperature: Further extensions. J. Exp. Theor. Phys. Lett. 2021, 113, 602–604. [Google Scholar] [CrossRef]
- Bekenstein, J.D. A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287. [Google Scholar] [CrossRef]
- Narovlansky, V.; Verlinde, H. Double-scaled SYK and de Sitter Holography. arXiv 2023, arXiv:2310.16994. [Google Scholar]
- Milekhin, A.; Xu, J. Revisiting Brownian SYK and its Possible Relations to de Sitter. arXiv 2023, arXiv:2312.03623. [Google Scholar]
- Odintsov, S.D.; Paul, T. A non-singular generalized entropy and its implications on bounce cosmology. Phys. Dark Universe 2023, 39, 101159. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Early and late universe holographic cosmology from a new generalized entropy. Phys. Lett. B 2022, 831, 137189. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Faraoni, V. Area-law versus Renyi and Tsallis black hole entropies. Phys. Rev. D 2021, 104, 084030. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Longo, R.; Penington, G.; Witten, E. An algebra of observables for de Sitter space. J. High Energ. Phys. 2023, 2023, 82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volovik, G.E. Thermodynamics and Decay of de Sitter Vacuum. Symmetry 2024, 16, 763. https://doi.org/10.3390/sym16060763
Volovik GE. Thermodynamics and Decay of de Sitter Vacuum. Symmetry. 2024; 16(6):763. https://doi.org/10.3390/sym16060763
Chicago/Turabian StyleVolovik, Grigory E. 2024. "Thermodynamics and Decay of de Sitter Vacuum" Symmetry 16, no. 6: 763. https://doi.org/10.3390/sym16060763
APA StyleVolovik, G. E. (2024). Thermodynamics and Decay of de Sitter Vacuum. Symmetry, 16(6), 763. https://doi.org/10.3390/sym16060763