The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
3.1. Mineral Analyses
3.2. Whole Rock Analyses
3.3. 40Ar/39Ar Analyses
4. Results and Primary Interpretation
4.1. Petrography and Mineral Compositions
4.2. Whole Rock Compositions
4.3. 40Ar/39Ar Geochronology
5. Discussion
5.1. Geochemical Constrains for Rock Affinity
5.2. Mineralogical Constrains for Rock Genesis
5.3. Possible Geodynamic Setting of Vinoren Aillikite
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rock, N.M.S. Lamprophyres; Blackie and Sons Ltd.: Glasgow, UK, 1991; p. 285. [Google Scholar]
- Tappe, S.; Foley, S.F.; Jenner, G.A.; Kjarsgaard, B.A. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. J. Pet. 2005, 46, 1893–1900. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, R. Geology and structural setting of ultramafic lamprophyres from Bulljah Pool, central Western Australia. J. R. Soc. West. Aust. 1992, 75, 51–56. [Google Scholar]
- Mitchell, R.; Smith, B.S.; Larsen, L. Mineralogy of Ultramafic Dikes from The Sarfartoq, Sisimiut and Maniitsoq Areas, West Greenland: Kimberlites Or Melnoites? In Proceedings of the International Kimberlite Conference, Cape Town, South Africa, 11–17 April 1998. [Google Scholar]
- Digonnet, S.; Goulet, N.; Bourne, J.; Stevenson, R.; Archibald, D. Petrology of the Abloviak Aillikite dykes, New Québec: Evidence for a Cambrian diamondiferous alkaline province in northeastern North America. Can. J. Earth Sci. 2000, 37, 517–533. [Google Scholar] [CrossRef]
- Birkett, T.; McCandless, T.; Hood, C. Petrology of the Renard igneous bodies: Host rocks for diamond in the northern Otish Mountains region, Quebec. Lithos 2004, 76, 475–490. [Google Scholar] [CrossRef]
- Tappe, S.; Foley, S.F.; Kjarsgaard, B.A.; Romer, R.L.; Heaman, L.M.; Stracke, A.; Jenner, G.A. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim. Cosmochim. Acta 2008, 72, 3258–3286. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, M.T.; Frei, D. Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance. Lithos 2009, 112, 318–333. [Google Scholar] [CrossRef]
- O’Brien, H.E.; Peltonen, P.; Vartianen, H. Kimberlites, Carbonatites, and Alkaline Rocks. In Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology 14; Lehtinen, M., Nurmi, P.A., Ramo, O.T., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; pp. 605–644. [Google Scholar]
- Dalton, H.; Giuliani, A.; O’Brien, H.; Phillips, D.; Hergt, J. The role of lithospheric heterogeneity on the composition of kimberlite magmas from a single field: The case of Kaavi-Kuopio, Finland. Lithos 2020, 105333. [Google Scholar] [CrossRef]
- Berthelsen, A. Towards a palinspastic tectonic analysis of the Baltic Shield. In Geology of Europe, from Precambrian to the post-Hercyninan Sedimentary Basins; Cogne, J., Slansky, M., Eds.; Mémoires du B.R.G.M.: Paris, France, 1980; pp. 5–21. [Google Scholar]
- Demaiffe, D.; Michot, J. Isotope Geochronology of the Proterozoic Crustal Segment of Southern Norway: A Review. In The Deep Proterozoic Crust in the North Atlantic Provinces; Springer Science and Business Media LLC: Berlin, Germany, 1985; Volume C158, pp. 411–433. [Google Scholar]
- Falkum, T. Geotectonic Evolution of Southern Scandinavia in Light of a Late-Proterozoic Plate-Collision. In The Deep Proterozoic Crust in the North Atlantic Provinces; Springer Science and Business Media LLC: Berlin, Germany, 1985; pp. 309–322. [Google Scholar]
- Hoffman, P.F. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science 1991, 252, 1409–1412. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Bogdanova, S.; Collins, A.; Davidson, A.; De Waele, B.; Ernst, R.; Fitzsimons, I.; Fuck, R.; Gladkochub, D.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Bingen, B.; Davis, W.J.; Hamilton, M.A.; Engvik, A.K.; Stein, H.J.; Skar, O.; Nordgulen, O. Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U-Pb, Th-Pb and Re-Os data. Nor. J. Geol. 2008, 88, 13–42. [Google Scholar]
- Bingen, B.; Viola, G. The early-Sveconorwegian orogeny in southern Norway: Tectonic model involving delamination of the sub-continental lithospheric mantle. Precambrian Res. 2018, 313, 170–204. [Google Scholar] [CrossRef]
- Slagstad, T.; Roberts, N.M.W.; Marker, M.; Røhr, T.S.; Schiellerup, H. A non-collisional, accretionary Sveconorwegian orogen. Terra Nova 2012, 25, 30–37. [Google Scholar] [CrossRef]
- Slagstad, T.; Roberts, N.M.W.; Coint, N.; Høy, I.; Sauer, S.; Kirkland, C.; Marker, M.; Røhr, T.S.; Henderson, I.H.; Stormoen, M.A.; et al. Magma-driven, high-grade metamorphism in the Sveconorwegian Province, southwest Norway, during the terminal stages of Fennoscandian Shield evolution. Geosphere 2018, 14, 861–882. [Google Scholar] [CrossRef] [Green Version]
- Bingen, B.; Nordgulen, Ø.; Viola, G. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Nor. J. Geol. 2008, 88, 43–72. [Google Scholar]
- Viola, G.; Bingen, B.; Solli, A. Berggrunnskart: Kongsberg litotektoniske enhet, Kongsberg—Modum—Hønefoss M 1: 100 000. Nor. Geol. Undersøkelse 2016. Available online: www.ngu.no/upload/Publikasjoner/Kart/KongsbergB100.pdf (accessed on 17 November 2020).
- Bugge, C. Kongsbergfeltets geologi. Nor. Geol. Undersøkelse 1917, 82, 272. [Google Scholar]
- Gammon, J.B. Fahlbands in the Precambrian of southern Norway. Econ. Geol. 1966, 61, 174–188. [Google Scholar] [CrossRef]
- Ineson, P.R.; Mitchell, J.G.; Vokes, F.M. K-Ar dating of epigenetic mineral deposits; an investigation of the Permian metallogenic province of the Oslo region, southern Norway. Econ. Geol. 1975, 70, 1426–1436. [Google Scholar] [CrossRef]
- Ihlen, P.M.; Ineson, P.R.; Mitchell, J.G.; Vokes, F.M. K-Ar Dating of Dolerite Dykes in the Kongsberg-Fiskum District, Norway, and Their Relationships with the Silver and Base-Metal Veins. Nor. Geol. Undersøkelse 1984, 64, 87–96. [Google Scholar]
- Torgersen, E.; Viola, G.; Zwingmann, H.; Henderson, I.H. Inclined K-Ar illite age spectra in brittle fault gouges: Effects of fault reactivation and wall-rock contamination. Terra Nova 2014, 27, 106–113. [Google Scholar] [CrossRef]
- Bugge, A. Gammel og ny geologi ved Kongsberg Sølvverk. Nor. Geol. Undersøkelse 1932, 12, 74–89. [Google Scholar]
- Neumann, H. Silver deposits at Kongsberg. Nor. Geol. Undersøkelse 1944, 162, 133. [Google Scholar]
- Kotková, J.; Kullerud, K.; Šrein, V.; Drábek, M.; Škoda, R. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits. Miner. Deposita 2017, 53, 531–545. [Google Scholar] [CrossRef]
- Cazes, J. Ewing’s Analytical Instrumentation Handbook, 3rd ed.; Marcel Dekker: New York, NY, USA, 2005; p. 1037. [Google Scholar]
- Uto, K.; Ishizuka, O.; Matsumoto, A.; Kamioka, H.; Togashi, S. Laser-heating 40 Ar/39 Ar dating system of the Geological Survey of Japan: System outlines and preliminary results. Bull. Geol. Surv. Jpn. 1997, 48, 23–46. [Google Scholar]
- Ishizuka, O.; Yuasa, M.; Uto, K. Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu-Bonin arc. Earth Planet. Sci. Lett. 2002, 198, 381–399. [Google Scholar] [CrossRef]
- Steiger, R.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Minenko, V.G.; Makarov, D.V.; Suvorova, O.V.; Selivanova, E. Advanced Techniques of Saponite Recovery from Diamond Processing Plant Water and Areas of Saponite Application. Minerals 2018, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Tappe, S.; Jenner, G.A.; Foley, S.; Heaman, L.; Besserer, D.; Kjarsgaard, B.A.; Ryan, B. Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 2004, 76, 491–518. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Bergman, S.C. Petrology of Lamproites; Springer: Boston, MA, USA, 1991; ISBN 978-1-4613-6688-1. [Google Scholar]
- Nickel, E.H.; Grey, I.E.; Madsen, I.C. Lucasite-(Ce), CeTi2(O,OH)6, a New Mineral from Western-Australia—Its Description and Structure. Am. Mineral. 1987, 72, 1006–1010. [Google Scholar]
- Rock, N.M.S. The Nature and Origin of Ultramafic Lamprophyres: Aln ites and Allied Rocks. J. Pet. 1986, 27, 155–196. [Google Scholar] [CrossRef]
- Tappe, S.; Foley, S.F.; Jenner, G.A.; Heaman, L.M.; Kjarsgaard, B.A.; Romer, R.L.; Stracke, A.; Joyce, N.; Hoefs, J. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. J. Pet. 2006, 47, 1261–1315. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.; Smith, J.V. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 1977, 41, 309–323. [Google Scholar] [CrossRef]
- Kramers, J.; Roddick, J.; Dawson, J. Trace element and isotope studies on veined, metasomatic and “MARID” xenoliths from Bultfontein, South Africa. Earth Planet. Sci. Lett. 1983, 65, 90–106. [Google Scholar] [CrossRef]
- Grégoire, M.; Bell, D.; Le Roex, A. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: Their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Miner. Pet. 2002, 142, 603–625. [Google Scholar] [CrossRef]
- Konzett, J. Phase relations and chemistry of Ti-rich K-richterite-bearing mantle assemblages: An experimental study to 8.0 GPa in a Ti-KNCMASH system. Contrib. Miner. Pet. 1997, 128, 385–404. [Google Scholar] [CrossRef]
- Foley, S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 1992, 28, 435–453. [Google Scholar] [CrossRef]
- Foley, S.; Andronikov, A.V.; Melzer, S. Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Miner. Pet. 2002, 74, 361–384. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.F.; Musselwhite, D.S.; van der Laan, S.R. Melt compositions from ultramafic vein assemblages in the lithospheric mantle: A comparison of cratonic and non-cratonic settings. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 11–17 April 1999; Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H., Eds.; Red Roof Design: Cape Town, South Africa, 1999; pp. 238–246. [Google Scholar]
- Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry and Petrology; Plenum Press: New York, NY, USA, 1986; p. 442. [Google Scholar]
- Hamilton, R.; Rock, N.M. Geochemistry, mineralogy and petrology of a new find of ultramafic lamprophyres from Bulljah Pool, Nabberu Basin, Yilgarn Craton, Western Australia. Lithos 1990, 24, 275–290. [Google Scholar] [CrossRef]
- Sheppard, S.; Taylor, W.R. Barium- and LREE-rich, olivine-mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia. Lithos 1992, 28, 303–325. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites, Orangeites and Related Rocks; Plenum Press: New York, NY, USA, 1995; p. 410. [Google Scholar]
- Smith, J.; Brennesholtz, R.; Dawson, J. Chemistry of micas from kimberlites and xenoliths—I. Micaceous kimberlites. Geochim. Cosmochim. Acta 1978, 42, 959–971. [Google Scholar] [CrossRef]
- Wyatt, G.R. Manganoan Ilmenite from the Premier kimberlite. In Kimberlite Symposium II Extended Abstract; American Geophysical Union: Washington, DC, USA, 1979; pp. 279–284. [Google Scholar]
- Chakhmouradian, A.R.; Mitchell, R.H. Niobian ilmenite, hydroxylapatite and sulfatian monazite: Alternative hosts for incompatible elements in calcite kimberlite from Internatsional’naya, Yakutia. Can. Mineral. 1999, 37, 1177–1189. [Google Scholar]
- Kaminsky, F.V.; Zakharchenko, O.; Davies, R.; Griffin, W.L.; Khachatryan-Blinova, G.; Shiryaev, A. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Miner. Pet. 2001, 140, 734–753. [Google Scholar] [CrossRef]
- Kaminsky, F.; Belousova, E. Manganoan ilmenite as kimberlite/diamond indicator mineral. Russ. Geol. Geophys. 2009, 50, 1212–1220. [Google Scholar] [CrossRef]
- Garanin, V.K.; Kudryavtseva, G.P.; Lapin, A.V. Typical features of ilmenite from kimberlites, alkali-ultrabasic intrusions, and carbonatites. Int. Geol. Rev. 1980, 22, 1025–1050. [Google Scholar] [CrossRef]
- Nayak, B.; Meyer, F.M. Manganilmenite in the Magnetite Ore Body from Pokphur Area of Nagaland, North East India and the Possibility of Microdiamonds in the Ophiolites of Indo-Myanmar Ranges. Curr. Sci. 2017, 112, 155. [Google Scholar] [CrossRef]
- Schulze, D.J. Diamonds—Theory and Exploration, A guide to the recognition and significance of kimberlite indicator minerals. Geol. Assoc. Can. Short Course 1995, 20, 1–39. [Google Scholar]
- Bond, G.C.; Nickeson, P.A.; Kominz, M.A. Breakup of a supercontinent between 625 Ma and 555 Ma: New evidence and implications for continental histories. Earth Planet. Sci. Lett. 1984, 70, 325–345. [Google Scholar] [CrossRef]
- Torsvik, T.; Smethurst, M.; Meert, J.; VanderVoo, R.; McKerrow, W.; Brasier, M.; Sturt, B.; Walderhaug, H. Continental break-up and collision in the Neoproterozoic and Palaeozoic—A tale of Baltica and Laurentia. Earth Sci. Rev. 1996, 40, 229–258. [Google Scholar] [CrossRef]
- Cawood, P.A.; McCausland, P.J.A.; Dunning, G.R. Opening Iapetus: Constraints from the Laurentian margin in Newfoundland. Geol. Soc. Am. Bull. 2001, 113, 443–453. [Google Scholar] [CrossRef]
- Puffer, J.H. A late Neoproterozoic eastern Laurentian superplume: Location, size, chemical composition, and environmental impact. Am. J. Sci. 2002, 302, 1–27. [Google Scholar] [CrossRef]
- Gower, C.F.; Erdmer, P.; Wardle, R.J. The Double Mer Formation and the Lake Melville rift system, eastern Labrador. Can. J. Earth Sci. 1986, 23, 359–368. [Google Scholar] [CrossRef]
- Kathol, B. Evolution of the rifted and subducted Late Proterozoic to Early Paleozoic Baltoscandian margin in the Torneträsk section, northern Swedish Caledonides. Stockh. Contrib. Geol. 1987, 42, 1–83. [Google Scholar]
- Andréasson, P.-G.; Albrecht, L. Derivation of 500 Ma eclogites from the passive margin of Baltica and a note on the tectonometamorphic heterogeneity of eclogite-bearing crust. Geol. Mag. 1995, 132, 729–738. [Google Scholar] [CrossRef]
- Siedlecka, A.; Roberts, D.; Nystuen, J.P.; Olovyanishikov, V.G. Northeastern and northwestern margin of Baltica in Neoproterozoic time: Evidence from the Timan and Caledonian orogens. In The Neoproterozoic Timanide Orogen of eastern Baltica; Gee, D.G., Pease, V.L., Eds.; Geological Society: London, UK, 2004; pp. 169–190. [Google Scholar]
- Pease, V.; Daly, J.; Elming, S.-Å.; Kumpulainen, R.; Moczydlowska, M.; Puchkov, V.; Roberts, D.; Saintot, A.; Stephenson, R. Baltica in the Cryogenian, 850–630Ma. Precambrian Res. 2008, 160, 46–65. [Google Scholar] [CrossRef]
- Roberts, D.; Gale, G.H. The Caledonian-Appalachian Iapetus Ocean. In Evolution of the Earth’s Crust; Tarling, D.H., Ed.; Academic Press: Cambridge, MA, USA, 1978; pp. 255–324. [Google Scholar]
- Gower, C.F.; Ryan, A.B.; Rivers, T. Mid-Proterozoic Laurentia–Baltica: An overview of its geological evolution and summary of the contributions by this volume. Geol. Assoc. Canada Spec. Pap. 1990, 38, 1–20. [Google Scholar]
- Gorbatschev, R.; Bogdanova, S. Frontiers in the Baltic Shield. Precambrian Res. 1993, 64, 3–21. [Google Scholar] [CrossRef]
- Griffin, W.L.; Taylor, P. The Fen Damkjernite: Petrology of a “central-complex kimberlite”. Phys. Chem. Earth 1975, 9, 163–177. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H.; Eide, E.A.; Dahlgren, S. Tectonic Significance of the Fen Province, S. Norway: Constraints from Geochronology and Paleomagnetism. J. Geol. 1998, 106, 553–564. [Google Scholar] [CrossRef]
- Roberts, R.J.; Corfu, F.; Torsvik, T.H.; Ashwal, L.D.; Ramsay, D.M. Short-lived mafic magmatism at 560–570 Ma in the northern Norwegian Caledonides: U–Pb zircon ages from the Seiland Igneous Province. Geol. Mag. 2006, 143, 887–903. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Rex, D. K-A and Rb-Sr geochronology and Sr isotopic study of the Alnö alkaline complex, northeastern Sweden. Lithos 1980, 13, 111–119. [Google Scholar] [CrossRef]
- Kresten, P. The Alnö complex: Tectonics of dyke emplacement. Lithos 1980, 13, 153–158. [Google Scholar] [CrossRef]
- Robert, B.; Domeier, M.; Jakob, J. Iapetan Oceans: An analog of Tethys? Geology 2020, 48, 929–933. [Google Scholar] [CrossRef]
Analysis # | 2c | 2e | 2-6a | 2-7a | 2-7-1a | 2-8a | 3-1a | 4c |
---|---|---|---|---|---|---|---|---|
FeO | 0.02 | 0.03 | 0.10 | bdl | 0.04 | bdl | bdl | bdl |
MnO | 0.19 | 0.09 | bdl | bdl | bdl | 0.07 | bdl | bdl |
MgO | 0.08 | 0.06 | 0.10 | bdl | bdl | bdl | bdl | bdl |
CaO | 54.44 | 55.27 | 55.22 | 55.09 | 55.74 | 55.37 | 55.61 | 55.80 |
BaO | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl |
SrO | 0.07 | bdl | 2.02 | 0.38 | bdl | 0.42 | bdl | bdl |
Total | 54.80 | 55.45 | 57.44 | 55.47 | 55.78 | 55.86 | 55.61 | 55.80 |
Formulae based on Σcations = 1 | ||||||||
Fe | 0.001 | 0.001 | ||||||
Mn | 0.003 | 0.001 | 0.001 | |||||
Mg | 0.002 | 0.002 | 0.002 | |||||
Ca | 0.994 | 0.997 | 0.977 | 0.996 | 0.999 | 0.995 | 1.000 | 1.000 |
Ba | ||||||||
Sr | 0.001 | 0 | 0.019 | 0.004 | 0.004 | |||
Total | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Analysis # | 1a | 1b | 2-2a | 2-3b | 2-3c | 2-1a | 2-1b | 1-1a | 1-2a | 3-1a | 1-1a | 1-1b |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | P | G | G | G | G | G | G | G | G | G | G | |
core | rim | rim | core | rim | rim | core | core | rim | core | |||
SiO2 | 38.44 | 37.64 | 36.92 | 37.34 | 37.02 | 38.20 | 38.19 | 38.82 | 36.86 | 39.81 | 35.15 | 36.30 |
Al2O3 | 12.29 | 12.45 | 13.13 | 11.02 | 13.66 | 12.53 | 9.27 | 13.47 | 14.12 | 12.14 | 14.70 | 13.02 |
TiO2 | 5.75 | 7.10 | 3.99 | 3.68 | 4.35 | 3.75 | 4.40 | 6.04 | 3.95 | 3.87 | 4.04 | 5.92 |
FeO | 9.12 | 9.84 | 8.23 | 8.99 | 7.54 | 8.07 | 22.96 | 8.78 | 6.89 | 7.82 | 7.12 | 8.63 |
MnO | bdl | 0.06 | 0.09 | 0.12 | 0.07 | 0.09 | 0.40 | 0.03 | 0.08 | 0.11 | 0.09 | bdl |
MgO | 16.77 | 17.42 | 19.38 | 18.65 | 19.45 | 19.88 | 11.62 | 18.56 | 21.43 | 21.76 | 21.83 | 18.89 |
CaO | 0.41 | bdl | bdl | bdl | bdl | 0.06 | 0.15 | 0.05 | 0.12 | 0.07 | 0.09 | 0.04 |
Na2O | 0.15 | 0.07 | 0.07 | 0.09 | 0.11 | 0.09 | bdl | 0.23 | 0.16 | 0.27 | 0.18 | 0.28 |
K2O | 13.27 | 12.16 | 12.50 | 12.85 | 12.51 | 12.12 | 10.50 | 10.27 | 9.93 | 10.27 | 12.84 | 13.36 |
BaO | 0.17 | 0.33 | 1.45 | 0.58 | 2.34 | 1.23 | 0.20 | na | na | na | 2.29 | 0.28 |
NiO | 0.07 | 0.09 | bdl | 0.06 | bdl | 1.04 | bdl | 0.05 | bdl | bdl | 0.04 | 0.07 |
V2O5 | bdl | bdl | bdl | bdl | bdl | bdl | 0.14 | bdl | bdl | bdl | bdl | 0.08 |
SO3 | na | na | na | na | na | na | na | 0.11 | bdl | bdl | bdl | 0.12 |
Cl | na | na | na | na | na | na | na | 0.03 | bdl | bdl | bdl | 0.05 |
Total | 96.44 | 97.15 | 95.74 | 93.38 | 97.05 | 97.05 | 97.84 | 96.44 | 93.53 | 96.12 | 98.36 | 96.86 |
Formulae based on 11 O | ||||||||||||
Si | 2.837 | 2.756 | 2.753 | 2.859 | 2.731 | 2.804 | 2.929 | 2.801 | 2.721 | 2.865 | 2.572 | 2.679 |
Al | 1.069 | 1.074 | 1.154 | 0.994 | 1.188 | 1.084 | 0.838 | 1.146 | 1.228 | 1.030 | 1.268 | 1.133 |
Ti | 0.319 | 0.391 | 0.224 | 0.212 | 0.241 | 0.207 | 0.254 | 0.328 | 0.219 | 0.210 | 0.222 | 0.329 |
Fe | 0.563 | 0.602 | 0.513 | 0.576 | 0.465 | 0.495 | 1.473 | 0.530 | 0.425 | 0.471 | 0.436 | 0.533 |
Mn | 0.000 | 0.004 | 0.006 | 0.008 | 0.004 | 0.006 | 0.026 | 0.002 | 0.005 | 0.007 | 0.006 | 0.000 |
Mg | 1.845 | 1.901 | 2.154 | 2.129 | 2.139 | 2.175 | 1.329 | 1.996 | 2.358 | 2.334 | 2.381 | 2.078 |
Ca | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.012 | 0.004 | 0.009 | 0.005 | 0.007 | 0.003 |
Na | 0.021 | 0.010 | 0.010 | 0.013 | 0.016 | 0.013 | 0.000 | 0.032 | 0.023 | 0.038 | 0.026 | 0.040 |
K | 1.249 | 1.136 | 1.189 | 1.255 | 1.177 | 1.135 | 1.027 | 0.945 | 0.935 | 0.943 | 1.199 | 1.258 |
Ba | 0.005 | 0.009 | 0.042 | 0.017 | 0.068 | 0.035 | 0.006 | 0.066 | 0.008 | |||
Ni | 0.004 | 0.005 | 0.000 | 0.004 | 0.000 | 0.061 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 | 0.004 |
V | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 |
S | 0.006 | 0.000 | 0.000 | 0.000 | 0.007 | |||||||
Cl | 0.004 | 0.000 | 0.000 | 0.000 | 0.006 | |||||||
Total | 7.945 | 7.889 | 8.046 | 8.066 | 8.030 | 8.021 | 7.901 | 7.797 | 7.925 | 7.901 | 8.184 | 8.082 |
Analysis N | 4a | 2-1a | 4c | 2a | 2b | 1a |
---|---|---|---|---|---|---|
Mineral | Talk | Saponite | Saponite | Garnet | Garnet | Garnet |
SiO2 | 59.48 | 54.07 | 52.28 | 33.24 | 33.79 | 32.73 |
TiO2 | na | na | na | 0.30 | 1.16 | 0.99 |
Al2O3 | 0.04 | 3.51 | 2.24 | 1.36 | 1.94 | 0.81 |
FeO | 4.80 | 11.02 | 9.96 | na | na | na |
Fe2O3 | na | na | na | 29.36 | 27.31 | 29.08 |
MnO | 0.10 | 0.06 | 0.11 | 0.07 | 0.10 | 0.09 |
MgO | 24.86 | 24.07 | 21.88 | 0.40 | 0.93 | 0.05 |
CaO | 0.14 | 0.83 | 0.19 | 32.20 | 32.12 | 32.81 |
Na2O | bdl | 0.09 | 0.20 | na | na | na |
K2O | bdl | 0.14 | 0.34 | na | na | na |
NiO | bdl | 0.05 | 0.09 | na | na | na |
Total | 89.42 | 93.83 | 87.29 | 96.93 | 97.27 | 96.42 |
Formulae based on: | 11 O | 11 O | 11 O | 12 O | 12 O | 12 O |
Si | 4.081 | 3.703 | 3.828 | 2.898 | 2.907 | 2.877 |
Ti | 0.020 | 0.075 | 0.065 | |||
Al | 0.003 | 0.283 | 0.193 | 0.140 | 0.197 | 0.084 |
Fe2+ | 0.275 | 0.631 | 0.610 | |||
Fe3+ | 1.926 | 1.768 | 1.924 | |||
Mn | 0.006 | 0.003 | 0.007 | 0.005 | 0.007 | 0.007 |
Mg | 2.542 | 2.458 | 2.388 | 0.052 | 0.119 | 0.007 |
Ca | 0.010 | 0.061 | 0.015 | 3.008 | 2.961 | 3.090 |
Na | 0.000 | 0.012 | 0.028 | |||
K | 0.000 | 0.012 | 0.032 | |||
Ni | 0.000 | 0.003 | 0.005 | |||
Total | 6.918 | 7.167 | 7.106 | 8.049 | 8.035 | 8.054 |
Analysis N | 2d | 3-1a | 4-1a | 4-1b | 7-1a | 7-1b | 8-1a | 8-1b | 9-1-3a | 9-1-3b | 4-1a | 4-1b | 5-1c | 5-1d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
core | host | core | host | core | host | core | host | core | host | core | host | core | host | |
SiO2 | 0.06 | 0.17 | 0.15 | 0.17 | 0.28 | 1.13 | 0.13 | 0.15 | 0.13 | 0.53 | 0.28 | 0.88 | 0.17 | 0.24 |
Al2O3 | 6.16 | 5.12 | 8.73 | 5.23 | 9.15 | 5.18 | 8.56 | 5.50 | 7.46 | 5.04 | 8.71 | 5.37 | 8.88 | 5.39 |
TiO2 | 6.42 | 10.48 | 6.91 | 8.88 | 7.79 | 9.38 | 7.61 | 9.84 | 6.46 | 7.46 | 8.31 | 10.74 | 8.58 | 10.24 |
Cr2O3 | 24.32 | 14.62 | 26.86 | 15.71 | 28.59 | 14.32 | 28.53 | 16.02 | 28.08 | 16.47 | 28.44 | 15.42 | 28.02 | 16.65 |
Fe2O3 | 49.84 | 63.63 | 43.99 | 64.95 | 39.80 | 59.69 | 42.88 | 60.38 | 44.32 | 65.45 | 43.60 | 61.47 | 43.30 | 60.21 |
MnO | 0.74 | 4.44 | 0.52 | 3.59 | 0.46 | 3.77 | 0.72 | 4.24 | 0.57 | 2.92 | 0.61 | 4.75 | 0.56 | 4.36 |
MgO | 7.00 | 0.13 | 8.72 | 0.23 | 9.24 | 0.81 | 8.69 | 0.15 | 7.93 | 0.70 | 8.67 | 0.18 | 8.72 | 0.08 |
ZnO | 0.21 | 1.64 | 0.22 | 1.06 | 0.15 | 1.46 | 0.24 | 1.57 | 0.14 | 0.83 | 0.24 | 1.51 | 0.17 | 1.68 |
CaO | 0.41 | 0.38 | 0.31 | 0.32 | 0.32 | 0.52 | 0.28 | 0.29 | 0.25 | 0.42 | 0.43 | 0.76 | 0.21 | 0.31 |
NiO | 0.15 | 0.19 | 0.25 | 0.24 | 0.22 | 0.11 | 0.22 | 0.11 | 0.11 | 0.24 | 0.32 | 0.19 | 0.24 | 0.19 |
V2O5 | na | 0.18 | 0.19 | 0.15 | 0.32 | 0.22 | 0.28 | 0.19 | 0.22 | 0.24 | na | na | na | na |
Total | 95.31 | 100.98 | 96.85 | 100.53 | 96.32 | 96.59 | 98.14 | 98.44 | 95.67 | 100.30 | 99.61 | 101.27 | 98.85 | 99.35 |
Mineral formulae on basis of 3 cations | ||||||||||||||
Si | 0.002 | 0.006 | 0.005 | 0.006 | 0.010 | 0.044 | 0.005 | 0.006 | 0.005 | 0.020 | 0.010 | 0.033 | 0.006 | 0.009 |
Al | 0.270 | 0.228 | 0.366 | 0.233 | 0.382 | 0.238 | 0.355 | 0.250 | 0.320 | 0.224 | 0.355 | 0.237 | 0.365 | 0.243 |
Ti | 0.179 | 0.297 | 0.185 | 0.253 | 0.208 | 0.275 | 0.201 | 0.286 | 0.177 | 0.212 | 0.216 | 0.302 | 0.225 | 0.295 |
Cr | 0.714 | 0.436 | 0.755 | 0.470 | 0.801 | 0.442 | 0.793 | 0.489 | 0.809 | 0.491 | 0.778 | 0.456 | 0.772 | 0.503 |
Fe3+ | 1.393 | 1.806 | 1.176 | 1.849 | 1.061 | 1.753 | 1.134 | 1.754 | 1.215 | 1.859 | 1.135 | 1.729 | 1.136 | 1.732 |
Mn | 0.023 | 0.142 | 0.016 | 0.115 | 0.014 | 0.125 | 0.021 | 0.139 | 0.018 | 0.093 | 0.018 | 0.150 | 0.017 | 0.141 |
Mg | 0.388 | 0.007 | 0.462 | 0.013 | 0.488 | 0.047 | 0.455 | 0.009 | 0.431 | 0.039 | 0.447 | 0.010 | 0.453 | 0.005 |
Zn | 0.006 | 0.046 | 0.006 | 0.030 | 0.004 | 0.042 | 0.006 | 0.045 | 0.004 | 0.023 | 0.006 | 0.042 | 0.004 | 0.047 |
Ca | 0.016 | 0.015 | 0.012 | 0.013 | 0.012 | 0.022 | 0.011 | 0.012 | 0.010 | 0.017 | 0.016 | 0.030 | 0.008 | 0.013 |
Ni | 0.009 | 0.012 | 0.014 | 0.015 | 0.013 | 0.007 | 0.012 | 0.007 | 0.006 | 0.015 | 0.018 | 0.011 | 0.013 | 0.012 |
V | 0.000 | 0.004 | 0.004 | 0.004 | 0.007 | 0.006 | 0.007 | 0.005 | 0.005 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 |
∑ cations | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Analysis # | 2-3a | 2-7e | 10-2a | 7a | 8a | 2-7c | 3-2c | 1-2b | 6-1a | 10-1b | 1-2a | 1-3a | 1-3b |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | Ttn | Ttn | Ttn | Ttn | Ttn | Rt | Rt | Lucasite- (Ce) | Lucasite- (Ce) | Mn- Ilm | Mn- Ilm | Ilm | Mg- Ilm |
SiO2 | 30.78 | 31.83 | 31.60 | 32.05 | 31.83 | 0.09 | 0.22 | 0.68 | 0.21 | 0.09 | 0.16 | 0.10 | bdl |
Al2O3 | 0.50 | 0.50 | 0.84 | 0.76 | 0.72 | 0.08 | na | na | 0.13 | na | 0.04 | 0.44 | 0.57 |
TiO2 | 35.21 | 33.37 | 33.64 | 33.62 | 33.70 | 97.54 | 98.07 | 56.37 | 51.85 | 54.20 | 52.93 | 50.77 | 53.58 |
Cr2O3 | bdl | bdl | na | na | na | na | na | na | 0.16 | na | na | 0.08 | 0.09 |
FeO | 4.41 | 4.61 | 4.09 | 4.39 | 4.15 | 0.26 | 0.30 | 0.50 | 0.19 | 29.29 | 34.08 | 42.14 | 31.34 |
MnO | bdl | bdl | 0.04 | 0.05 | 0.06 | na | na | 0.19 | 0.35 | 13.98 | 11.11 | 3.93 | 0.38 |
MgO | 0.14 | 0.22 | 0.63 | 0.54 | 0.40 | na | na | na | na | na | na | 2.05 | 11.99 |
CaO | 27.93 | 27.98 | 27.76 | 27.67 | 27.62 | 0.81 | 0.94 | 3.26 | 5.50 | 1.48 | 0.60 | 0.13 | 0.11 |
ZnO | na | na | na | na | na | na | na | na | na | 0.19 | 0.17 | bdl | bdl |
ZrO2 | na | na | 0.25 | 0.12 | 0.16 | na | na | na | na | na | na | na | na |
Nb2O5 | na | 0.14 | 0.11 | 0.33 | 0.25 | 0.62 | 0.46 | 1.32 | 0.47 | 0.22 | 0.37 | na | na |
V2O5 | bdl | 0.05 | bdl | na | na | na | na | 0.57 | na | 0.26 | 0.35 | bdl | 0.05 |
Y2O3 | na | na | na | na | na | na | na | 0.57 | 0.67 | na | na | na | na |
La2O3 | 0.06 | bdl | 0.08 | bdl | bdl | na | na | 6.74 | 8.77 | na | na | na | na |
Ce2O3 | 0.25 | 0.30 | 0.43 | 0.35 | 0.32 | 0.60 | na | 13.14 | 14.88 | na | na | na | na |
Pr2O3 | na | na | na | na | na | na | na | 0.88 | 1.03 | na | na | na | na |
Nd2O3 | na | na | na | na | na | na | na | 6.37 | 5.73 | na | na | na | na |
Sm2O3 | na | na | na | na | na | na | na | 0.67 | 0.75 | na | na | na | na |
Gd2O3 | na | na | na | na | na | na | na | 0.22 | 0.30 | na | na | na | na |
Dy2O3 | na | na | na | na | na | na | na | na | 0.44 | na | na | na | na |
Er2O3 | na | na | na | na | na | na | na | na | 0.24 | na | na | na | na |
NiO | na | na | na | bdl | bdl | na | na | na | na | 0.30 | 0.19 | 0.10 | 0.12 |
Total | 99.30 | 99.01 | 99.45 | 99.85 | 99.22 | 100.0 | 99.99 | 91.48 | 91.67 | 100.01 | 100.00 | 99.74 | 98.23 |
Formulae based on: | 5 O | 5 O | 5 O | 5 O | 5 O | 2 O | 2 O | 5.5 O | 5.5 O | 3 O | 3 O | 3 O | 3 O |
Si | 1.030 | 1.066 | 1.053 | 1.062 | 1.061 | 0.001 | 0.003 | 0.034 | 0.011 | 0.002 | 0.004 | 0.003 | 0.000 |
Al | 0.020 | 0.020 | 0.033 | 0.030 | 0.028 | 0.001 | 0.008 | 0.001 | 0.013 | 0.016 | |||
Ti | 0.886 | 0.841 | 0.843 | 0.838 | 0.845 | 0.984 | 0.985 | 2.151 | 2.067 | 1.013 | 0.997 | 0.960 | 0.956 |
Cr | 0.000 | 0.000 | 0.007 | 0.002 | 0.002 | ||||||||
Fe | 0.123 | 0.129 | 0.114 | 0.122 | 0.116 | 0.003 | 0.003 | 0.021 | 0.008 | 0.609 | 0.713 | 0.886 | 0.622 |
Mn | 0.000 | 0.000 | 0.001 | 0.001 | 0.002 | 0.008 | 0.016 | 0.294 | 0.236 | 0.084 | 0.008 | ||
Mg | 0.007 | 0.011 | 0.031 | 0.027 | 0.020 | 0.077 | 0.424 | ||||||
Ca | 1.001 | 1.004 | 0.991 | 0.982 | 0.987 | 0.012 | 0.013 | 0.177 | 0.312 | 0.039 | 0.016 | 0.004 | 0.003 |
Zn | 0.003 | 0.003 | 0.000 | 0.000 | |||||||||
Zr | 0.004 | 0.002 | 0.003 | ||||||||||
Nb | 0.002 | 0.002 | 0.005 | 0.004 | 0.004 | 0.003 | 0.030 | 0.011 | 0.002 | 0.004 | |||
V | 0.000 | 0.001 | 0.000 | 0.019 | 0.004 | 0.006 | 0.000 | 0.001 | |||||
Y | 0.015 | 0.019 | |||||||||||
La | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.126 | 0.171 | ||||||
Ce | 0.003 | 0.004 | 0.005 | 0.004 | 0.004 | 0.003 | 0.000 | 0.244 | 0.289 | ||||
Pr | 0.016 | 0.020 | |||||||||||
Nd | 0.115 | 0.108 | |||||||||||
Sm | 0.012 | 0.014 | |||||||||||
Gd | 0.004 | 0.005 | |||||||||||
Dy | 0.000 | 0.008 | |||||||||||
Er | 0.000 | 0.004 | |||||||||||
Ni | 0.000 | 0.000 | 0.006 | 0.004 | 0.002 | 0.002 | |||||||
Total | 3.072 | 3.077 | 3.078 | 3.073 | 3.069 | 1.007 | 1.008 | 2.974 | 3.079 | 1.974 | 1.984 | 2.030 | 2.034 |
Sample N | KK-1 | KK-3 | KK-1 | KK-3 | |
---|---|---|---|---|---|
wt.% | ppm | ||||
SiO2 | 34.01 | 34.63 | Ba | 2780 | 2060 |
TiO2 | 2.75 | 2.75 | Sr | 680 | 510 |
Al2O3 | 5.11 | 5.05 | Cu | 91 | 100 |
Fe2O3 | 3.44 | 2.93 | Ni | 530 | 550 |
FeO | 4.37 | 4.73 | Co | 90 | 80 |
MnO | 0.14 | 0.15 | Cr | 630 | 750 |
MgO | 10.16 | 10.08 | V | 110 | 170 |
CaO | 19.36 | 19.41 | Li | 30 | 30 |
Na2O | 0.09 | 0.12 | Rb | 68 | 68 |
K2O | 2.34 | 2.44 | Cs | 10 | 9 |
H2O− | 1.06 | 0.98 | |||
LOI | 3.6 | 2.79 | |||
P2O5 | 1.14 | 1.06 | |||
F | 0.28 | 0.25 | |||
S | 0.71 | 0.75 | |||
CO2 | 9.82 | 9.8 | |||
Mg# | 75 | 75 | |||
Kagp | 0.52 | 0.56 | |||
K/Na | 17 | 13 | |||
K/Al | 0.50 | 0.52 |
Laser | Relative Isotopic Abundances (10−2 nA) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lab ID# | Power * | 40Ar | 39Ar | 38Ar | 37Ar | 36Ar | 39Ar % | Ca/K | %40Ar ** | Age (Ma) | w/ ± J | |||||||
(%) | ± 1σ | ± 1 σ | ± 1 σ | ±1 σ | ±1 σ | of Total | ± 1 σ | ± 1 σ | ± 1 σ | |||||||||
ER-12-Bt | J value: 1.004 × 10−3 | Irradiation ID: PO-7 | ||||||||||||||||
1098-01 | 1.4 | 9.2821 | 0.0999 | 0.009 | 0.0055 | 0.0061 | 0.0014 | 0.0271 | 0.0074 | 0.0251 | 0.0012 | 0.1 | 5.10 | 3.62 | 20.0 | 339.28 | 211.36 | 211.37 |
1098-02 | 1.6 | 26.441 | 0.1962 | 0.0027 | 0.0021 | 0.0052 | 0.0013 | 0.0268 | 0.0078 | 0.0362 | 0.0012 | 0.0 | 17.13 | 15.43 | 59.6 | 3508.18 | 1324.35 | 1324.36 |
1098-03 | 1.8 | 3.6442 | 0.0626 | 0.0002 | 0.0041 | 0.0008 | 0.0013 | 0.0009 | 0.0056 | 0.0174 | 0.0011 | 0.0 | 6.47 | 122.67 | 0.0 | 0.00 | 0.00 | |
1098-04 | 2.0 | 37.526 | 0.2034 | 0.0945 | 0.0033 | 0.0137 | 0.0014 | 0.4424 | 0.0172 | 0.0317 | 0.0013 | 0.6 | 7.96 | 0.43 | 75.1 | 474.56 | 16.81 | 16.89 |
1098-05 | 2.2 | 55.59 | 0.4316 | 0.0689 | 0.004 | 0.0166 | 0.0015 | 0.9673 | 0.016 | 0.0475 | 0.0013 | 0.4 | 23.87 | 1.52 | 74.9 | 862.55 | 43.74 | 43.83 |
1098-06 | 2.5 | 141.37 | 0.3023 | 0.2383 | 0.0053 | 0.011 | 0.0015 | 1.4118 | 0.0193 | 0.0332 | 0.0012 | 1.4 | 10.07 | 0.28 | 93.2 | 799.31 | 15.50 | 15.71 |
1098-07 | 2.7 | 190.26 | 0.4543 | 0.3344 | 0.0059 | 0.0062 | 0.0021 | 0.0456 | 0.0066 | 0.0081 | 0.0011 | 2.0 | 0.23 | 0.03 | 98.7 | 807.55 | 12.42 | 12.69 |
1098-08 | 2.9 | 250.51 | 0.633 | 0.5037 | 0.0073 | 0.0006 | 0.0019 | 0.0186 | 0.0062 | 0.0063 | 0.0011 | 3.0 | 0.06 | 0.02 | 99.3 | 726.82 | 9.43 | 9.73 |
1098-09 | 3.1 | 435.14 | 0.6032 | 0.9182 | 0.0095 | 0.0131 | 0.0021 | 0.0094 | 0.0063 | 0.0187 | 0.0011 | 5.4 | 0.02 | 0.01 | 98.7 | 695.37 | 6.43 | 6.83 |
1098-10 | 3.3 | 690.67 | 1.3019 | 1.5017 | 0.0111 | 0.0277 | 0.0018 | 0.0187 | 0.0057 | 0.008 | 0.001 | 8.8 | 0.02 | 0.01 | 99.7 | 683.52 | 4.67 | 5.19 |
1098-11 | 3.5 | 904.32 | 2.0012 | 1.92 | 0.0121 | 0.0316 | 0.0023 | 0.0144 | 0.0072 | 0.0128 | 0.0012 | 11.2 | 0.01 | 0.01 | 99.6 | 696.72 | 4.16 | 4.76 |
1098-12 | 3.7 | 694.88 | 1.202 | 1.5324 | 0.0111 | 0.0205 | 0.0022 | 0.0166 | 0.0079 | 0 | 0.001 | 9.0 | 0.02 | 0.01 | 100.1 | 677.90 | 4.52 | 5.06 |
1098-13 | 4.0 | 956.08 | 1.6007 | 2.0488 | 0.0131 | 0.0294 | 0.002 | 0.0768 | 0.0081 | 0.0063 | 0.0011 | 12.0 | 0.06 | 0.01 | 99.8 | 692.69 | 4.10 | 4.70 |
1098-14 | 6.0 | 3581.6 | 5.1002 | 7.9018 | 0.0271 | 0.1119 | 0.0034 | 0.4513 | 0.0125 | 0.0049 | 0.0011 | 46.3 | 0.10 | 0.00 | 100.0 | 676.99 | 2.30 | 3.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zozulya, D.R.; Kullerud, K.; Ribacki, E.; Altenberger, U.; Sudo, M.; Savchenko, Y.E. The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source. Minerals 2020, 10, 1029. https://doi.org/10.3390/min10111029
Zozulya DR, Kullerud K, Ribacki E, Altenberger U, Sudo M, Savchenko YE. The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source. Minerals. 2020; 10(11):1029. https://doi.org/10.3390/min10111029
Chicago/Turabian StyleZozulya, Dmitry R., Kåre Kullerud, Enrico Ribacki, Uwe Altenberger, Masafumi Sudo, and Yevgeny E. Savchenko. 2020. "The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source" Minerals 10, no. 11: 1029. https://doi.org/10.3390/min10111029
APA StyleZozulya, D. R., Kullerud, K., Ribacki, E., Altenberger, U., Sudo, M., & Savchenko, Y. E. (2020). The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source. Minerals, 10(11), 1029. https://doi.org/10.3390/min10111029