Comparative Studies on Flotation Performance of Saturated Fatty Acids and Unsaturated Fatty Acids Separated from Hogwash Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Sample
2.2. Reagents
2.3. FT-IR Analysis
2.4. Flotation Tests
2.5. Zeta Potential Measurements
2.6. X-Ray Photoelectron Spectroscopy
3. Results and Discussion
3.1. Preparation of Collectors
3.2. Flotation Tests
3.2.1. Conditional Tests of pH
3.2.2. Conditional Tests of Concentration of Collector
3.2.3. Conditional Tests of Concentration of CaCl2
3.2.4. Conditional Tests of Temperature
3.3. Zeta Potential Analyses
3.4. FT-IR Analyses
3.5. XPS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Duarte, A.C.P.; Grano, S.R. Mechanism for the recovery of silicate gangue minerals in the flotation of ultrafine sphalerite. Miner. Eng. 2007, 20, 766–775. [Google Scholar] [CrossRef]
- Filippov, L.O.; Filippova, I.V.; Severov, V.V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Miner. Eng. 2010, 23, 91–98. [Google Scholar] [CrossRef]
- Nakhaei, F.; Irannajad, M. Reagents types in flotation of iron oxide minerals: A review. Miner. Process. Extr. Metall. Rev. 2018, 39, 89–124. [Google Scholar] [CrossRef]
- Li, Z.Y. Application of RA-915 collector in Lilou concentrator. Met. Mine 2009, 11, 241–243. [Google Scholar]
- Lin, X.H.; Lu, P.; Chen, R.H.; Chen, J.; Ma, X.; Lin, B. Preparation and application of a new type of efficient collector RA-315. Min. Metall. Eng. 1993, 13, 31–35. (In Chinese) [Google Scholar]
- Liang, S.; Liu, Z.; Xu, M.; Zhang, T. Waste oil derived biofuels in China bring brightness for global GHG mitigation. Bioresour. Technol. 2012, 131, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wu, X. China food safety hits the “gutter”. Food Control 2014, 41, 134–138. [Google Scholar] [CrossRef]
- Tugrul Albayrak, A.; Yasar, M.; Gurkaynak, M.A.; Gurgey, I. Investigation of the effects of fatty acids on the compressive strength of the concrete and the grindability of the cement. Cem. Concr. Res. 2005, 35, 400–404. [Google Scholar] [CrossRef]
- Kou, J.; Tao, D.; Xu, G. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int. J. Miner. Process. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Sun, W.; Ouyang, K.; Zhang, L.; Hu, Y.; Chen, C. Preparation of hydrolyzate of hogwash oil (HHO) and its application in separating diaspore from kaolinite. Miner. Eng. 2010, 23, 670–675. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Luo, H.; Cheng, R.; Liu, F. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int. J. Miner. Process. 2017, 165, 20–27. [Google Scholar] [CrossRef]
- Quast, K. Flotation of hematite using C6-C18 saturated fatty acids. Miner. Eng. 2006, 19, 582–597. [Google Scholar] [CrossRef]
- Yi, Q.; Li, W.; Zhang, X.; Feng, J.; Zhang, J.; Wu, J. Tech-economic evaluation of waste cooking oil to bio-flotation agent technology in the coal flotation industry. J. Clean. Prod. 2015, 95, 131–141. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Tian, J.; Wu, H.; Yang, Y.; Zeng, X.; Wang, Z.; Wang, J. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Miner. Eng. 2016, 89, 84–92. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.; Li, C.; Liu, J. Synergistic effect of dodecyl sulfonate on apatite flotation with fatty acid collector. Sep. Sci. Technol. 2016, 51, 1389–1396. [Google Scholar] [CrossRef]
- Jong, K.; Han, Y.; Ryom, S. Flotation mechanism of oleic acid amide on apatite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 523, 127–131. [Google Scholar] [CrossRef]
- Satyanarayana, P.A.; Kanth Oleti, R.; Uppalapati, S.; Sridevi, V. A comparative study on characterization of used cooking oil and mustard oil for biodiesel production: Engine performance. Mater. Today Proc. 2018, 5, 18187–18201. [Google Scholar] [CrossRef]
- Yu, H.; Wang, H.; Sun, C. Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions. Int. J. Min. Sci. Technol. 2018, 28, 453–459. [Google Scholar] [CrossRef]
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int. J. Low-Carbon Technol. 2019, 14, 417–425. [Google Scholar] [CrossRef]
- Abidin, S.Z.; Patel, D.; Saha, B. Quantitative analysis of fatty acids composition in the used cooking oil (UCO) by gas chromatography-mass spectrometry (GC-MS). Can. J. Chem. Eng. 2013, 91, 1896–1903. [Google Scholar] [CrossRef]
- Ilott, A.J.; Palucha, S.; Batsanov, A.S.; Harris, K.D.M.; Hodgkinson, P.; Wilson, M.R. Structural properties of carboxylic acid dimers confined within the urea tunnel structure: An md simulation study. J. Phys. Chem. B 2011, 115, 2791–2800. [Google Scholar] [CrossRef]
- Hayes, D.G.; Van Alstine, J.M.; Setterwall, F. Urea-based fractionation of seed oil samples containing fatty acids and acylglycerols of polyunsaturated and hydroxy fatty acids. J. Am. Oil Chem. Soc. 2000, 77, 207–213. [Google Scholar] [CrossRef]
- Wu, M.; Ding, H.; Wang, S.; Xu, S. Optimizing Conditions for the Purification of Linoleic Acid from Sunflower Oil by Urea Complex Fractionation. J. Am. Oil Chem. Soc. 2008, 85, 677. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, Y.; Han, Y.; Wei, Y.; Luo, B. Separation mechanism of fatty acids from waste cooking oil and its flotation performance in iron ore desiliconization. Minerals 2017, 7, 244. [Google Scholar] [CrossRef] [Green Version]
- Somasundaran, P.; Wang, D. Solution Chemistry: Minerals and Reagents; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rahman, M.A.; Ghosh, A.K.; Bose, R.N. Dissociation constants of long chain fatty acids in methanol-water and ethanol-water mixtures. J. Chem. Technol. Biotechnol. 1979, 29, 158–162. [Google Scholar] [CrossRef]
- Kanicky, J.R.; Shah, D.O. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J. Colloid Interface Sci. 2002, 256, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, C.; Yang, X. Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China. Sci. China Ser. D Earth Sci. 2008, 51, 1411. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, B.; Sun, C.; Li, Y.; Han, Y. Influence of bromine modification on collecting property of lauric acid. Miner. Eng. 2015, 79, 24–30. [Google Scholar] [CrossRef]
- Sahoo, H.; Rath, S.S.; Rao, D.S.; Mishra, B.K.; Das, B. Role of silica and alumina content in the flotation of iron ores. Int. J. Miner. Process. 2016, 148, 83–91. [Google Scholar] [CrossRef]
- Han, H.; Hu, Y.; Sun, W.; Li, X.; Cao, C.; Liu, R.; Yue, T.; Meng, X.; Guo, Y.; Wang, J.; et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice. Int. J. Miner. Process. 2017, 159, 22–29. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Li, H.; Yu, J.; Xie, W.; Wei, H. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques. Fuel 2017, 203, 764–773. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | K | S | CaO |
---|---|---|---|---|---|
Pure quartz | 99.20 | 0.67 | 0.054 | 0.0046 | <0.001 |
Component | Structure | Content/% |
---|---|---|
Palmitic acid | CH3(CH2)14COOH (C16:0) | 24.7 |
Stearic acid | CH3(CH2)16COOH (C18:0) | 7.9 |
Oleic acid | CH3(CH2)7CH=CH(CH2)7COOH (C18:1) | 29.6 |
Linoleic acid | CH3(CH2)4-[CH=CH-CH2]2-(CH2)6COOH (C18:2) | 32.1 |
Linolenic acid | CH3CH2-[CH=CH-CH2]3-(CH2)6COOH (C18:3) | 4.5 |
others | / | 1.2 |
Sample | Element at.% (BE, eV) | |||
---|---|---|---|---|
C | O | Si | Ca | |
Quartz | 5.1 (284.8) | 64.0 (532.4) | 31.0 (102.9) | |
Quartz + CaCl2 + SFA | 13.8 (284.7) | 58.4 (532.3) | 25.5 (102.9) | 2.3 (346.5) |
Quartz + CaCl2 + UFA | 23.1 (284.7) | 51.1 (532.3) | 24.2 (102.9) | 0.3 (346.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Cai, Y.; Zhu, Y.; Li, Y.; Sun, Y. Comparative Studies on Flotation Performance of Saturated Fatty Acids and Unsaturated Fatty Acids Separated from Hogwash Oil. Minerals 2021, 11, 50. https://doi.org/10.3390/min11010050
Guo W, Cai Y, Zhu Y, Li Y, Sun Y. Comparative Studies on Flotation Performance of Saturated Fatty Acids and Unsaturated Fatty Acids Separated from Hogwash Oil. Minerals. 2021; 11(1):50. https://doi.org/10.3390/min11010050
Chicago/Turabian StyleGuo, Wenda, Yujie Cai, Yimin Zhu, Yanjun Li, and Yongsheng Sun. 2021. "Comparative Studies on Flotation Performance of Saturated Fatty Acids and Unsaturated Fatty Acids Separated from Hogwash Oil" Minerals 11, no. 1: 50. https://doi.org/10.3390/min11010050
APA StyleGuo, W., Cai, Y., Zhu, Y., Li, Y., & Sun, Y. (2021). Comparative Studies on Flotation Performance of Saturated Fatty Acids and Unsaturated Fatty Acids Separated from Hogwash Oil. Minerals, 11(1), 50. https://doi.org/10.3390/min11010050