Controls of Distinct Mineral Compositions on Pore Structure in Over-Mature Shales: A Case Study of Lower Cambrian Niutitang Shales in South China
Abstract
:1. Introduction
2. Geological Settings
3. Samples and Methods
3.1. Samples
3.2. Organic Geochemical Analysis and Mineralogical Composition
3.3. FE-SEM Observation
3.4. Low Pressure N2 and CO2 Isotherm Analyses
4. Results
4.1. Organic Geochemistry and Petrology
4.2. Lithofacies Classification
4.3. Pore Structure Characterization by FE-SEM Observation
4.3.1. Pore Type
4.3.2. Pore Structure Characteristics in Different Lithofacies
The Pore Characteristics of Siliceous Shale
The Pore Characteristics of Argillaceous Shale
4.4. Pore Characterization by Low Pressure Nitrogen Adsorption
4.5. Pore Characterization by Low Pressure CO2 Adsorption
5. Discussion
5.1. Impacts of Organic Matter on Shale Pore Structure
5.2. Impacts of Clay Minerals on Shale Pore Structure
5.3. Impacts of Authigenic Quartz on Shale Pore Structure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale, lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, L.F.; Zheng, S.S. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly over mature marine shale. J. Nat. Gas Sci. Eng. 2019, 67, 134–146. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bai, Y.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.D.; Awwiller, D.N.; Zhang, T. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Xi, Z.D.; Tang, S.H.; Li, J.; Zhang, Z.; Xiao, H. Pore characterization and the controls of organic matter and quartz on pore structure, case study of the Niutitang Formation of northern Guizhou Province, South China. J. Nat. Gas Sci. Eng. 2019, 61, 18–31. [Google Scholar] [CrossRef]
- Bernard, S.; Horsfield, B.; Schulz, H.-M.; Wirth, R.; Schreiber, A.; Sherwood, N. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar. Pet. Geol. 2012, 31, 70–89. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Wang, R.Y.; Gu, Y.; Ding, W.L.; Gong, D.J.; Yin, S.; Wang, X.H.; Zhou, X.H.; Li, A.; Xiao, Z.K.; Cui, Z.X. Characteristics and dominant controlling factors of organic-rich marine shales with high thermal maturity: A case study of the Lower Cambrian Niutitang Formation in the Cen’gong block, southern China. J. Nat. Gas Sci. Eng. 2016, 33, 81–96. [Google Scholar] [CrossRef]
- Han, H.; Pang, P.; Li, Z. Controls of organic and inorganic compositions on pore structure of lacustrine shales of Chang 7 member from Triassic Yanchang Formation in the Ordos Basin, China. Mar. Pet. Geol. 2019, 100, 270–284. [Google Scholar] [CrossRef]
- Wang, X.; Hou, J.; Li, S.; Dou, L.; Song, S.; Kang, Q.; Wang, D. Insight into the nanoscale pore structure of organic-rich shales in the Bakken Formation, USA. J. Pet. Sci. Eng. 2020, 191, 107182. [Google Scholar] [CrossRef]
- Sun, L.; Tuo, J.; Zhang, M.; Wu, C.; Wang, Z.; Zheng, Y. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel 2015, 158, 549–557. [Google Scholar] [CrossRef]
- Topór, T.; Derkowski, A.; Ziemiański, P.; Szczurowski, J.; Mccarty, D.K. The effect of organic matter maturation and porosity evolution on methane storage potential in the Baltic Basin (Poland) shale-gas reservoir. Int. J. Coal Geol. 2017, 180, 46–56. [Google Scholar] [CrossRef]
- Ko, L.T.; Loucks, R.G.; Zhang, T.; Ruppel, S.C.; Shao, D. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford–equivalent) mudrocks: Results from gold tube pyrolysis experiments. AAPG Bull. 2016, 100, 1693–1722. [Google Scholar] [CrossRef]
- Ko, L.T.; Ruppel, S.C.; Loucks, R.G.; Hackley, P.C.; Zhang, T.; Shao, D. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology. Int. J. Coal Geol. 2018, 190, 3–28. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Qing, H.; Detian, Y.; Li, R. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem. Geol. 2009, 258, 168–181. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Wang, Q. Pore structure of Cambrian shales from the Sichuan Basin in China and implications to gas storage. Mar. Pet. Geol. 2016, 70, 14–26. [Google Scholar] [CrossRef]
- Sun, M.; Yu, B.; Hu, Q. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale, a case study from Well Yuke #1 in the Southeast of Chongqing, China. Int. J. Coal Geol. 2016, 154–155, 16–29. [Google Scholar]
- Zhang, J.; Fan, T.; Li, J. Characterization of the Lower Cambrian Shale in the Northwestern Guizhou Province, South China, Implications for Shale-Gas Potential. Energy Fuels 2015, 29, 6383–6393. [Google Scholar] [CrossRef]
- Li, Z.; Bogdanova, S.; Collins, A.; Davidson, A.; De Waele, B.; Ernst, R.; Fitzsimons, I.; Fuck, R.; Gladkochub, D.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.X. History of Neoproterozoic rift basins in South China, implications for Rodinia break-up. Precambrian Res. 2003, 122, 141–158. [Google Scholar] [CrossRef]
- Wang, S.F.; Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L.; Guan, Q.Z. Multiple controls on the paleoenvi-ronment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Mar. Pet. Geol. 2015, 66, 660–672. [Google Scholar] [CrossRef]
- Guo, Q.; Strauss, H.; Liu, C.; Goldberg, T.; Zhu, M.; Pi, D.; Heubeck, C.; Vernhet, E.; Yang, X.; Fu, P. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 254, 140–157. [Google Scholar] [CrossRef]
- Jin, C.S.; Li, C.; Algeo, T.J.; Planavsky, N.J.; Cui, H.; Yang, X.; Zhao, Y.; Zhang, X.; Xie, S. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529–514 Ma): Implications for biota-environment co-evolution. Earth Planet. Sci. Lett. 2016, 441, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Fan, H.; Zhang, Y.; Cloquet, C.; Carignan, J. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim. Cosmochim. Acta 2015, 164, 1–16. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhuang, X.G.; Teng, G.E.; Xie, X.M.; Yin, L.M.; Bian, L.Z.; Feng, Q.L.; Algeo, T.J. The lower cambrian niutitang formation at Yangtiao (Guizhou, sw China): Organic matter enrichment, source rock potential, and hydrothermal influences. J. Pet. Geol. 2015, 38, 411–432. [Google Scholar] [CrossRef]
- Guo, Q.; Strauss, H.; Zhu, M.; Zhang, J.; Yang, X.; Lu, M.; Zhao, F. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran–Cambrian transition. Precambrian Res. 2013, 225, 209–217. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Liu, K.; Wang, P.; Ji, W.; Gao, F.; Li, P.; Hu, T.; Zhang, B.; Huang, H. Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 36, 773–785. [Google Scholar] [CrossRef]
- Niu, X.; Yan, D.; Zhuang, X.; Liu, Z.; Li, B.; Wei, X.; Xu, H.; Li, D. Origin of quartz in the lower Cambrian Niutitang Formation in south Hubei Province, upper Yangtze platform. Mar. Pet. Geol. 2018, 96, 271–287. [Google Scholar] [CrossRef]
- Wang, P.F.; Jiang, Z.X.; Yin, L.S.; Chen, L.; Li, Z.; Zhang, C.; Li, T.W.; Huang, P. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and gas adsorption analysis. J. Pet. Sci. Eng. 2017, 156, 307–321. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Huang, H.; Jiang, S.; Yang, L.; Xiong, F.; Chen, L.; Feng, J. Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 28, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Jiang, Z.X.; Han, M.; Wu, M.H.; Lin, W. The lithofacies and reservoir characteristics of the Upper Ordovician and Lower Silurian black shale in the Southern Sichuan Basin and its periphery, China. Mar. Pet. Geol. 2016, 75, 181–191. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Schieber, J.; Fan, T.; Wei, X. Pore characterization and shale facies analysis of the Ordovician-Silurian transition of northern Guizhou, South China: The controls of shale facies on pore distribution. Mar. Pet. Geol. 2018, 92, 697–718. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Dowey, P.J.; Taylor, K.G. Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA. Sediment. Geol. 2017, 356, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jiang, Z.; Liu, K.; Tan, J.; Gao, F.; Wang, P. Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development. J. Nat. Gas Sci. Eng. 2017, 46, 1–15. [Google Scholar] [CrossRef]
- Yang, W.; Zuo, R.; Jiang, Z.; Chen, D.; Song, Y.; Luo, Q.; Wang, Q.; Zhu, H. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China. Mar. Pet. Geol. 2018, 98, 746–762. [Google Scholar] [CrossRef]
- Dong, T.; He, S.; Chen, M.; Hou, Y.; Guo, X.; Wei, C.; Han, Y.; Yang, R. Quartz types and origins in the paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for porosity preservation in shale reservoirs. Mar. Pet. Geol. 2019, 106, 62–73. [Google Scholar] [CrossRef]
- Milliken, K.L.; Olson, T. Silica Diagenesis, Porosity Evolution, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Rocky Mountains, U.S.A. J. Sediment. Res. 2017, 87, 366–387. [Google Scholar] [CrossRef]
- Wu, C.; Tuo, J.; Zhang, L.; Zhang, M.; Li, J.; Liu, Y.; Qian, Y. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms. Int. J. Coal Geol. 2017, 178, 13–25. [Google Scholar] [CrossRef]
- Zhao, J.H.; Jin, Z.K.; Jin, Z.J.; Wen, X.; Geng, Y.K. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China, Implications for pore evolution. J. Nat. Gas Sci. Eng. 2017, 38, 21–38. [Google Scholar] [CrossRef]
- Gambacorta, G.; Trincianti, E.; Torricelli, S. Anoxia controlled by relative sea-level changes, an example from the Mis-sissippian Barnett Shale Formation. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 459, 306–320. [Google Scholar] [CrossRef]
- Steiner, M.; Wallis, E.; Erdtmann, B.-D.; Zhao, Y.; Yang, R. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—Insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeoclim. Palaeoecol. 2001, 169, 165–191. [Google Scholar] [CrossRef]
Samples | Lithology | TOC (wt%) | Mineral Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | K-Feldspar | Albite | Calcite | Dolomite | Pyrite | Total Clay | Illite | Illite/Smectite | Chlorite | |||
GCC-01 | Siliceous shale | 1.51 | 42 | 0 | 9 | 0 | 0 | 0 | 49 | 36 | 0 | 13 |
GCC04 | Siliceous shale | 1.39 | 53 | 0 | 11 | 0 | 0 | 1 | 35 | 27 | 6 | 0 |
GCC-06 | Siliceous shale | 1.29 | 45 | 0 | 11 | 0 | 0 | 3 | 42 | 35 | 0 | 7 |
GCC-09 | Siliceous shale | 1.55 | 43 | 0 | 12 | 0 | 0 | 1 | 44 | 36 | 0 | 8 |
GCC-15 | Argillaceous shale | 1.15 | 25 | 0 | 17 | 0 | 0 | 1 | 57 | 40 | 0 | 17 |
GCC-19 | Argillaceous shale | 0.98 | 27 | 0 | 11 | 0 | 0 | 2 | 60 | 48 | 0 | 12 |
GCC-23 | Argillaceous shale | 0.81 | 31 | 0 | 9 | 0 | 0 | 0 | 60 | 50 | 0 | 10 |
GCC-31 | Argillaceous shale | 0.90 | 33 | 0 | 13 | 0 | 0 | 1 | 52 | 43 | 8 | 1 |
GCC-34 | Argillaceous shale | 1.00 | 26 | 0 | 9 | 0 | 0 | 1 | 64 | 45 | 0 | 19 |
GCC-39 | Argillaceous shale | 0.97 | 34 | 0 | 15 | 0 | 0 | 0 | 51 | 47 | 0 | 4 |
GCC-43 | Argillaceous shale | 1.01 | 28 | 0 | 12 | 0 | 0 | 1 | 59 | 42 | 0 | 17 |
GCC-66 | Siliceous shale | 2.59 | 36 | 0 | 15 | 0 | 0 | 0 | 49 | 34 | 0 | 15 |
GCC-67 | Argillaceous shale | 3.09 | 31 | 0 | 15 | 0 | 0 | 1 | 53 | 30 | 0 | 23 |
ND1-28 | Siliceous shale | 0.36 | 50 | 25 | 0 | 0 | 0 | 6 | 19 | 11 | 8 | 0 |
ND1-33 | Siliceous shale | 2.22 | 32 | 35 | 0 | 0 | 17 | 7 | 9 | 7 | 2 | 0 |
ND1-40 | Siliceous shale | 1.78 | 35 | 26 | 0 | 0 | 22 | 5 | 13 | 9 | 3 | 0 |
ND1-44 | Siliceous shale | 1.7 | 30 | 29 | 0 | 0 | 20 | 10 | 9 | 7 | 1 | 0 |
ND1-51 | Siliceous shale | 1.54 | 34 | 21 | 0 | 0 | 30 | 3 | 12 | 8 | 4 | 0 |
ND1-58 | Siliceous shale | 2.6 | 31 | 23 | 0 | 0 | 31 | 4 | 11 | 6 | 5 | 0 |
ND1-67 | Siliceous shale | 8.3 | 36 | 18 | 0 | 8 | 20 | 4 | 14 | 8 | 5 | 0 |
ND1-76 | Siliceous shale | 4.8 | 93 | 0 | 0 | 1 | 2 | 1 | 3 | 3 | 0 | 0 |
ND1-82 | Siliceous shale | 6.5 | 52 | 0 | 15 | 3 | 3 | 7 | 20 | 13 | 7 | 0 |
ND1-96 | Siliceous shale | 4.3 | 69 | 0 | 8 | 8 | 5 | 4 | 6 | 5 | 1 | 0 |
ND1-104 | Siliceous shale | 3.3 | 47 | 0 | 8 | 3 | 16 | 4 | 22 | 15 | 7 | 0 |
ND1-113 | Siliceous shale | 4.01 | 49 | 0 | 7 | 30 | 4 | 3 | 7 | 5 | 2 | 0 |
ND1-122 | Siliceous shale | 1.9 | 59 | 0 | 14 | 5 | 5 | 5 | 12 | 9 | 3 | 0 |
ND1-135 | Siliceous shale | 1.4 | 38 | 0 | 12 | 22 | 13 | 2 | 13 | 10 | 2 | 1 |
ND1-153 | Siliceous shale | 0.7 | 50 | 0 | 16 | 7 | 0 | 4 | 23 | 17 | 2 | 4 |
YWT-28 | Siliceous shale | 10.98 | 79 | 3 | 0 | 0 | 0 | 4 | 14 | 9 | 1 | 4 |
YWT-37 | Siliceous shale | 11.6 | 92 | 0 | 0 | 0 | 0 | 2 | 6 | 5 | 1 | 0 |
YWT-40 | Siliceous shale | 11.23 | 82 | 0 | 0 | 0 | 0 | 1 | 17 | 11 | 3 | 3 |
YWT-42 | Siliceous shale | 10.67 | 76 | 2 | 0 | 0 | 0 | 4 | 18 | 14 | 4 | 0 |
YWT-49 | Siliceous shale | 9.46 | 88 | 2 | 0 | 0 | 0 | 2 | 8 | 6 | 2 | 0 |
YWT-55 | Siliceous shale | 11.26 | 77 | 4 | 0 | 0 | 0 | 3 | 16 | 9 | 2 | 2 |
YWT-61 | Siliceous shale | 13.2 | 89 | 2 | 0 | 0 | 0 | 2 | 5 | 1 | 0 | 2 |
YWT-75 | Siliceous shale | 5.81 | 96 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 |
Samples | Lithology | TOC | Illite | Excess-Si | N2 Adsorption | CO2 Adsorption | ||||
---|---|---|---|---|---|---|---|---|---|---|
BET Surface Area, m2/g | BJH Mesopore Volume, cm3/100 g | Maximum Adsorption Volume, cm3/g | DFT Micropore Surface Area, m2/g | DFT Micropore Volume, cm3/100 g | Maximum Adsorption Volume, cm3/g | |||||
GCC-09 | Siliceous shale | 1.55 | 36 | 7.62 | 10.84 | 2.54 | 16.94 | 6.74 | 0.200 | 1.82 |
GCC-66 | Siliceous shale | 2.59 | 34 | - | 30.43 | 4.61 | 31.84 | 7.59 | 0.245 | 1.94 |
ND1-28 | Siliceous shale | 0.36 | 11 | 3.23 | 4.47 | 0.66 | 4.80 | 2.13 | 0.071 | 0.82 |
ND1-96 | Siliceous shale | 4.35 | 5 | 18.29 | 22.11 | 1.15 | 11.41 | 11.75 | 0.361 | 2.59 |
YWT-49 | Siliceous shale | 9.46 | 6 | 27.57 | 4.30 | 2.17 | 13.92 | 13.31 | 0.394 | 2.65 |
YWT-75 | Siliceous shale | 3.20 | 4 | 31.27 | 25.02 | 4.42 | 29.97 | 9.46 | 0.294 | 2.15 |
GCC-31 | Argillaceous shale | 0.90 | 43 | 2.51 | 11.91 | 2.12 | 14.81 | 5.95 | 0.188 | 1.62 |
GCC-34 | Argillaceous shale | 1.00 | 45 | 1.65 | 8.22 | 1.86 | 12.73 | 5.09 | 0.166 | 1.41 |
GCC-39 | Argillaceous shale | 0.97 | 47 | 4.91 | 16.53 | 3.05 | 21.02 | 6.77 | 0.212 | 1.55 |
GCC-43 | Argillaceous shale | 1.01 | 42 | 2.74 | 8.15 | 1.75 | 12.34 | 4.99 | 0.149 | 2.03 |
GCC-67 | Argillaceous shale | 3.97 | 30 | 6.02 | 9.18 | 1.54 | 10.89 | 0.90 | 0.031 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Yan, D.; Hu, M.; Liu, Z.; Wei, X.; Zuo, M. Controls of Distinct Mineral Compositions on Pore Structure in Over-Mature Shales: A Case Study of Lower Cambrian Niutitang Shales in South China. Minerals 2021, 11, 51. https://doi.org/10.3390/min11010051
Niu X, Yan D, Hu M, Liu Z, Wei X, Zuo M. Controls of Distinct Mineral Compositions on Pore Structure in Over-Mature Shales: A Case Study of Lower Cambrian Niutitang Shales in South China. Minerals. 2021; 11(1):51. https://doi.org/10.3390/min11010051
Chicago/Turabian StyleNiu, Xing, Detian Yan, Mingyi Hu, Zixuan Liu, Xiaosong Wei, and Mingtao Zuo. 2021. "Controls of Distinct Mineral Compositions on Pore Structure in Over-Mature Shales: A Case Study of Lower Cambrian Niutitang Shales in South China" Minerals 11, no. 1: 51. https://doi.org/10.3390/min11010051
APA StyleNiu, X., Yan, D., Hu, M., Liu, Z., Wei, X., & Zuo, M. (2021). Controls of Distinct Mineral Compositions on Pore Structure in Over-Mature Shales: A Case Study of Lower Cambrian Niutitang Shales in South China. Minerals, 11(1), 51. https://doi.org/10.3390/min11010051