Flotation Performance and Adsorption Mechanism of a Novel Chelating Collector for Azurite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Micro-Flotation Tests
2.3. Zeta Potential Measurements
2.4. FT-IR Experiments
2.5. XPS Analysis
2.6. FESEM-EDS Analysis
2.7. Density Functional Theory (DFT) Calculations
3. Results and Discussion
3.1. Flotation Behavior
3.2. Zeta Potential Measurements
3.3. FT-IR Analysis
3.4. XPS Analysis
3.5. FESEM-EDSanalysis
3.6. DFT Calculation Analyses
4. Conclusions
- (1)
- The pure mineral flotation test shows that, compared with NaIX and BHA, CDDP has better flotation performance. In the flotation conditions of pH 7 and CDDP dosage of 3 × 10−4 mol/L, CDDP can float 94.59% of azurite directly. For NaIX and BHA, the recovery rate of azurite is lower than 70%, whether it is direct flotation or presulfide flotation.
- (2)
- Zeta potential, FT-IR and FE-SEM analysis show that CDDP adsorption may be chemical adsorption. CDDP covers the Cu sites on the surface of azurite to form a CDDP-Cu2+ surface complex that is chemically adsorbed by azurite. XPS analysis shows that some Cu(II) ions on the surface of azurite treated by CDDP are reduced to the Cu(I) state. At the same time, the minerals react with S in CDDP to form polysulfides, thereby promoting flotation.
- (3)
- DFT calculations show that, compared with NaIX and BHA, CDDP has the largest negative adsorption energy on the surface of azurite, with an adsorption energy of 164.707 KJ/mol, and the strongest interaction with the mineral surface, making it easier to perform direct flotation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, K.; Park, S.; Choi, J.; Kim, G.; Tong, M.; Kim, H. Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector. Sep. Purif. Technol. 2016, 168, 1–7. [Google Scholar] [CrossRef]
- Yu, X.Y.; Zhang, R.R.; Zeng, Y.H.; Cheng, C. The effect and mechanism of cinnamic hydroxamic acid as a collector in flotation separation of malachite and calcite. Miner. Eng. 2021, 164, 106847. [Google Scholar] [CrossRef]
- Barbaro, M.; Urbina, R.H.; Cozza, C. Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector. Int. J. Miner. Processing 1997, 50, 275–287. [Google Scholar] [CrossRef]
- Lee, K.; Archibald, D.; Mclean, J. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Miner. Eng. 2009, 22, 395–401. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, G.L.; Song, S.X.; Li, H.Q. Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite. Colloid. Surface 2018, A555, 679–684. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Wen, S. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Appl. Surf. Sci. 2018, 436, 823–831. [Google Scholar] [CrossRef]
- Cai, J.; Shen, P.; Liu, D. Growth of covellite crystal onto azurite surface during sulfurization and its response to flotation behavior. Int. J. Min. Sci. Technol. 2021, 7, 1003–1012. [Google Scholar] [CrossRef]
- Nagaraj, D.R.; Ravishankar, S.A. Flotation Reagents—A Critical Overview from an Industry Perspective; Froth flotation: A century of innovation; Society for Mining: Littleton, CO, USA, 2007; pp. 375–424. [Google Scholar]
- Yang, X.L.; Huang, Y.G.; Liu, G.Y.; Liu, J.; Ma, L.Q. A DFT prediction on the chemical reactivity of novel azolethione derivatives as chelating agents: Implications for copper minerals flotation and copper corrosion inhibition. J. Taiwan Inst. Chem. Eng. 2018, 93, 109–123. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Herrera, U.R.; Mcglashan, D.W. Studies on the applicability of chelating agents as universal collectors for copper minerals. Int. J. Miner. Process. 2000, 58, 15–33. [Google Scholar] [CrossRef]
- Akbar, A.M.; Livingston, S.E. Metal complexes of Sulphur-nitrogen chelating agents. Coord. Chem. Rev. 1974, 13, 101–132. [Google Scholar] [CrossRef]
- Martell, A.E.; Calvin, M. Chemistry of Metal Chelate Compounds; Prentice-Hall: Hoboken, NJ, USA, 1952; pp. 613–626. [Google Scholar]
- Kukushkin, V.Y.; Tudela, D.; Pombeiro, A.J.L. Metal-ion assisted reactions of oximes and reactivity of oxime-containing metal complexes. Coord. Chem. Rev. 1996, 156, 333–362. [Google Scholar] [CrossRef]
- Popp, C.J.; Ragsdale, R.O. Nickel (II), cobalt (II), and copper (II) complexes with N-methyl-p-nitroso-aniline and p-nitrosoaniline. J. Chem. Soc. A 1970, 1822–1825. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhong, H.; Wang, S.; Niu, Y.N.; Liu, G.Y. Synthesis of 2-ethyl-2-hexenaloxime and its flotation performance for copper ore. Miner. Eng. 2014, 66, 173–180. [Google Scholar] [CrossRef]
- Li, L.Q.; Zhao, J.H.; Xiao, Y.Y.; Huang, Z.Q.; Guo, Z.Z.; Li, F.X.; Deng, L.Q. Flotation performance and adsorption mechanism of malachite with tert-butylsalicylaldoxime. Purif. Technol. 2019, 210, 843–849. [Google Scholar] [CrossRef]
- Liu, G.; Zhong, H.; Xia, L.; Wang, S.; Xu, Z. Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector. Miner. Eng. 2011, 24, 817–824. [Google Scholar]
- Lee, J.S.; Nagaraj, D.R.; Coe, J.E. Practical aspects of oxide copper recovery with alkyl hydroxamates. Miner. Eng. 1998, 11, 929–939. [Google Scholar] [CrossRef]
- Hope, G.A.; Buckley, A.N.; Parker, G.K.; Numprasanthai, A.; Woods, R.; McLean, J. The interaction of n-octanohydroxamate with chrysocolla and oxide copper surfaces. Miner. Eng. 2012, 36, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.J.; Liu, G.Y.; Zhong, H. The adsorption mechanism of N-butoxypropyl-S-[2-(hydroxyimino)propyl] dithiocarbamate ester to copper minerals flotation. Int. J. Miner. Process. 2017, 166, 53–61. [Google Scholar] [CrossRef]
- Deng, L.Q.; Zhao, G.; Zhong, H.; Wang, S.; Liu, G.Y. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotationseparation. J. Ind. Eng. Chem. 2016, 33, 131–141. [Google Scholar] [CrossRef]
- Li, F.; Zhong, H.; Xu, H.; Jia, H.; Liu, G. Flotation behavior and adsorption mechanism of a-hydroxyoctyl phosphinic acid to malachite. Miner. Eng. 2015, 71, 188–193. [Google Scholar] [CrossRef]
- Tijsseling, L.T.; Dehaine, Q.; Rollinson, G.K.; Glass, H.J. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Miner. Eng. 2019, 138, 246–256. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, J.; Zhou, D.; Zhong, H.; Choi, P.; Xu, Z. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2013, 434, 243–252. [Google Scholar] [CrossRef]
- Zhang, X.R.; Lu, L.; Zhu, Y.G.; Han, L.; Li, C.B. Research on the separation of malachite from quartz with S-carboxymethyl-O, O’-dibutyl dithiophosphate chelating collector and its insights into flotation mechanism. Powder Technol. 2020, 366, 130–136. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, L.; Li, Y.; Yangge, Z.; Long, H.; Chengbi, L. Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism. Sep. Purif. Technol. 2020, 255, 11732. [Google Scholar]
- Zhang, Q.; Wen, S.; Feng, Q.; Zhang, S. Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism. Sep. Purif. Technol. 2020, 242, 116760. [Google Scholar] [CrossRef]
- Sheng, Q.Y.; Yin, W.Z.; Yang, B.; Cao, S.; Sun, H.; Ma, Y.; Chen, K. Improving surface sulfidization of azurite with ammonium bisulfate and its contribution to sulfidization flotation. Miner. Eng. 2021, 171, 107072. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhong, H.; Wang, S.; Huang, Z.Q.; Zhao, G. Synthesis of novel cyclohexene carboxylic acid and its flotation performance for fluorite ore. Chin. J. Nonferrous Met. 2014, 24, 2935–2942. [Google Scholar]
- Yu, J.; Yang, H.Y.; Fan, Y.J. Effect of potential on characteristics of surface film on natural chalcopyrite. Trans. Nonferrous Met. Soc. China 2011, 21, 1880–1886. [Google Scholar] [CrossRef]
- Hu, W.J.H.; Tian, M.J.; Cao, J.; Xie, L.; Gong, L.; Sun, W.; Gao, Z.; Zeng, H. Probing the Interaction Mechanism between Benzohydroxamic Acid and Mineral Surface in the Presence of Pb2+ Ions by AFM Force Measurements and First-Principles Calculations. Langmuir 2020, 36, 8199–8208. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Li, W.H.; Zhou, Z.H.; Gao, Z.Y.; Hu, Y.; Sun, W. 1-Hydroxyethylidene-1,1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: Depressing behavior and mechanism. Chem. Eng. Sci. 2020, 214, 115369. [Google Scholar] [CrossRef]
- Lopez, T.; Cuevas, J.L.; Ilharco, L.; Ramírez, P.F.; Rodríguez-Reinoso, F.; Rodríguez-Castellón, E. XPS characterization and E. Coli DNA degradation using functionalized Cu/TiO2nanobiocatalysts. Mol. Catal. 2018, 449, 62–71. [Google Scholar] [CrossRef]
- Zhao, W.J.; Liu, D.W.; Feng, Q.C.; Wen, S.M.; Chang, W.H. DFT insights into the electronic properties and adsorption mechanism of HS− on smithsonite (101) surface. Miner. Eng. 2019, 141, 105846. [Google Scholar] [CrossRef]
- Smart, R.S.C.; Skinner, W.M.; William, M.G.; Andrea, R. XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental Sulphur. Surf. Interf. Anal. 1999, 28, 101–105. [Google Scholar] [CrossRef]
- Robert, G.A.; Sarah, L.H.; David, A.B. Synchrotron PEEM and ToF-SIMS study of oxidized heterogeneous pentlandite. pyrrhotite and chalcopyrite. J. Synchrotron Radiat. 2010, 17, 606–615. [Google Scholar]
- Chen, X.M.; Peng, Y.J.; Dee, B. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Miner. Eng. 2014, 58, 64–72. [Google Scholar] [CrossRef]
- Feng, Q.C.; Wen, S.M.; Deng, J.S.; Zhao, W.J. Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride. Appl. Surf. Sci. 2017, 425, 8–15. [Google Scholar] [CrossRef]
- LI, F.X.; Zhou, X.T.; Lin, R.X. Flotation performance and adsorption mechanism of novel 1-(2-hydroxyphenyl)hex-2-en-1-one oxime flotation collector to malachite. Nonferrous Met. Soc. 2020, 30, 2792–2801. [Google Scholar] [CrossRef]
- Feng, Q.C.; Zhao, W.J.; Wen, S.M.; Cao, Q.B. Copper sulfide species formed on malachite surfaces in relation to flotation. J. Ind. Eng. Chem. 2016, 12, 029. [Google Scholar] [CrossRef]
- Zhang, L. Study on the Flotation Mechanism of Chrysocolla Sulfide Enhanced by Amine (ammonium) Salt. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2018. [Google Scholar]
- Bi, K.J. Study on the Mechanism of Sulfide Flotation of Mixed Copper Ore. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2017. [Google Scholar]
- Wen, S.M.; Deng, J.S.; Xian, Y.J.; Dan, L. Theory analysis and vestigial information of surface relaxation of natural chalcopyrite mineral crystal. Trans. Nonferrous Met. Soc. China 2013, 23, 796–803. [Google Scholar] [CrossRef]
- Lan, L.H.; Chen, J.H.; Li, Y.Q.; Chen, Y. Effect of Vacancy Defects on the Adsorption of Oxygen Molecules on Galena (100) Surface. Chin. J. Nonferrous Met. 2012, 9, 2626–2635. [Google Scholar]
Element | Cu | Fe | S | SiO2 | Al2O3 | CaO | MgO |
---|---|---|---|---|---|---|---|
Content/% | 55.30 | 0.34 | 0.06 | 0.8 | 0.3 | 0.01 | 0.005 |
Sample | Atomic Concentrates, % | |||
---|---|---|---|---|
C 1s | O 1s | Cu 2p | S 2p | |
Azurite | 21.65 | 26.47 | 51.35 | 0.53 |
Azurite + CDDP | 25.02 | 23.88 | 48.00 | 3.10 |
Sample | Species | Cu 2p3/2binding Energy, eV | Species Distribution, % |
---|---|---|---|
Azurite | Cu(I) | - | 0.00 |
Cu(II) | 933.95 | 100.00 | |
Azurite + CDDP | Cu(I) | 953.95 | 28.58 |
Cu(II) | 934.05 | 71.42 |
Sample | Species | Cu 2p3/2 Binding Energy, eV | Species Distribution, % |
---|---|---|---|
Azurite | - | - | 0.00 |
Azurite + CDDP | S2− | 164.68 | 80.17 |
Sn2− | 165.90 | 19.83 |
Species | Adsorption Energy ΔE(KJ/mol) |
---|---|
CDDP-Cu3(CO3)2(OH)2 | −164.707 |
BHA-Cu3(CO3)2(OH)2 | −126.179 |
C5H11OCSS-Cu3(CO3)2(OH)2 | −129.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Huang, L.; Yang, B.; Xie, X.; Tong, X.; Zhang, X.; Sun, X. Flotation Performance and Adsorption Mechanism of a Novel Chelating Collector for Azurite. Minerals 2022, 12, 441. https://doi.org/10.3390/min12040441
Hu B, Huang L, Yang B, Xie X, Tong X, Zhang X, Sun X. Flotation Performance and Adsorption Mechanism of a Novel Chelating Collector for Azurite. Minerals. 2022; 12(4):441. https://doi.org/10.3390/min12040441
Chicago/Turabian StyleHu, Bo, Lingyun Huang, Bo Yang, Xian Xie, Xiong Tong, Xiongrong Zhang, and Xin Sun. 2022. "Flotation Performance and Adsorption Mechanism of a Novel Chelating Collector for Azurite" Minerals 12, no. 4: 441. https://doi.org/10.3390/min12040441
APA StyleHu, B., Huang, L., Yang, B., Xie, X., Tong, X., Zhang, X., & Sun, X. (2022). Flotation Performance and Adsorption Mechanism of a Novel Chelating Collector for Azurite. Minerals, 12(4), 441. https://doi.org/10.3390/min12040441