The Relationship between Granitic Magma and Mineralization in the Darongxi Skarn W Deposit, Xiangzhong District, South China: Constrained by Zircon and Apatite
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Deposit Geology
- (1)
- Grayish white medium-coarse-grained biotite monzonite granite, with granitic texture (Figure 4a). Fine quartz veins and aplite veins can be seen locally, and garnetization and chloritization are locally developed, and the alteration width is about 10~15 cm (Figure 4b). The main minerals include orthoclase (20%–25%), plagioclase (25%–30%), quartz (30%–40%). The minor minerals are muscovite (1%–5%), biotite (5%–10%), albite (1%–5%), and chlorite (1%–5%). The accessory minerals are mainly grossular, zircon, almandine-spessartine, and apatite (Figure 5a–e), and some biotite was altered into muscovite and chlorite (Figure 5f).
- (2)
- Medium-fine-grained muscovite monzonite granite with granitic texture, which mainly intrudes into the slate of the Nantuo Formation in the form of veins (Figure 4c), the width is about 5~20 cm, and a large amount of muscovite can be seen locally. The main minerals include quartz (40%–45%) and orthoclase (30%–35%), while the minor minerals are plagioclase (5%–10%), albite (5%–10%), biotite (1%–5%), and muscovite (1%–5%). The accessory minerals are ilmenite, almandine-spessartine, apatite, chlorite, schorl, zircon (Figure 5g–j). Some biotite are altered into muscovite and chlorite (Figure 5k).
- (3)
- Felsophyre is light yellowish brown and mainly intrudes into the Nantuo Formation in the form of veins (Figure 4d). The veins are wide, about 3 m, with porphyritic structures. The phenocryst is mainly quartz (50%–60%), albite (15%–20%), orthoclase (15%–20%), and muscovite (10%–15%). Several quartz veins crosscutting felsophyre can be seen (Figure 5l).
3. Sampling and Analytical Methods
4. Results
4.1. Zircon U-Pb Dating
4.2. Lu-Hf Isotope Data for Zircon
4.3. The Trace Element Composition of Zircon
4.4. Major and Trace Element Composition of Apatite
5. Discussion
5.1. Temporal and Spatial Distribution of W Deposits
5.2. The Nature of Ore-Bearing Magma
5.3. Coupling Relationship between Magma and Mineralization
6. Conclusions
- (1)
- The Zircon U-Pb age of biotite monzonite granite, muscovite monzonite granite, and felsophyre in the Darongxi mining area ranged between 220.8 and 222.3 Ma, and εHf(t) ranged from −2.2 to −8.1, with the magma source mainly deriving from the Mesoproterozoic crust.
- (2)
- The ore-bearing magma in the Darongxi W deposit is reduced, as well as being rich in F and poor in Cl.
- (3)
- The reduced F-rich crust-source granitic rock and W-rich source provide favorable conditions for the mineralization of the Darongxi reduced skarn W deposit.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Zhao, Y.M. Some New Important Advances in Study of Skarn Deposits. Miner. Depos. 2002, 21, 113–120. (In Chinese) [Google Scholar]
- Newberry, R.J.; Swanson, S.E. Scheelite skarn granitoids: An evaluation of the roles of magmatic source and process. Ore Geol. Rev. 1986, 1, 57–81. [Google Scholar] [CrossRef]
- Förster, H.J.; Tischendorf, G.; Trumbull, R.B.; Gottesmann, B. Late-collisional granites in the Variscan Erzgebirge, Germany. J. Petrol. 1999, 40, 1613–1645. [Google Scholar] [CrossRef]
- Mao, J.W.; Cheng, Y.B.; Chen, G.H.; Franco, P. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Song, S.W.; Mao, J.W.; Xie, G.Q.; Song, H.; Chen, G.H.; Rao, J.F.; Ouyang, Y.P. Identification of ore-related granitic intrusions in W skarn deposits: A case study of giant Zhuxi W skarn deposit. Miner. Depos. 2018, 37, 940–960. (In Chinese) [Google Scholar]
- Su, Q.W.; Mao, J.W.; Wu, S.H.; Zhang, Z.C.; Xu, S.F. Geochronology and geochemistry of the granitoids and ore–forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization. Lithos 2018, 296, 365–381. [Google Scholar] [CrossRef]
- Li, G.M.; Cao, M.J.; Qin, K.Z.; Evans, N.J.; Hollings, P.; Seitmuratova, E.Y. Geochronology, petrogenesis and tectonic settings of pre-and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan. Lithos 2016, 252, 16–31. [Google Scholar] [CrossRef]
- Kong, Z.G.; Liang, T.; Mao, J.W.; Xu, S.F.; Xu, H.B.; Yan, P.P.; Jin, X.Y. Study on perogenesis of granodiorite, metallogenic epoch and petrogenetic-metallogenetic setting in the Zhuxiling tungsten polymetallic deposit, southern Anhui Province, China. Acta Petrol. Sin. 2018, 34, 2632–2656. (In Chinese) [Google Scholar]
- Poitrenaud, T.; Poujol, M.; Augier, R.; Marcoux, E. The polyphase evolution of a late Variscan W/Au deposit (Salau, French Pyrenees): Insights from REE and U/Pb LA-ICP-MS analyses. Miner. Depos. 2020, 55, 1127–1147. [Google Scholar] [CrossRef]
- Sun, S.J.; Yang, X.Y.; Wang, G.J.; Sun, W.D.; Zhang, H.; Li, C.Y.; Ding, X. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny. Chem. Geol. 2019, 510, 200–214. [Google Scholar] [CrossRef]
- Wang, L.X.; Ma, C.Q.; Zhang, C.; Zhu, Y.X.; Marks, M.A. Halogen geochemistry of I-and A-type granites from Jiuhuashan region (South China): Insights into the elevated fluorine in A-type granite. Chem. Geol. 2018, 478, 164–182. [Google Scholar] [CrossRef]
- Harlov, D.E. Apatite: A fingerprint for metasomatic processes. Elements 2015, 11, 171–176. [Google Scholar] [CrossRef]
- Li, W.; Xie, G.Q.; Mao, J.W.; Cook, N.J.; Wei, H.T.; Ji, Y.H.; Fu, B. Precise age constraints for the Woxi Au-Sb-W deposit, south China. Econ. Geol. 2023, 118, 509–518. [Google Scholar] [CrossRef]
- Hu, A.X.; Peng, J.T. Fluid inclusions and ore precipitation mechanism in the giant Xikuangshan mesothermal antimony deposit, South China: Conventional and infrared microthermometric constraints. Ore Geol. Rev. 2018, 95, 49–64. [Google Scholar] [CrossRef]
- Wang, C.; Peng, J.T.; Xu, J.B.; Yang, J.H.; Hu, A.X.; Chen, X.J. Petrogenesis and metallogenic effect of the Baimashan granitic complex in central Hunan, South China. Acta Petrol. Sin. 2021, 37, 805–829. (In Chinese) [Google Scholar] [CrossRef]
- Lu, Y.L.; Peng, J.T.; Yang, J.H.; Hu, A.X.; Li, Y.K.; Tan, H.Y.; Xiao, Q.Y. Petrogenesis of the Ziyunshan pluton in central Hunan, South China: Constraints from zircon U-Pb dating, element geochemistry and Hf-O isotopes. Acta Petrol. Sin. 2017, 33, 1705–1728. (In Chinese) [Google Scholar]
- Fu, S.L.; Hu, R.Z.; Bi, X.W.; Chen, Y.W.; Yang, J.H.; Huang, Y. Origin of Triassic granites in central Hunan Province, South China: Constraints from zircon U–Pb ages and Hf and O isotopes. Int. Geol. Rev. 2015, 57, 97–111. [Google Scholar] [CrossRef]
- Loucks, R.R.; Fiorentini, M.L.; Henríquez, G.J. New magmatic oxybarometer using trace elements in zircon. J. Petrol. 2020, 61, egaa034. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Zhang, L.S.; Peng, J.T.; Lin, F.M. Mineralogical, geochemical characteristics and formation mechanism of skarn minerals in the Darongxi tungsten deposit, western Hunan. Geol. Rev. 2020, 66, 113–139. (In Chinese) [Google Scholar]
- Xue, H.M. Geochronology, geochemistry and stratospheric interactions of Late Mesozoic granitoids near the boundary between Anhui and Zhejiang provinces in the eastern segment of the Jiangnan orogenic belt. Acta Petrol. Sin. 2021, 37, 433–461. (In Chinese) [Google Scholar] [CrossRef]
- Dong, G.J.; Xu, D.R.; Wang, L.; Chen, G.H.; He, Z.L.; Fu, G.G.; Wu, J.; Wang, Z.L. Determination of mineralizing ages on gold ore deposits in the eastern Hunan province, south China and Isotopic tracking on ore-forming fluids--re-discussing gold ore deposit. Geotecton. Metallog. 2008, 32, 482–491. [Google Scholar]
- Li, X.Y.; Lu, J.J.; Zhang, R.Q.; Gao, J.F.; Wu, J.W. Magma evolution leading to veinlet-disseminated tungsten mineralization at the Muguayuan deposit: In-situ analysis of igneous minerals. Ore Geol. Rev. 2021, 138, 104406. [Google Scholar] [CrossRef]
- Zhang, S.T.; Zhang, R.Q.; Lu, J.J.; Ma, D.S.; Ding, T.; Gao, S.Y.; Zhang, Q. Neoproterozoic tin mineralization in South China: Geology and cassiterite U–Pb age of the Baotan tin deposit in northern Guangxi. Miner. Depos. 2019, 54, 1125–1142. [Google Scholar] [CrossRef]
- Song, S.W.; Mao, J.W.; Xie, G.Q.; Lehmann, B.; Jian, W.; Wang, X.G. The world-class mid-Mesozoic Jiangnan tungsten belt, South China: Coeval large reduced and small oxidized tungsten systems controlled by different magmatic petrogeneses. Ore Geol. Rev. 2021, 139, 104543. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.Q.; Mao, J.W.; Ciobanu, C.L.; Li, J.W.; Zhang, Z.Y. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, South China. Miner. Depos. 2019, 54, 591–610. [Google Scholar] [CrossRef]
- Li, J.K.; Liu, Y.C.; Zhao, Z.; Chou, I.M. Roles of carbonate/CO2 in the formation of quartz-vein wolframite deposits: Insight from the crystallization experiments of huebnerite in alkali-carbonate aqueous solutions in a hydrothermal diamond-anvil cell. Ore Geol. Rev. 2018, 95, 40–48. [Google Scholar] [CrossRef]
- Hu, R.Z.; Fu, S.L.; Huang, Y.; Zhou, M.F.; Fu, S.H.; Zhao, C.H.; Wang, Y.J.; Bi, X.W.; Xiao, J.F. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Xie, G.Q.; Mao, J.W.; Bagas, L.; Fu, B.; Zhang, Z.Y. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China: Implications for a distal reduced skarn W formation. Miner. Depos. 2019, 54, 459–472. [Google Scholar] [CrossRef]
- Su, K.M.; Lu, S.J.; Kong, L.B.; Yang, F.Q.; Xiang, J.F. Geological characteristics, metallogenetic regularity and model of quartz vein type tungsten deposits in Chongyangping, Hunan Province. Miner. Depos. 2016, 35, 902–912. (In Chinese) [Google Scholar]
- Li, W.; Xie, G.Q.; Mao, J.W.; Zhang, H.C. Mineralogy, fluid inclusion and isotope signatures: Implications for the genesis of the Early Paleozoic Yangjiashan scheelite-quartz vein deposit, South China. Ore Geol. Rev. 2021, 134, 104136. [Google Scholar] [CrossRef]
- Xie, G.Q.; Mao, J.W.; Li, W.; Fu, B.; Zhang, Z.Y. Granite-related Yangjiashan tungsten deposit, southern China. Miner. Depos. 2019, 54, 67–80. [Google Scholar] [CrossRef]
- Zhang, L.S.; Peng, J.T.; Hu, A.X.; Lin, F.M.; Zhang, T. Re-Os dating of molybdenite from Darongxi tungsten deposit in Western Hunan and its geological implications. Miner. Depos. 2014, 33, 181–189. (In Chinese) [Google Scholar]
- Xu, H.J.; Ma, C.Q.; Zhao, J.H.; Zhang, J.F. Petrogenesis of Dashenshan I-type granodiorite: Implications for Triassic crust–mantle interaction, South China. Int. Geol. Rev. 2014, 56, 332–350. [Google Scholar] [CrossRef]
- Zhang, L.S.; Peng, J.T.; Zhang, D.L.; Hu, A.X.; Yang, J.H. Geochemistry and Petrogenesis of the Indosinian Dashenshan Granite, Western Hunan, South China. Geotecton. Metallog. 2012, 36, 137–148. (In Chinese) [Google Scholar]
- Shan, L.; Pang, Y.C.; Ke, X.Z.; Liu, J.J.; Chen, W.H.; Niu, Z.J.; Xu, D.M.; Long, W.G.; Wang, B.Q. Diagenetic and Metallogenic Age of the Muguayuan Tungsten Polymetallic Deposit and Its Effect on Regional Mineralization, Taojiang County, Northeastern Hunan Province, China. Geol. Sci. Technol. Inf. 2019, 38, 100–112. (In Chinese) [Google Scholar]
- Xu, H.J.; Ma, C.Q.; Zhao, J.H.; Zhang, J.F. Magma mixing generated Triassic I-type granites in South China. J. Geol. 2014, 122, 329–351. [Google Scholar] [CrossRef]
- Lv, Y.J.; Peng, J.; Cai, Y.F. Geochemical characteristics, U-Pb dating of hydrothermal titanite from the Xingfengshan tungsten deposit in Hunan Province and their geological significance. Acta Petrol. Sin. 2021, 37, 830–846. (In Chinese) [Google Scholar] [CrossRef]
- Peng, J.T.; Wang, C.; Li, Y.K.; Hu, A.X.; Lu, Y.L.; Chen, X.J. Geochemical characteristics and Sm-Nd geochronology of scheelite in the Baojinshan ore district, central Hunan. Acta Petrol. Sin. 2021, 37, 665–682. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Xie, G.Q.; Thompson, J. Skarn mineralogy and in-situ LA-ICP-MS U-Pb geochronology of wolframite for the Caojiaba tungsten deposit, southern China: Implications for a reduced tungsten skarn deposit. Ore Geol. Rev. 2022, 147, 104981. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, Y.C.; Wang, D.H.; Xu, J.; Chen, Z.H. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance. Geol. China 2012, 39, 1339–1344. (In Chinese) [Google Scholar]
- Bai, D.Y.; Wu, N.J.; Zhong, X.; Jia, P.Y.; Xiong, X.; Huang, W.Y. Geochronology, Petrogenesis and Tectonic Setting of Indosinian Wawutang Granites, Southwestern Hunan Province. Geotecton. Metallog. 2016, 40, 1075–1091. (In Chinese) [Google Scholar]
- Wang, K.X.; Chen, W.F.; Chen, P.R.; Ling, H.F.; Huang, H. Petrogenesis and geodynamic implications of the Xiema and Ziyunshan plutons in Hunan Province, South China. J. Asian Earth Sci. 2015, 111, 919–935. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.Y.; Griffin, W.L.; Meier, M.; Oberli, F.V.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 70. [Google Scholar]
- Hu, Z.C.; Li, X.H.; Luo, T.; Zhang, W.; Crowley, J.; Li, Q.L.; Ling, X.X.; Yang, C.; Li, Y.; Feng, L.P.; et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U–Pb ages and Zr–O isotopes. J. Anal. At. Spectrom. 2021, 36, 2715–2734. [Google Scholar] [CrossRef]
- Chu, N.C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Zou, T.R.; Qu, X.M.; Shi, Y.R.; Xie, G.Q. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol. Sin. 2007, 23, 2595–2604. (In Chinese) [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Morel, M.L.A.; Nebel, O.; Nebel-Jacobsen, Y.J.; Miller, J.S.; Vroon, P.Z. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 2008, 255, 231–235. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wang, K.X.; Chen, P.R.; Chen, W.F.; Ling, H.F.; Zhao, K.D.; Yu, Z.Q. Magma mingling and chemical diffusion in the Taojiang granitoids in the Hunan Province, China: Evidences from petrography, geochronology and geochemistry. Mineral. Petrol. 2012, 106, 243–264. [Google Scholar] [CrossRef]
- Lu, Y.L.; Peng, J.T.; Yang, J.H.; Li, Y.K.; Chen, X.J.; Zhou, X.; Li, G.L. Zircon U-Pb ages and Hf-O isotopes of granodiorite -porphyry in Baojinshan mining area and their geological significance. Chin. J. Nonferrous Met. 2017, 27, 1441–1454. (In Chinese) [Google Scholar]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Zhang, L.P.; Zhang, R.Q.; Wu, K.; Chen, Y.X.; Li, C.Y.; Hu, Y.B.; He, J.J.; Liang, J.L.; Sun, W.D. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W–Sn deposit, South China: Constraints from zircon and cassiterite U–Pb geochronology and whole-rock geochemistry. Ore Geol. Rev. 2018, 96, 115–129. [Google Scholar] [CrossRef]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.; McCuaig, T.C.; Evans, N.J.; Yang, Z.M.; Hou, Z.Q.; Kirkland, C.L.; Parra-Avila, L.A.; Kobussen, A. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits; Society of Economic Geologists, Special Publication: Littleton, CO, USA, 2016; pp. 329–347. [Google Scholar]
- Zou, X.Y.; Jiang, J.L.; Qin, K.Z.; Zhang, Y.G.; Yang, W.; Li, X.H. Progress in the principle and application of zircon trace element. Acta Petrol. Sin. 2021, 37, 985–999. (In Chinese) [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature 2011, 480, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.M.; Fleet, M.E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. Rev. Mineral. Geochem. 2002, 48, 13–49. [Google Scholar] [CrossRef]
- Sha, L.K.; Chappell, B.W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim. Cosmochim. Acta 1999, 63, 3861–3881. [Google Scholar] [CrossRef]
- Piccoli, P.; Candela, P. Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. Am. J. Sci. 1994, 294, 92–135. [Google Scholar] [CrossRef]
- Zhang, C.; Holtz, F.; Ma, C.Q.; Wolff, P.E.; Li, X.Y. Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: A case study from the Liujiawa pluton (Dabie orogen, China). Contrib. Mineral. Petrol. 2012, 164, 859–879. [Google Scholar] [CrossRef]
- Doherty, A.L.; Webster, J.D.; Goldoff, B.A.; Piccoli, P.M. Partitioning behavior of chlorine and fluorine in felsic melt–fluid(s)–apatite systems at 50MPa and 850–950 °C. Chem. Geol. 2014, 384, 94–111. [Google Scholar] [CrossRef]
- Blevin, P.L.; Chappell, B.W. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I-and S-type granites. Econ. Geol. 1995, 90, 1604–1619. [Google Scholar] [CrossRef]
- Huang, L.C.; Jiang, S.Y. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos 2014, 202–203, 207–226. [Google Scholar] [CrossRef]
- Dingwell, D.B.; Knoche, R.; Webb, S.L. The effect of F on the density of haplogranite melt. Am. Miner. 1993, 78, 325–330. [Google Scholar]
- Groves, D.I.; McCarthy, T.S. Fractional crystallization and the origin of tin deposits in granitoids. Miner. Depos. 1978, 13, 11–26. [Google Scholar] [CrossRef]
- Newberry, R. Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera. Ariz. Geol. Soc. Digest. 1981, 14, 99–111. [Google Scholar]
- Che, X.D.; Linnen, R.L.; Wang, R.C.; Groat, L.A.; Brand, A.A. Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada. Can. Miner. 2013, 51, 415–438. [Google Scholar] [CrossRef]
- Wade, J.; Wood, B.J.; Norris, C.A. The oxidation state of tungsten in silicate melt at high pressures and temperatures. Chem. Geol. 2013, 335, 189–193. [Google Scholar] [CrossRef]
- O'Neill, H.S.C.; Berry, A.J.; Eggins, S.M. The solubility and oxidation state of tungsten in silicate melts: Implications for the comparative chemistry of W and Mo in planetary differentiation processes. Chem. Geol. 2008, 255, 346–359. [Google Scholar] [CrossRef]
- Dingwell, D.B.; Webb, S.L. The fluxing effect of fluorine at magmatic temperatures (600–800 °C): A scanning calorimetric study. Am. Miner. 1992, 77, 30–33. [Google Scholar]
- Dingwell, D.B.; Scarfe, C.M.; Cronin, D.J. The effect of fluorine on viscosities in the system Na2O–Al2O3–SiO2: Implications for phonolites, trachytes and rhyolites. Am. Miner. 1985, 70, 80–87. [Google Scholar]
- Zhu, H.L.; Zhang, L.P.; Du, L.; Sui, Q.L. The geochemical behavior of tungsten and the genesis of tungsten deposits in South China. Acta Petrol. Sin. 2020, 36, 13–22. (In Chinese) [Google Scholar] [CrossRef]
Deposit | Deposit Age (Ma) | Uncertainty | Method of Dating | Reference | Related Pluton | Pluton Age (Ma) | Method of Dating | Uncertainty | Reference |
---|---|---|---|---|---|---|---|---|---|
Darongxi W deposit | 223.3 ± 3.9 | 2σ | Molybdenite Re-Os | [34] | Dashenshan | 210~224 | Zircon U-Pb | 1σ | [35,36] |
221~222 | Zircon U-Pb | 1σ | This study | ||||||
Muguayuan W deposit | 225.4 ± 1.4 | 2σ | Molybdenite Re-Os | [37] | Taojiang | 218~225 | Zircon U-Pb | 1σ | [38] |
Xingfengshan Au-W deposit | 215.2 ± 2.7 | 1σ | Titanite U-Pb | [39] | Baimashan | 204~226 | Zircon U-Pb | 1σ | [15] |
Baojinshan Au-W deposit | 207.8 ± 1.5 | 2σ | Scheelite Sm-Nd | [40] | Ziyunshan | 218~227 | Zircon U-Pb | 1σ | [16] |
Caojiaba W deposit | 211.8~212.4 | 1σ | Wolframite U-Pb | [41] | |||||
Zhazixi W deposit | 227.3 ± 6.2 | 1σ | Scheelite Sm-Nd | [42] | |||||
Weishan | 210~218 | Zircon U-Pb | 1σ | [17] | |||||
Congyangping | 214~215 | Zircon U-Pb | 1σ | [31] | |||||
Wawutang | 215~223 | Zircon U-Pb | 1σ | [43] | |||||
Xiema | 214~221 | Zircon U-Pb | 1σ | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Li, W.; Xie, G.; Yin, F. The Relationship between Granitic Magma and Mineralization in the Darongxi Skarn W Deposit, Xiangzhong District, South China: Constrained by Zircon and Apatite. Minerals 2024, 14, 280. https://doi.org/10.3390/min14030280
Cai L, Li W, Xie G, Yin F. The Relationship between Granitic Magma and Mineralization in the Darongxi Skarn W Deposit, Xiangzhong District, South China: Constrained by Zircon and Apatite. Minerals. 2024; 14(3):280. https://doi.org/10.3390/min14030280
Chicago/Turabian StyleCai, Lei, Wei Li, Guiqing Xie, and Fangyuan Yin. 2024. "The Relationship between Granitic Magma and Mineralization in the Darongxi Skarn W Deposit, Xiangzhong District, South China: Constrained by Zircon and Apatite" Minerals 14, no. 3: 280. https://doi.org/10.3390/min14030280
APA StyleCai, L., Li, W., Xie, G., & Yin, F. (2024). The Relationship between Granitic Magma and Mineralization in the Darongxi Skarn W Deposit, Xiangzhong District, South China: Constrained by Zircon and Apatite. Minerals, 14(3), 280. https://doi.org/10.3390/min14030280