Conformational Consequences for Compatible Osmolytes on Thermal Denaturation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Characterization
2.2. Steady State Spectroscopy
2.3. Fluorescence Spectra Measurements
2.4. Autodock Molecular Simulations
3. Results
3.1. Melting Temperature of Proteins in Presence of Disaccharide Co-Solutes
3.2. Hydration Dynamics of Disaccharide Solutions
3.3. Molecular Simulation of Protein–Co-Solute Interactions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lee, J.C.; Timasheff, S.N. The Stabilization of Proteins by Sucrose. J. Biol. Chem. 1981, 256, 7193–7201. [Google Scholar] [CrossRef]
- Yancey, P.H. Organic Osmolytes as Compatible, Metabolic and Counteracting Cytoprotectants in High Osmolarity and Other Stresses. J. Exp. Biol. 2005, 208, 2819–2830. [Google Scholar] [CrossRef] [Green Version]
- Rösgen, J.; Pettitt, B.M.; Bolen, D.W. Protein Folding, Stability, and Solvation Structure in Osmolyte Solutions. Biophys. J. 2005, 89, 2988–2997. [Google Scholar] [CrossRef] [Green Version]
- Politi, R.; Sapir, L.; Harries, D. The Impact of Polyols on Water Structure in Solution: A Computational Study. J. Phys. Chem. A 2009, 113, 7548–7555. [Google Scholar] [CrossRef]
- Jain, N.K.; Roy, I. Effect of Trehalose on Protein Structure. Protein Sci. 2008, 18, 24–36. [Google Scholar] [CrossRef]
- Carpenter, J.F.; Crowe, J.H. The Mechanism of Cryoprotection of Proteins by Solutes. Cryobiology 1988, 25, 244–255. [Google Scholar] [CrossRef]
- Sola-Penna, M.; Meyer-Fernandes, J.R. Stabilization against Thermal Inactivation Promoted by Sugars on Enzyme Structure and Function: Why Is Trehalose More Effective than Other Sugars? Arch. Biochem. Biophys. 1998, 360, 10–14. [Google Scholar] [CrossRef]
- Burg, M.B.; Ferraris, J.D. Intracellular Organic Osmolytes: Function and Regulation. J. Biol. Chem. 2008, 283, 7309–7313. [Google Scholar] [CrossRef] [Green Version]
- Hounsa, C.G.; Brandt, E.V.; Thevelein, J.; Hohmann, S.; Prior, B.A. Role of Trehalose in Survival of Saccharomyces Cerevisiae under Osmotic Stress. Microbiology 1998, 144 Pt 3, 671–680. [Google Scholar] [CrossRef]
- Newman, Y.M.; Ring, S.G.; Colaco, C. The Role of Trehalose and Other Carbohydrates in Biopreservation. Biotechnol. Genet. Eng. Rev. 1993, 11, 263–294. [Google Scholar] [CrossRef]
- Olsson, C.; Swenson, J. Structural Comparison between Sucrose and Trehalose in Aqueous Solution. J. Phys. Chem. B 2020, 124, 3074–3082. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.B.; Israeli, E.; Lighthart, B.; Crowe, J.H.; Crowe, L.M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ. Microbiol. 1995, 61, 3592–3597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heid, E.; Honegger, P.; Braun, D.; Szabadi, A.; Stankovic, T.; Steinhauser, O.; Schröder, C. Computational Spectroscopy of Trehalose, Sucrose, Maltose, and Glucose: A Comprehensive Study of TDSS, NQR, NOE, and DRS. J. Chem. Phys. 2019, 150, 175102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, N.; Pomarico, E.; Chen, L.; Chergui, M.; Othon, C.M. Retardation of Bulk Water Dynamics by Disaccharide Osmolytes. J. Phys. Chem. B 2016, 120, 9477–9483. [Google Scholar] [CrossRef]
- Shukla, N.; Goeks, J.; Taylor, E.A.; Othon, C.M. Hydration Dynamics in Solutions of Cyclic Polyhydroxyl Osmolytes. J. Phys. Chem. B 2019, 123, 8472–8479. [Google Scholar] [CrossRef] [PubMed]
- Ortbauer, M.; Popp, M. Functional Role of Polyhydroxy Compounds on Protein Structure and Thermal Stability Studied by Circular Dichroism Spectroscopy. Plant Physiol. Biochem. 2008, 46, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.K.; Lee, H.; Park, J.-Y.; Lim, J.-H.; Maj, M.; Choi, J.-H.; Kwak, K.-W.; Cho, M. Modulation of the Hydrogen Bonding Structure of Water by Renal Osmolytes. J. Phys. Chem. Lett. 2015, 6, 2773–2779. [Google Scholar] [CrossRef]
- Jackson-Atogi, R.; Sinha, P.K.; Rösgen, J. Distinctive Solvation Patterns Make Renal Osmolytes Diverse. Biophys. J. 2013, 105, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
- Lupi, L.; Comez, L.; Paolantoni, M.; Perticaroli, S.; Sassi, P.; Morresi, A.; Ladanyi, B.M.; Fioretto, D. Hydration and Aggregation in Mono- and Disaccharide Aqueous Solutions by Gigahertz-to-Terahertz Light Scattering and Molecular Dynamics Simulations. J. Phys. Chem. B 2012, 116, 14760–14767. [Google Scholar] [CrossRef]
- Vila Verde, A.; Kramer Campen, R. Disaccharide Topology Induces Slowdown in Local Water Dynamics. J. Phys. Chem. B 2011, 115, 7069–7084. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Cho, K.W.; Jeong, K.; Jung, S. Molecular Dynamics Simulations of Trehalose as a ‘Dynamic Reducer’ for Solvent Water Molecules in the Hydration Shell. Carbohydr. Res. 2006, 341, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Magazù, S.; Villari, V.; Migliardo, P.; Maisano, G.; Telling, M.T.F. Diffusive Dynamics of Water in the Presence of Homologous Disaccharides: A Comparative Study by Quasi Elastic Neutron Scattering. IV. J. Phys. Chem. B 2001, 105, 1851–1855. [Google Scholar] [CrossRef]
- Voth, G.A.; Haller, G.; Gollub, J.P. Experimental Measurements of Stretching Fields in Fluid Mixing. Phys. Rev. Lett. 2002, 88, 254501. [Google Scholar] [CrossRef] [Green Version]
- Heyden, M.; Bründermann, E.; Heugen, U.; Niehues, G.; Leitner, D.M.; Havenith, M. Long-Range Influence of Carbohydrates on the Solvation Dynamics of Water—Answers from Terahertz Absorption Measurements and Molecular Modeling Simulations. J. Am. Chem. Soc. 2008, 130, 5773–5779. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Ziaei, S.; Elliott, G.D. Effects of Water on Structure and Dynamics of Trehalose Glasses at Low Water Contents and Its Relationship to Preservation Outcomes. Sci. Rep 2016, 6, 28795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magazù, S.; Migliardo, F.; Ramirez-Cuesta, A. Concentration Dependence of Vibrational Properties of Bioprotectant/Water Mixtures by Inelastic Neutron Scattering. J. R. Soc. Interface 2007, 4, 167. [Google Scholar] [CrossRef] [Green Version]
- Lerbret, A.; Bordat, P.; Affouard, F.; Hédoux, A.; Guinet, Y.; Descamps, M. How Do Trehalose, Maltose, and Sucrose Influence Some Structural and Dynamical Properties of Lysozyme? Insight from Molecular Dynamics Simulations. J. Phys. Chem. B 2007, 111, 9410–9420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.S.; Kony, D.; Baron, R.; Müller, M.; van Gunsteren, W.F.; Hünenberger, P.H. Conformational and Dynamical Properties of Disaccharides in Water: A Molecular Dynamics Study. Biophys. J. 2006, 90, 4337–4344. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, F.; Guy, C.L. β-Amylase Induction and the Protective Role of Maltose during Temperature Shock. Plant Physiol. 2004, 135, 1674. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.R.; Poddar, N.K.; Dar, T.A.; Kumar, R.; Ahmad, F. Protein and DNA Destabilization by Osmolytes: The Other Side of the Coin. Life Sci. 2011, 88, 117–125. [Google Scholar] [CrossRef]
- Shortle, D.; Meeker, A.K. Mutant Forms of Staphylococcal Nuclease with Altered Patterns of Guanidine Hydrochloride and Urea Denaturation. Proteins Struct. Funct. Genet. 1986, 1, 81–89. [Google Scholar] [CrossRef]
- MP, B.; WE, S. Thermal Denaturations of Staphylococcal Nuclease Wild-Type and Mutants Monitored by Fluorescence and Circular Dichroism Are Similar: Lack of Evidence for Other than a Two State Thermal Denaturation. Biophys. Chem. 2007, 125, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Springer: Berlin, Germany, 2005; pp. 571–607. [Google Scholar]
- Greenfield, N.J. Using Circular Dichroism Collected as a Function of Temperature to Determine the Thermodynamics of Protein Unfolding and Binding Interactions. Nat. Protoc. 2006, 1, 2527–2535. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.J.; Ramalli, S.G.; Wallace, B.A. DichroWeb, a Website for Calculating Protein Secondary Structure from Circular Dichroism Spectroscopic Data. Protein Sci. 2021. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Bulyáki, É.; Kun, J.; Moussong, É.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. BeStSel: A Web Server for Accurate Protein Secondary Structure Prediction and Fold Recognition from the Circular Dichroism Spectra. Nucleic Acids Res. 2018, 46, W315–W322. [Google Scholar] [CrossRef]
- Eftink, M.R. Use of Multiple Spectroscopic Methods to Monitor Equilibrium Unfolding of Proteins. Methods Enzymol. 1995, 259, 487–512. [Google Scholar] [CrossRef]
- Chen, L.; Shukla, N.; Cho, I.; Cohn, E.; Taylor, E.A.; Othon, C.M. Sucralose Destabilization of Protein Structure. J. Phys. Chem. Lett. 2015, 6, 1441–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fürstenberg, A.; Vauthey, E. Excited-State Dynamics of the Fluorescent Probe Lucifer Yellow in Liquid Solutions and in Heterogeneous Media. Photochem. Photobiol. Sci. 2005, 4, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, F.; Vauthey, E. Ultrafast Excited-State Dynamics of Oxazole Yellow DNA Intercalators. J. Phys. Chem. B 2007, 111, 12610–12620. [Google Scholar] [CrossRef] [Green Version]
- Cheetham, J.C.; Artymiuk, P.J.; Phillips, D.C. Refinement of an Enzyme Complex with Inhibitor Bound at Partial Occupancy. Hen Egg-White Lysozyme and Tri-N-Acetylchitotriose at 1.75 A Resolution. J. Mol. Biol. 1992, 224, 613–628. [Google Scholar] [CrossRef]
- Eschenburg, S.; Genov, N.; Peters, K.; Fittkau, S.; Stoeva, S.; Wilson, K.S.; Betzel, C. Crystal Structure of Subtilisin DY, a Random Mutant of Subtilisin Carlsberg. Eur. J. Biochem. 1998, 257, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, M.E.; Ealick, S.E.; Gruner, S.M. Three-Dimensional Diffuse x-Ray Scattering from Crystals of Staphylococcal Nuclease. Proc. Natl. Acad. Sci. USA 1997, 94, 6180–6184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halland, N.; Czech, J.; Czechtizky, W.; Evers, A.; Follmann, M.; Kohlmann, M.; Schreuder, H.A.; Kallus, C. Sulfamide as Zinc Binding Motif in Small Molecule Inhibitors of Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa). J. Med. Chem. 2016, 59, 9567–9573. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.J.P. MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. [Google Scholar]
- Hagemans, D.; van Belzen, I.A.; Morán Luengo, T.; Rüdiger, S.G. A Script to Highlight Hydrophobicity and Charge on Protein Surfaces. Front. Mol. Biosci. 2015, 2, 56. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. 2017. Available online: https://pymol.org/2/ (accessed on 28 July 2021).
- Swaminathan, R.; Ravi, V.K.; Kumar, S.; Kumar, M.V.S.; Chandra, N. Lysozyme: A Model Protein for Amyloid Research. In Advances in Protein Chemistry and Structural Biology; Academic Press Inc.: Cambridge, MA, USA, 2011; Volume 84, pp. 63–111. [Google Scholar] [CrossRef]
- Corezzi, S.; Paolantoni, M.; Sassi, P.; Morresi, A.; Fioretto, D.; Comez, L. Trehalose-Induced Slowdown of Lysozyme Hydration Dynamics Probed by EDLS Spectroscopy. J. Chem. Phys. 2019, 151, 015101. [Google Scholar] [CrossRef]
- Venkataramani, S.; Truntzer, J.; Coleman, D.R. Thermal Stability of High Concentration Lysozyme across Varying PH: A Fourier Transform Infrared Study. J. Pharm. Bioallied Sci. 2013, 5, 148. [Google Scholar] [CrossRef]
- Knubovets, T.; Osterhout, J.J.; Connolly, P.J.; Klibanov, A.M. Structure, Thermostability, and Conformational Flexibility of Hen Egg-White Lysozyme Dissolved in Glycerol. Proc. Natl. Acad. Sci. USA 1999, 96, 1262–1267. [Google Scholar] [CrossRef] [Green Version]
- Sleator, R.D.; Hill, C. Bacterial Osmoadaptation: The Role of Osmolytes in Bacterial Stress and Virulence. FEMS Microbiol. Rev. 2002, 26, 49–71. [Google Scholar] [CrossRef] [Green Version]
- Cao, A. Formation of Amyloid Fibrils from Fully Reduced Hen Egg White Lysozyme. Protein Sci. 2004, 13, 319–324. [Google Scholar] [CrossRef]
- Gallina, M.E.; Sassi, P.; Paolantoni, M.; Morresi, A.; Cataliotti, R.S. Vibrational Analysis of Molecular Interactions in Aqueous Glucose Solutions. Temperature and Concentration Effects. J. Phys. Chem. B 2006, 110, 8856–8864. [Google Scholar] [CrossRef] [PubMed]
- Tros, M.; Zheng, L.; Hunger, J.; Bonn, M.; Bonn, D.; Smits, G.J.; Woutersen, S. Picosecond Orientational Dynamics of Water in Living Cells. Nat. Commun. 2017, 8, 904. [Google Scholar] [CrossRef]
- Shiraga, K.; Adachi, A.; Nakamura, M.; Tajima, T.; Ajito, K.; Ogawa, Y. Characterization of the Hydrogen-Bond Network of Water around Sucrose and Trehalose: Microwave and Terahertz Spectroscopic Study. J. Chem. Phys. 2017, 146, 105102. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Pomarico, E.; Hecht, C.J.S.; Taylor, E.A.; Chergui, M.; Othon, C.M. Hydrophobic Interactions of Sucralose with Protein Structures. Arch. Biochem. Biophys. 2018, 639, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Sharp, K.A. Analysis of the Size Dependence of Macromolecular Crowding Shows That Smaller Is Better. Proc. Natl. Acad. Sci. USA 2015, 112, 7990–7995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disaccharide | Concentration [M] | Lifetime (ns) | τ1 (ps) | τ2 (ps) |
---|---|---|---|---|
Maltose | 0.10 | 300 ± 40 | 1.73 ± 0.14 | |
0.25 | 6.2 | 310 ± 10 | 2.04 ± 0.05 | |
Gentiobiose | 0.10 | 290 ± 30 | 1.78 ± 0.12 | |
0.25 | 6.1 | 310 ± 20 | 2.09 ± 0.07 | |
Trehalose | 0.10 | 280 ± 30 | 1.73 ± 0.10 | |
0.25 | 6.1 | 270 ± 20 | 1.95 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, N.; Bembenek, B.; Taylor, E.A.; Othon, C.M. Conformational Consequences for Compatible Osmolytes on Thermal Denaturation. Life 2021, 11, 1394. https://doi.org/10.3390/life11121394
Shukla N, Bembenek B, Taylor EA, Othon CM. Conformational Consequences for Compatible Osmolytes on Thermal Denaturation. Life. 2021; 11(12):1394. https://doi.org/10.3390/life11121394
Chicago/Turabian StyleShukla, Nimesh, Brianna Bembenek, Erika A. Taylor, and Christina M. Othon. 2021. "Conformational Consequences for Compatible Osmolytes on Thermal Denaturation" Life 11, no. 12: 1394. https://doi.org/10.3390/life11121394
APA StyleShukla, N., Bembenek, B., Taylor, E. A., & Othon, C. M. (2021). Conformational Consequences for Compatible Osmolytes on Thermal Denaturation. Life, 11(12), 1394. https://doi.org/10.3390/life11121394