An Arabidopsis PTH2 Gene Is Responsible for Gravity Resistance Supporting Plant Growth under Different Gravity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Analysis
2.2. Immunofluorescence Microscopy
2.3. Measurement of the Mechanical Properties of Cell Walls
2.4. Quantification of Cell Wall Polysaccharides
3. Results
3.1. Identification of PTH2 as a Gene Required for Gravity Resistance
3.2. Modification of Growth Anisotropy under Hypergravity Conditions
3.3. Modification of Cell Wall Properties under Hypergravity Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenrick, P.; Crane, P. The origin and early evolution of plants on land. Nature 1997, 389, 33–39. [Google Scholar] [CrossRef]
- Volkmann, D.; Baluška, F. Gravity: One of the driving forces for evolution. Protoplasma 2006, 229, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Nishimura, T.; Terao-Morita, M. Gravity sensing and signal conversion in plant gravitropism. J. Exp. Bot. 2019, 70, 3495–3506. [Google Scholar] [CrossRef] [PubMed]
- Hoson, T.; Soga, K. New Aspects of Gravity Responses in Plant Cells. Int. Rev. Cytol. 2003, 229, 209–244. [Google Scholar] [CrossRef]
- Soga, K. Resistance of plants to gravitational force. J. Plant Res. 2013, 126, 589–596. [Google Scholar] [CrossRef]
- Waldron, K.W.; Brett, C.T. Effects of Extreme Acceleration on the Germination, Growth and Cell Wall Composition of Pea Epicotyls. J. Exp. Bot. 1990, 41, 71–77. [Google Scholar] [CrossRef]
- Kasahara, H.; Shiwa, M.; Takeuchi, Y.; Yamada, M. Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls. J. Plant Res. 1995, 108, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hoson, T.; Nishitani, K.; Miyamoto, K.; Ueda, J.; Kamisaka, S.; Yamamoto, R.; Masuda, Y. Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J. Exp. Bot. 1996, 47, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Soga, K.; Wakabayashi, K.; Hoson, T.; Kamisaka, S. Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls. Plant Cell Physiol. 1999, 40, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Soga, K.; Harada, K.; Wakabayashi, K.; Hoson, T.; Kamisaka, S. Increased Molecular Mass of Hemicellulosic Polysaccharides is Involved in Growth Inhibition of Maize Coleoptiles and Mesocotyls under Hypergravity Conditions. J. Plant Res. 1999, 112, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Soga, K.; Wakabayashi, K.; Hoson, T.; Kamisaka, S. Gravitational force regulates elongation growth of arabidopsis hypocotyls by modifying xyloglucan metabolism. Adv. Space Res. 2001, 27, 1011–1016. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions. Adv. Space Res. 2005, 36, 1292–1297. [Google Scholar] [CrossRef]
- Wasteneys, G.O.; Galway, M.E. Remodeling the Cytoskeleton for Growth and Form: An Overview with Some New Views. Annu. Rev. Plant Biol. 2003, 54, 691–722. [Google Scholar] [CrossRef] [PubMed]
- Baskin, T.I. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 2005, 21, 203–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soga, K.; Wakabayashi, K.; Kamisaka, S.; Hoson, T. Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in azuki bean epicotyls. Planta 2006, 224, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Kumasaki, S.; Soga, K.; Wakabayashi, K.; Hashimoto, T.; Hoson, T. Gravity-induced modifications to devel-opment in hypocotyls of Arabidopsis tubulin mutants. Plant Physiol. 2010, 152, 918–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, M.; Soga, K.; Kotake, T.; Kato, T.; Hashimoto, T.; Wakabayashi, K.; Hoson, T. Roles of MAP65-1 and BPP1 in Gravity Resistance of Arabidopsis hypocotyls. Biol. Sci. Space 2016, 30, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Skagen, E.B.; Iversen, T.-H. Simulated weightlessness and hyper-g results in opposite effects on the regeneration of the cortical microtubule array in protoplasts from Brassica napus hypocotyls. Physiol. Plant. 1999, 106, 318–325. [Google Scholar] [CrossRef]
- Nakabayashi, I.; Karahara, I.; Tamaoki, D.; Masuda, K.; Wakasugi, T.; Yamada, K.; Soga, K.; Hoson, T.; Kamisaka, S. Hyper-gravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in in-florescence stems of Arabidopsis thaliana. Ann. Bot. 2006, 97, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabuchi, A.; Soga, K.; Wakabayashi, K.; Hoson, T. Phenotypic screening of Arabidopsis T-DNA insertion lines for cell wall mechanical properties revealed ANTHOCYANINLESS2, a cell wall-related gene. J. Plant Physiol. 2016, 191, 29–35. [Google Scholar] [CrossRef]
- Das, G.; Varshney, U. Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. Microbiol. Read. 2006, 152, 2191–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, T.; Otomi, Y.; Nakajima, Y.; Soga, K.; Wakabayashi, K.; Iida, H.; Hoson, T. MCA1 and MCA2 Are Involved in the Response to Hypergravity in Arabidopsis Hypocotyls. Plants 2020, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Soga, K.; Yamazaki, C.; Kamada, M.; Tanigawa, N.; Kasahara, H.; Yano, S.; Kojo, K.H.; Kutsuna, N.; Kato, T.; Hashimoto, T.; et al. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiol. Plant. 2018, 162, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Murakami, M.; Saika, R.; Soga, K.; Wakabayashi, K.; Hashimoto, H.; Yano, S.; Matsumoto, S.; Kasahara, S.; Kamada, M.; et al. Suppression of Cortical Microtubule Reorientation and Stimulation of Cell Elongation in Arabidopsis Hypocotyls under Microgravity Conditions in Space. Plants 2022, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, Y.; Mabuchi, A.; Soga, K.; Wakabayashi, K.; Hashimoto, H.; Yano, S.; Matsumoto, S.; Kasahara, H.; Kamada, M.; Shimazu, T.; et al. Suppression of secondary wall formation in the basal supporting region of Arabidopsis inflorescence stems under microgravity conditions in space. Biol. Sci. Space 2022, 36, 1–8. [Google Scholar] [CrossRef]
- Hoson, T.; Wakabayashi, K. Role of the plant cell wall in gravity resistance. Phytochemistry 2015, 112, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, J.Z. Plant biology in reduced gravity on the Moon and Mars. Plant Biol. 2014, 16 (Suppl 1), 12–17. [Google Scholar] [CrossRef] [PubMed]
- Medina, F.J.; Manzano, A.; Villacampa, A.; Ciska, M.; Herranz, R. Understanding reduced gravity effects on early plant de-velopment before attempting life-support farming in the Moon and Mars. Front. Astron. Space Sci. 2021, 8, 729154. [Google Scholar] [CrossRef]
- Medina, F.-J.; Manzano, A.; Herranz, R.; Kiss, J.Z. Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life 2022, 12, 1484. [Google Scholar] [CrossRef]
- Soga, K.; Kotake, T.; Wakabayashi, K.; Kamisaka, S.; Hoson, T. Transient increase in the transcript levels of γ-tubulin complex genes during reorientation of cortical microtubules by gravity in azuki bean (Vigna angularis) epicotyls. J. Plant Res. 2008, 121, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Soga, K.; Kotake, T.; Wakabayashi, K.; Kamisaka, S.; Hoson, T. The Transcript Level of Katanin Gene is Increased Transiently in Response to Changes in Gravitational Conditions in Azuki Bean Epicotyls. Biol. Sci. Space 2009, 23, 23–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattori, T.; Soga, K.; Wakabayashi, K.; Hoson, T. An Arabidopsis PTH2 Gene Is Responsible for Gravity Resistance Supporting Plant Growth under Different Gravity Conditions. Life 2022, 12, 1603. https://doi.org/10.3390/life12101603
Hattori T, Soga K, Wakabayashi K, Hoson T. An Arabidopsis PTH2 Gene Is Responsible for Gravity Resistance Supporting Plant Growth under Different Gravity Conditions. Life. 2022; 12(10):1603. https://doi.org/10.3390/life12101603
Chicago/Turabian StyleHattori, Takayuki, Kouichi Soga, Kazuyuki Wakabayashi, and Takayuki Hoson. 2022. "An Arabidopsis PTH2 Gene Is Responsible for Gravity Resistance Supporting Plant Growth under Different Gravity Conditions" Life 12, no. 10: 1603. https://doi.org/10.3390/life12101603
APA StyleHattori, T., Soga, K., Wakabayashi, K., & Hoson, T. (2022). An Arabidopsis PTH2 Gene Is Responsible for Gravity Resistance Supporting Plant Growth under Different Gravity Conditions. Life, 12(10), 1603. https://doi.org/10.3390/life12101603