The Importance of Livestock Demography and Infrastructure in Driving Foot and Mouth Disease Dynamics
Abstract
:1. Introduction
2. Methods
2.1. USDOS Version 2.1
2.2. Premises Location and Size
2.3. Local Disease Transmission Kernel
2.4. Partial Transition of Disease States
2.5. Accuracy of Livestock Movement
2.5.1. USAMM Version 2.0
2.5.2. USAMM Version 2.1
2.5.3. USAMM Model Selection
2.6. USDOS Model Scenarios
- Base scenario (no control measures in place) without partial transition of disease states;
- Base scenario with partial transition of disease states, and an infectious period cut-off of 15 days;
- Base scenario with partial transition of disease states, and an infectious period cut-off of 20 days;
- Base scenario with partial transition of disease states, and an infectious period cut-off of 30 days.
- Base scenario: no control measures in place.
- Infected premises (IP) cull and 3 km ring vaccination scenario: infected and reported premises (IP) culling and ring vaccination, which is a solid circle centered on the IP, with a radius of 3 km. Animal shipment is banned at the state-level with 75% effectiveness.
- IP cull and 10 km ring vaccination scenario: IP culling and ring vaccination with a radius of 10 km. Animal shipment is banned at the state-level with 75% effectiveness.
- IP cull and dangerous contact (DC) vaccination: IP culling and vaccination of DCs, which are premises with an epidemiological link to an IP. Animal shipment is banned at the state-level with 75% effectiveness.
2.7. Outbreak Metrics
- Number of premises infected: the total number of infected and reported premises.
- Number of infected counties: the total number of counties that infection spreads to when infection is seeded in that county.
- Outbreak duration: the number of days between the initial seed infection until there are no more infected premises or 365 days, whichever occurs first.
- Outbreak take-off (sensitivity analysis only): the probability that over 5000 premises will become infected during the outbreak [10].
- Outbreak fade-out (sensitivity analysis only): the probability that between one and 5000 premises will become infected during the outbreak, and that duration will be shorter than 365 days [10].
- Proportion local transmission: the proportion of non-shipment transmission within each county compared to total transmission (shipment and local) within the county.
2.8. Sensitivity Analysis
3. Results
3.1. Partial Transition
3.2. USAMM Simple and Refined Versions for Disease Transmission Type
3.3. Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Economic Analysis of Animal Diseases; Technical Report; FAO: Rome, Italy, 2016. [Google Scholar]
- USDA-APHIS. Animal and Plant Diseases and Pests of Concern. 2021. Available online: https://www.aphis.usda.gov/aphis/resources/farmbill/fb-pests/farmbill-pest-list (accessed on 27 June 2022).
- Wilkinson, K.; Grant, W.P.; Green, L.E.; Hunter, S.; Jeger, M.J.; Lowe, P.; Medley, G.F.; Mills, P.; Phillipson, J.; Poppy, G.M.; et al. Infectious diseases of animals and plants: An interdisciplinary approach. Philos. Trans. R. Soc. Biol. Sci. 2011, 366, 1933–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, B.D.; Grace, D.; Sones, K. Current drivers and future directions of global ivestock disease dynamics. Proc. Natl. Acad. Sci. USA 2013, 110, 20871–20877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segarra, A.E.; Rawson, J.M. Foot and Mouth Disease: A Threat to U.S. Agriculture; Technical Report; Library of Congress, Congressional Research Service: Washington, DC, USA, 2001. [Google Scholar]
- Thompson, D.; Muriel, P.; Russell, D.; Osborne, P.; Bromley, A.; Rowl, M.; Creigh-Tyte, S.; Brown, C. Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Oie Rev. Sci. Tech. 2002, 21, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.C.; Chu, R.M.; Chung, W.B.; Sung, H.T. Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan. Vet. Rec. 1999, 145, 731–734. [Google Scholar] [CrossRef]
- Buhnerkempe, M.G.; Grear, D.A.; Portacci, K.; Miller, R.S.; Lombard, J.E.; Webb, C.T. A national-scale picture of U.S. cattle movements obtained from Interstate Certificate of Veterinary Inspection data. Prev. Vet. Med. 2013, 112, 318–329. [Google Scholar] [CrossRef]
- Gorsich, E.E.; Luis, A.D.; Buhnerkempe, M.G.; Grear, D.A.; Portacci, K.; Miller, R.S.; Webb, C.T. Mapping U.S. cattle shipment networks: Spatial and temporal patterns of trade communities from 2009 to 2011. Prev. Vet. Med. 2016, 134, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Tsao, K.; Sellman, S.; Beck-Johnson, L.M.; Murrieta, D.J.; Hallman, C.; Lindström, T.; Miller, R.S.; Portacci, K.; Tildesley, M.J.; Webb, C.T. Effects of regional differences and demography in modelling foot-and-mouth disease in cattle at the national scale. Interface Focus 2019, 10, 20190054. [Google Scholar] [CrossRef] [Green Version]
- Lindström, T.; Grear, D.; Buhnerkempe, M.; Webb, C.T.; Miller, R.; Portacci, K.; Wennergren, U. A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network. PLoS ONE 2013, 8, e53432. [Google Scholar] [CrossRef]
- Keeling, M.J.; Woolhouse, M.E.J.; Shaw, D.J.; Matthews, L. Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape. Science 2001, 294, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, N.M.; Donnelly, C.A.; Anderson, R.M. The Foot-and-Mouth Epidemic in Great Britain: Pattern of Spread and Impact of Interventions. Science 2001, 292, 1155–1160. [Google Scholar] [CrossRef]
- Webb, C.T.; Ferrari, M.; Lindström, T.; Carpenter, T.; Dürr, S.; Garner, G.; Jewellg, C.; Stevensonh, M.; Wardi, M.P.; Werkman, M.; et al. Ensemble modelling and structured decision-making to support Emergency Disease Management. Prev. Vet. Med. 2017, 138, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhnerkempe, M.G.; Tildesley, M.J.; Lindström, T.; Grear, D.A.; Portacci, K.; Miller, R.S.; Lombard, J.E.; Werkman, M.; Keeling, M.J.; Wennergren, M.; et al. The impact of movements and animal density on continental scale cattle disease outbreaks in the United States. PLoS ONE 2014, 9, e91724. [Google Scholar] [CrossRef] [PubMed]
- Brommesson, P.; Sellman, S.; Beck-Johnson, L.; Hallman, C.; Murrieta, D.; Webb, C.T.; Miller, R.S.; Portacci, K.; Lindström, T. Assessing intrastate shipments from interstate data and expert opinion. R. Soc. Open Sci. 2021, 8, 192042. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service (N.A.S.S.), USDA. 2012 Census of Agriculture; Technical Report AC-12-A-51; N.A.S.S. USDA: Washington, DC, USA, 2014. [Google Scholar]
- Burdett, C.L.; Kraus, B.R.; Garza, S.J.; Miller, R.S.; Bjork, K.E. Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms. PLoS ONE 2015, 10, e0140338. [Google Scholar] [CrossRef] [PubMed]
- National Agricultural Statistics Service (N.A.S.S.), USDA. Cattle; Technical Report, 1948-9099; N.A.S.S. USDA: Washington, DC, USA, 2017; Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/h702q636h/zw12z762d/p2676x67d/Catt-01-31-2017.pdf (accessed on 12 July 2022).
- Carroll, I.T.; Bansal, S. Livestock Market Data for Modeling Disease Spread among Us Cattle. bioRxiv 2016. [Google Scholar] [CrossRef] [Green Version]
- USDA-APHIS. Federally Approved Livestock Markets. 2022. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/sa_livestock_markets (accessed on 12 July 2022).
- USDA-AMS. Feeder and Replacement Cattle Auctions. 2022. Available online: https://www.ams.usda.gov/market-news/feeder-and-replacement-cattle-auctions (accessed on 12 July 2022).
- LMA. Livestock Marketing Association Auctions. 2022. Available online: https://lmaauctions.com/ (accessed on 12 July 2022).
- Tildesley, M.J.; Deardon, R.; Savill, N.J.; Bessell, P.R.; Brooks, S.P.; Woolhouse, M.E.; Grenfell, B.T.; Keeling, M. Accuracy of models for the 2001 foot-and-mouth epidemic. Proc. R. Soc. Biol. Sci. 2008, 275, 1459–1468. [Google Scholar] [CrossRef] [Green Version]
- Jewell, C.P.; Keeling, M.J.; Roberts, G.O. Predicting undetected infections during the 2007 foot-and-mouth disease outbreak. J. R. Soc. Interface 2009, 6, 1145–1151. [Google Scholar] [CrossRef] [Green Version]
- Jewell, C.P.; Kypraios, T.; Neal, P.; Roberts, G.O. Bayesian analysis for emerging infectious diseases. Bayesian Anal. 2009, 4, 465–496. [Google Scholar] [CrossRef] [Green Version]
- Pomeroy, L.W.; Bansal, S.; Tildesley, M.; Moreno-Torres, K.I.; Moritz, M.; Xiao, N.; Carpenter, T.E.; Garabed, R.B. Data-Driven Models of Foot-and-Mouth Disease Dynamics: A Review. Transbound. Emerg. Dis. 2017, 64, 716–728. [Google Scholar] [CrossRef]
- Hayama, Y.; Yamamoto, T.; Kobayashi, S.; Muroga, N.; Tsutsui, T. Mathematical model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of control measures. Prev. Vet. Med. 2013, 112, 183–193. [Google Scholar] [CrossRef]
- Werkman, M.; Tildesley, M.J.; Brooks-Pollock, E.; Keeling, M.J. Preserving privacy whilst maintaining robust epidemiological predictions. Epidemics 2016, 17, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck-Johnson, L.M.; Gorsich, E.E.; Hallman, C.; Tildesley, M.J.; Miller, R.S.; Webb, C.T. An exploration of within-herd dynamics of a transboundary ivestock disease: A foot and mouth disease case study. in review.
- Lindström, T.; Sisson, S.; Lewerin, S.S.; Wennergren, U. Bayesian analysis of animal movements related to factors at herd and between herdevels: Implications for disease spread modeling. Prev. Vet. Med. 2011, 98, 230–242. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service (N.A.S.S.), USDA. 2017 Census of Agriculture; Technical Report AC-17-A-51; N.A.S.S. USDA: Washington, DC, USA, 2019. [Google Scholar]
- Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singularearning theory. J. Mach. Learn. Res. 2010, 11, 3571–3594. [Google Scholar] [CrossRef]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Muroga, N.; Hayama, Y.; Yamamoto, T.; Kurogi, A.; Tsuda, T.; Tsutsui, T. The 2010 Foot-and-Mouth Disease Epidemic in Japan. J. Vet. Med. Sci. 2012, 74, 399–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tildesley, M.J.; Savill, N.J.; Shaw, D.J.; Deardon, R.; Brooks, S.P.; Woolhouse, M.E.J.; Grenfell, B.T.; Keeling, M.J. Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature 2006, 440, 83–86. [Google Scholar] [CrossRef]
- Tildesley, M.J.; Keeling, M.J. Is R(0) a good predictor of final epidemic size: Foot-and-mouth disease in the UK. J. Theor. Biol. 2009, 258, 623–629. [Google Scholar] [CrossRef] [Green Version]
- APHIS. Foot-and-Mouth Disease Response Plan: The Red Book; United States Department of Agriculture Animal and Plant Health Inspection Service Veterinary Services: Washington, DC, USA, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 1 April 2021).
- Probert, W.J.; Shea, K.; Fonnesbeck, C.J.; Runge, M.C.; Carpenter, T.E.; Dürr, S.; Garner, M.G.; Harvey, N.; Stevenson, M.A.; Webb, C.T.; et al. Decision-making for foot-and-mouth disease control: Objectives matter. Epidemics 2016, 15, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Perez, A. M; Ward, M.P; Carpenter, T.E. Epidemiological investigations of the 2001 foot-and-mouth disease outbreak in Argentina. Vet. Rec. 2004, 154, 777–782. [Google Scholar] [CrossRef]
- Blower, S.M.; Dowlatabadi, H. Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: An HIV Model, as an Example. Int. Stat. Rev. Rev. Int. Stat. 1994, 62, 229. [Google Scholar] [CrossRef]
- Pang, Z.; O’Neill, Z. A comparison study of various sensitivity analysis methods in building applications. In Proceedings of the 16th International Building Performance Simulation Association, Rome, Italy, 2–4 September 2019; pp. 4498–4506. [Google Scholar] [CrossRef]
- Dewell, G.A.; Simpson, C.A.; Dewell, R.D.; Hyatt, D.R.; Belk, K.E.; Scanga, J.A.; Morley, P.S.; Grandin, T.; Smith, G.C.; Dargatz, D.A.; et al. titleRisk associated with transportation and lairage on hide contamination with Salmonella enterica in finished beef cattle at slaughter. J. Food Prot. 2008, 71, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman Hall: London, UK, 2014. [Google Scholar]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Garthwaite, P.H.; Fan, Y.; Sisson, S.A. Adaptive Optimal Scaling of Metropolis-Hastings Algorithms Using the Robbins-Monro Process. arXiv 2010, arXiv:1006.3690. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.O.; Gelman, A.; Gilks, W.R. Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 1997, 7, 110–120. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Final day on which there are only susceptible or exposed animals | 0 days | |
Time at which all animals are infectious | 4 days | |
Recovery rate of animals per day | 0.44 | |
r | Rate of increase of number of infecteds | = 0.05, = 0.006 |
Commodity | Data | WAIC | Min. IDD |
---|---|---|---|
Beef | Including covariates | 323,344 | 1822.0 |
Excluding covariates | 345,239 | 1192.1 | |
Dairy | Including covariates | 64,525 | 6542.9 |
Excluding covariates | 67,720 | 7592.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilbertson, K.; Brommesson, P.; Minter, A.; Hallman, C.; Miller, R.S.; Portacci, K.; Sellman, S.; Tildesley, M.J.; Webb, C.T.; Lindström, T.; et al. The Importance of Livestock Demography and Infrastructure in Driving Foot and Mouth Disease Dynamics. Life 2022, 12, 1604. https://doi.org/10.3390/life12101604
Gilbertson K, Brommesson P, Minter A, Hallman C, Miller RS, Portacci K, Sellman S, Tildesley MJ, Webb CT, Lindström T, et al. The Importance of Livestock Demography and Infrastructure in Driving Foot and Mouth Disease Dynamics. Life. 2022; 12(10):1604. https://doi.org/10.3390/life12101604
Chicago/Turabian StyleGilbertson, Kendra, Peter Brommesson, Amanda Minter, Clayton Hallman, Ryan S. Miller, Katie Portacci, Stefan Sellman, Michael J. Tildesley, Colleen T. Webb, Tom Lindström, and et al. 2022. "The Importance of Livestock Demography and Infrastructure in Driving Foot and Mouth Disease Dynamics" Life 12, no. 10: 1604. https://doi.org/10.3390/life12101604
APA StyleGilbertson, K., Brommesson, P., Minter, A., Hallman, C., Miller, R. S., Portacci, K., Sellman, S., Tildesley, M. J., Webb, C. T., Lindström, T., & Beck-Johnson, L. M. (2022). The Importance of Livestock Demography and Infrastructure in Driving Foot and Mouth Disease Dynamics. Life, 12(10), 1604. https://doi.org/10.3390/life12101604