Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Inoculum Preparation and Seed Treatment
2.3. Analysis of Plant Growth-Promoting (PGP) Characteristics of the Tested Bacterial Strains
2.4. Plant Materials and Growth Conditions
2.5. Assessment of Growth Parameters
2.6. Measurement of Photosynthetic Pigments
2.7. Measurement of Non-Enzymatic Antioxidants
2.7.1. Glutathione (GSH) and Oxidized Glutathione (GSSG) Contents
2.7.2. Ascorbic Acid (AsA) Content
2.8. Measurement of the Enzymatic Antioxidants
2.8.1. Glutathione Reductase (GR) Activity
2.8.2. Ascorbate Peroxidase (APX) Activity
2.9. Malondialdehyde (MDA) Content
2.10. Measurement of Electrolyte Leakage (EL)
2.11. Proline Content
2.12. Statistical Analysis
3. Results
3.1. Effect of Rhizobacteria Strains on the Growth Parameters and Leaf Chlorophyll Content in Wheat Plants under Normal Conditions
3.2. Thy2 Strain Exerts the Main PGP Traits
3.3. Evaluation of the Protective Effect of the Thy2 Strain on the Growth and Physio-Biochemical Parameters of Wheat Plants
3.3.1. Effect of Thy2 Strain on Wheat Growth under Cd Stress
3.3.2. Effect of the Thy2 Strain on the Content of Chlorophyll in the Leaves of Wheat Plants under Cd Stress
3.3.3. Effect of the Thy2 Strain on the Content of Non-Enzymatic Antioxidants in the Wheat Plants under Cd Stress
3.3.4. Effect of Thy2 on the Activity of Enzymatic Antioxidants in the Wheat Plants under Cd Stress
3.3.5. Effect of Thy2 on Proline in the Wheat Plants under Cd Stress
3.3.6. Effect of Thy2 on the Membrane Stability in the Wheat Plants under Cd Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, W.; Bashir, S.; Ali, F.; Ijaz, M.; Hussain, M.; David, J. Role of ACC-deaminase and/or nitrogen fixing rhizo- bacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ. Earth Sci. 2016, 75, 267. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Al-Suhaibani, N.; Alotaibi, M.; Hassan, W.; Elsayed, S.; Tahir, M.U.; Mohamed, A.I.; Schmidhalter, U. Estimating growth and photosynthetic properties of wheat grown in simulated saline field conditions using hyperspectral reflectance sensing and multivariate analysis. Sci. Rep. 2019, 9, 16473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Li, Z. Recent advances in minimizing cadmium accumulation in wheat. Toxics 2022, 10, 187. [Google Scholar] [CrossRef]
- Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. Seed treatments with microorganisms can have a siostimulant effect by Influencing germination and seedling growth of crops. Plants 2022, 11, 259. [Google Scholar] [CrossRef]
- Shakirova, F.M.; Allagulova, C.R.; Maslennikova, D.R.; Klyuchnikova, E.O.; Avalbaev, A.M.; Bezrukova, M.V. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ. Exp. Bot. 2016, 122, 19–28. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Sardar, A.C.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, U.; Ayub, A.; Hussain, S.; Waraich, E.A.; El-Esawi, M.A.; Ishfaq, M.; Ahmad, M.; Ali, N.; Maqsood, M.F. Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. J. Soil Sci. Plant Nutr. 2022, 22, 212–269. [Google Scholar] [CrossRef]
- Kudoyarova, G.; Arkhipova, T.; Korshunova, T.; Bakaeva, M.; Loginov, O.; Dodd, I.C. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 2019, 10, 1368. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, M.Z.; Ahmad, M.; Mehmood, K.; Sheikh, A.S.; Malik, A.; Hussain, A.; Nadeem, S.M.; Zahir, A.Z. Role of plant growth-promoting rhizobacteria in combating abiotic and biotic stresses in plants. In Microbial Biotechnology for Sustainable Agriculture; Springer: Singapore, 2022; pp. 43–105. [Google Scholar]
- Sharma, R.K.; Archana, G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl. Soil Ecol. 2016, 107, 66–78. [Google Scholar] [CrossRef]
- Paredes-Páliz, K.; Rodríguez-Vázquez, R.; Duarte, B.; Caviedes, M.A.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Caçador, M.I.; Rodríguez-Llorente, I.D.; Pajuelo, E. Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora undermetal stress. Plant Biol. 2018, 20, 497–506. [Google Scholar] [CrossRef]
- Mesnoua, M.; Mateos-Naranjo, E.; Pérez-Romero, J.A.; Barcia-Piedras, J.M.; Lotmani, B.; Redondo-Gómez, S. Combined effect of Cr-toxicity and temperature rise on physiological and biochemical responses of Atriplex halimus L. Plant Physiol. Biochem. 2018, 132, 675–682. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Rodríguez-Llorente, I.D.; Meddich, A.; Redondo-Gómez, S.; Pajuelo, E. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat- and metallo-resistant PGPR. Microorganisms 2019, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Konkolewska, A.; Piechalak, A.; Ciszewska, L.; Antos-Krzemińska, N.; Skrzypczak, T.; Hanć, A.; Sitko, K.; Małkowski, E.; Barałkiewicz, D.; Małecka, A. Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environ. Sci. Pollut. Res. Int. 2020, 12, 13809–13825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.; Wang, X.; Saleem, M.H.; Sumaira; Hafeez, A.; Afridi, M.S.; Khan, S.; Zaib-Un-Nisa; Ullah, I.; Amaral Júnior, A.T.d.; et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.F.; Rasool, A.; Mansoor, S.; Saleem, S.; Baba, T.R.; Haq, S.M.; Rehman, S.A.; Adetunji, C.O.; Popesc, S.M. Potential applications of Rhizobacteria as eco-friendly biological control, plant growth promotion and soil metal bioremediation. In Sustainable Crop Production Recent Advances; Meena, V., Choudhary, M., Meena, S.K., Yadav, R.P., Eds.; IntechOpen Limited: London, UK, 2022; pp. 104–170. [Google Scholar] [CrossRef]
- Kalayu, G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspective. J. Basic Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Kumar, V.; Tripathi, D.K.; Sharma, S. Characterization of rhizobacterial isolates from Brassica juncea for multitrait plant growth promotion and their viability studies on carriers. Environ. Sustain. 2018, 1, 253–265. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef]
- Vershinina, Z.R.; Khakimova, L.R.; Lavina, A.M.; Karimova, L.R.; Baimiev, A.K.; Serbaeva, E.R.; Safronova, V.I.; Shaposhnikov, A.I. Effect of constitutive expression of the Rapa1 gene on formation of bacterial biofilms and growth—Stimulating activity of rhizobia. Microbiology 2019, 1, 54–62. [Google Scholar] [CrossRef]
- Vincent, J.M. A Manual for the Practical Study of Root Nodule Bacteria; Blackwell Science: Oxford, UK, 1970; 164p. [Google Scholar]
- Baymiev, A.K.; Ptitsyn, K.G.; Baimiev, A.K. Influence of the introduction of Caragana Arborescens on the composition of its root-nodule bacteria. Microbiology 2010, 79, 115–120. [Google Scholar] [CrossRef]
- Akimova, E.S.; Gumenko, R.S.; Vershinina, Z.R.; Baymiev, A.K. Genetic markers for search of rhizobia based on symbiotic genes. Microbiology 2017, 86, 640–646. [Google Scholar] [CrossRef]
- Baymiev, A.K.; Akimova, E.S.; Gumenko, R.S.; Vladimirova, A.A.; Muldashev, A.A.; Chemeris, A.V.; Baymiev, A.K. Genetic diversity andphylogeny of root nodule bacteria isolated from nodules of plants of the Lupinaster genus inhabiting the southern Urals. Russ. J. Genet. 2019, 55, 45–51. [Google Scholar] [CrossRef]
- Malik, D.K.; Sindhu, S.S. Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants 2011, 17, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Netrusov, A.I.; Egorova, M.A.; Zakharchuk, L.M. A Practical Course in Microbiology; Academia Publishing: Moscow, Russia, 2005. [Google Scholar]
- Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Jamil, A. Efect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot. 2012, 44, 1569–1574. [Google Scholar]
- Lastochkina, O.; Pusenkova, L.; Yuldashev, R.; Babaev, M.; Garipova, S.; Blagova, D.; Khairullin, R.; Aliniaeifard, S. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol. Biochem. 2017, 121, 80–88. [Google Scholar] [CrossRef]
- Jeffrey, S.; Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Hissin, P.J.; Hilf, R.A. A Fluorometric method for determination of oxidize and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef]
- Maslennikova, D.; Lastochkina, O. Contribution of ascorbate and glutathione in endobacteria Bacillus subtilis-mediated drought tolerance in two Triticum aestivum L. genotypes contrasting in drought sensitivity. Plants 2021, 10, 2557. [Google Scholar] [CrossRef]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996, 110, 125–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Dubey, R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive methods for quantitation of microgram quantities of protein utilizing the princi- ple of protein dye binding. Anal. Biochem. 1976, 74, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldern, R.P.; Teare, D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Kalinkina, L.G. Proline accumulation in cells of marine and freshwater chlorella in depending on the concentration of NaCl in the medium and the growth rate of algae. Plant Physiol. 1985, 32, 42–52. [Google Scholar]
- Bakaeva, M.D.; Kuzina, E.V.; Rafikova, G.F.; Chetverikova, D.V.; Stolyarova, E.A.; Mukhamatd’yarova, S.R.; Kudoyarova, G.R. Influence of bacteria-destructors of oil hydrocarbons on the germination and growth of plants. Ekobiotekh 2019, 2, 175–183. [Google Scholar]
- Lebrazi, S.; Fadil, M.; Chraibi, M.; Fikri-Benbrahim, K. Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. J. Genet. Eng. Biotechnol. 2020, 18, 21. [Google Scholar] [CrossRef]
- Egamberdieva, D. Indole-acetic acid production by root associated bacteria and its rile in plant growth and development. In Auxins: Structure, Biosynthesis and Functions; Nova Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Park, S.; Kim, A.-L.; Hong, Y.-K.; Shin, J.-H.; Joo, S.-H. A highly efficient auxin-producing bacterial strain and its effect on plant growth. J. Genet. Eng. Biotechnol. 2021, 19, 179. [Google Scholar] [CrossRef]
- Singh, P.; Chauhan, P.K.; Upadhyay, S.K.; Singh, R.K.; Dwivedi, P.; Wang, J.; Jain, D.; Jiang, M. Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front. Microbiol. 2022, 13, 898979. [Google Scholar] [CrossRef]
- Ahmad, M.T.; Asghar, H.N.; Saleem, M.; Khan, M.Y.; Zahir, Z.A. Synergistic effect of rhizobia and biochar on growth and physiology of maize. Agron. J. 2015, 107, 2327–2334. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Naveed, M.; Zahir, Z.A.; Liu, F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Fund. Plant Biol. 2015, 42, 770–781. [Google Scholar] [CrossRef]
- Zhu, T.; Li, L.; Duan, Q.; Liu, X.; Chen, M. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signal. Behav. 2020, 16, 1836884. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Garshina, D.; Ivanov, S.; Yuldashev, R.; Khafizova, R.; Allagulova, C.; Fedorova, K.; Avalbaev, A.; Maslennikova, D.; Bosacchi, M. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants 2020, 9, 1810. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, P.; Chang, L.; Yue, Z.; Zeng, C.; Li, M.; Liu, Z.; Dong, X.; Yan, M. Exogenous proline mitigates toxic effects of cadmium via the decrease of cadmium accumulation and reestablishment of redox homeostasis in Brassica juncea. BMC Plant Biol. 2022, 22, 182. [Google Scholar] [CrossRef] [PubMed]
R. leguminosarum Strains | |||||
---|---|---|---|---|---|
Control | Pvu5 | VSy12 | Thy2 | TPr4 | |
Seed germination, % | 96 ± 2 | 94 ± 1 | 80 ± 2 | 99 ± 1 | 97 ± 1 |
PGP Traits | Thy2 |
---|---|
IAA (mg L−1) | 10 ± 0.5 |
P solubization (mg L−1) | − |
Siderophore production | + |
Nitrogen fixation | + |
Variant | Seed Germination, % |
---|---|
Control | 95 ± 1 |
1 mM Cd | 56 ± 2 |
Thy2 | 99 ± 1 |
Thy2 + Cd | 89 ± 3 |
Variants | MDA (nmoL g−1 FW) | EL (μS−1 FW) |
---|---|---|
Control | 45 ± 4.2 | 50 ± 5.2 |
Cd | 101 ± 8.9 | 120 ± 9.9 |
Thy2 | 47 ± 4.9 | 52 ± 5.3 |
Thy + Cd | 68 ± 4.9 | 80 ± 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslennikova, D.; Nasyrova, K.; Chubukova, O.; Akimova, E.; Baymiev, A.; Blagova, D.; Ibragimov, A.; Lastochkina, O. Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants. Life 2022, 12, 1675. https://doi.org/10.3390/life12101675
Maslennikova D, Nasyrova K, Chubukova O, Akimova E, Baymiev A, Blagova D, Ibragimov A, Lastochkina O. Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants. Life. 2022; 12(10):1675. https://doi.org/10.3390/life12101675
Chicago/Turabian StyleMaslennikova, Dilara, Karina Nasyrova, Olga Chubukova, Ekaterina Akimova, Andrey Baymiev, Darya Blagova, Almaz Ibragimov, and Oksana Lastochkina. 2022. "Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants" Life 12, no. 10: 1675. https://doi.org/10.3390/life12101675
APA StyleMaslennikova, D., Nasyrova, K., Chubukova, O., Akimova, E., Baymiev, A., Blagova, D., Ibragimov, A., & Lastochkina, O. (2022). Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants. Life, 12(10), 1675. https://doi.org/10.3390/life12101675