Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Sampling
2.2. Phytochemical Screening
2.2.1. Quantification of Total Phenols, Total Flavonoids, and Total Condensed Tannins
2.2.2. Identification of Bioactive Compounds by HR-LCMS Technique
2.3. Screening of the Biological Activities
2.3.1. Antimicrobial Activities
2.3.2. Antioxidant Activities
DPPH Radical-Scavenging Activity Assay
ABTS Radical-Scavenging Activity Assay
Β-Carotene/Linoleic Acid Method
Reducing Power
2.3.3. Effect on Pseudomonas aeruginosa PAO1 Motility
2.3.4. Effect on Biofilm Formation by Pathogenic Bacteria and Yeast
2.4. Anticancer Activities
2.5. In Silico Approach
2.5.1. ADME Study
2.5.2. Molecular Docking Study
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of T. musilii Methanolic Extract
3.2. Antimicrobial Activities of T. musilii Methanolic Extract
3.3. Phytochemistry and Antioxidant Activities of T. musilii Methanolic Extract
3.4. Antivirulence Activity of T. musilii Methanolic Extract
3.5. Anticancer Activity of T. musilii Methanolic Extract
3.6. Computational Study
3.6.1. ADME Analysis
3.6.2. Molecular Docking Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bialvaei, A.Z.; Samadi Kafil, H. Colistin, mechanisms and prevalence of resistance. Curr. Med. Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef]
- Bialvaei, A.Z.; Kafil, H.S.; Asgharzadeh, M.; Yousef Memar, M.; Yousefi, M. Current methods for the identification of carbapenemases. J. Chemother. 2016, 28, 1–19. [Google Scholar] [CrossRef]
- Kafil, H.S.; Mobarez, A.M.; Moghadam, M.F.; Hashemi, Z.S.; Yousefi, M. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis. Microb. Pathog. 2016, 92, 30–35. [Google Scholar] [CrossRef]
- Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Bialvaei, A.Z.; Mahmood, S.S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S.; et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect. Drug Resist. 2019, 12, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Zahedi Bialvaei, A.; Rahbar, M.; Yousefi, M.; Asgharzadeh, M.; Samadi Kafil, H. Linezolid: A promising option in the treatment of Gram-positives. J. Antimicrob. Chemother. 2017, 72, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Tedijanto, C.; Grad, Y.H.; Lipsitch, M. Potential impact of outpatient stewardship interventions on antibiotic exposures of common bacterial pathogens. Elife 2020, 9, e52307. [Google Scholar] [CrossRef]
- Tang, K.; Zhang, X.H. Quorum quenching agents: Resources for antivirulence therapy. Mar. Drugs 2014, 12, 3245. [Google Scholar] [CrossRef] [Green Version]
- Brooks, B.D.; Brooks, A.E. Therapeutic strategies to combat antibiotic resistance. Adv. Drug Deliv. Rev. 2014, 78, 14–27. [Google Scholar] [CrossRef] [PubMed]
- World Checklist of Selected Plant Families, 2010. The Board of Trustees of the Royal Botanic Gardens, Kew. Thymus musilii Velen. Euro+Med PlantBase. Available online: http://ww2.bgbm.org/euroPlusMed/PTaxonDetail.asp?UUID=B7F1730F-E243-4A96-9592-12FB15BFDE1A (accessed on 24 December 2019).
- Adebayo, O.; Dang, T.; B’elanger, A.; Khanizadeh, S. Antifungal studies of selected essential oils and a commercial formulation against Botrytis Cinerea. J. Food Res. 2012, 2, 217–226. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Moreira, M.R.; Ponce, A. Antiquorum Sensing and Antimicrobial Activity of Natural Agents with Potential Use in Food. J. Food Saf. 2012, 370, 379–387. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Azar, H.H.; Hejazi, J. The use of herbal extracts and essential oils as a potential antimicrobial in meat and meat products; a review. J. Hum. Environ. Health Promot. 2016, 1, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Al-Haidari, R.A.; Shaaban, M.I.; Ibrahim, S.R.M.; Mohamed, G.A. Anti-quorum sensing activity of some medicinal plants. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 67–71. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A.; et al. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Ghanney, N.; Mang, S.M.; Ferchichi, A.; Camele, I. An in vitro attempt for controlling severe phyto and human pathogens using essential oils from Mediterranean plants of genus Schinus. J. Med. Food 2016, 19, 266–273. [Google Scholar] [CrossRef]
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; et al. Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. essential oil and in silico study on S. aureus tyrosyl-tRNA synthetase protein. Plants 2021, 10, 205. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ros and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Jorgensen, W.L. The many roles of computation in drug discovery. Science 2004, 303, 1813–1818. [Google Scholar] [CrossRef]
- Bajorath, J. Integration of virtual and high-throughput screening. Nature reviews. Drug Discov. 2002, 1, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Haddaji, F.; Papetti, A.; Noumi, E.; Colombo, R.; Deshpande, S.; Aouadi, K.; Adnan, M.; Kadri, A.; Selmi, B.; Snoussi, M.; et al. Bioactivities and in silico study of Pergularia tomentosa L. phytochemicals as potent antimicrobial agents targeting type IIA topoisomerase, TyrRS, and Sap1 virulence proteins. Environ. Sci. Pollut. Res. Int. 2021, 28, 25349–25367. [Google Scholar] [CrossRef] [PubMed]
- Noumi, E.; Snoussi, M.; Anouar, E.H.; Alreshidi, M.; Veettil, V.N.; Elkahoui, S.; Adnan, M.; Patel, M.; Kadri, A.; Aouadi, K.; et al. HR-LCMS-based metabolite profiling, antioxidant, and anticancer properties of Teucrium polium L. methanolic extract: Computational and in vitro study. Antioxidants 2020, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T.; et al. Expression Profiling of Selected Immune Genes and Trabecular Microarchitecture in Breast Cancer Skeletal Metastases Model: Effect of α-Tocopherol Acetate Supplementation. Calcif. Tissue Int. 2022, 110, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Gupta, V.; Kumari, P.; Reddy, C.; Jha, B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J. Food Compos. Anal. 2011, 24, 270–278. [Google Scholar] [CrossRef]
- Benariba, N.; Djaziri, R.; Bellakhdar, W.; Belkacem, N.; Kadiata, M.; Malaisse, W. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extract. Asian Pac. J. Trop. Biomed. 2013, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, A.; Viaene, J.; Mahjoub, M.A.; Majouli, K.; Gad, M.H.H.; Kharbach, M.; Demeyer, K.; Marzouk, Z.; Vander Heyden, Y. Polyphenolic contents, antioxidant activities and UPLC–ESI–MS analysis of Haplophyllum tuberculatum A. Juss leaves extracts. Int. J. Biol. Macromol. 2018, 106, 1071–1079. [Google Scholar] [CrossRef]
- Snoussi, M.; Trabelsi, N.; Ben Taleb, S.; Dehmeni, A.; Flamini, G.; de Feo, V. Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules 2016, 21, 1414. [Google Scholar] [CrossRef] [Green Version]
- Noumi, E.; Snoussi, M.; Alreshidi, M.M.; Rekha, P.D.; Saptami, K.; Caputo, L.; De Martino, L.; Souza, L.F.; Msaada, K.; Mancini, E.; et al. Chemical and biological evaluation of essential oils from cardamom species. Molecules 2018, 23, 2818. [Google Scholar] [CrossRef] [Green Version]
- Koleva, I.I.; van Beek, T.A.; Linssen, J.P.; de Groot, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef]
- Bi, H.; Gao, T.; Li, Z.; Ji, L.; Yang, W.; Jeff Iteku, B.; Liu, E.; Zhou, Y. Structural Elucidation and Antioxidant activity of a water-soluble polysaccharide from the fruit bodies of Bulgaria inquinans (Fries). Food Chem. 2013, 138, 1470–1475. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Jpn. Soc. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Snoussi, M.; Noumi, E.; Punchappady-Devasya, R.; Trabelsi, N.; Kanekar, S.; Nazzaro, F.; Fratianni, F.; Flamini, G.; de Feo, V.; Al-Sieni, A.; et al. Antioxidant properties and anti-quorum sensing potential of Carum copticum essential oil and phenolics against Chromobacterium violaceum. J. Food Sci. Technol. 2018, 55, 2824–2832. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Hajlaoui, H.; Bouslama, L.; Hamdi, A.; Saeed, M.; Alreshidi, M.; Adnan, M.; Al-Rashidi, A.; Aouadi, K.; et al. Phytochemical profiling of Allium subhirsutum L. aqueous extract with antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing properties: In vitro and in silico studies. Plants 2022, 11, 495. [Google Scholar] [CrossRef]
- Ceylan, O.; Tamfu, A.N.; Doğaç, Y.İ.; Teke, M. Antibiofilm and anti-quorum sensing activities of polyethylene imine coated magnetite and nickel ferrite nanoparticles. 3 Biotech 2020, 10, 513. [Google Scholar] [CrossRef]
- Hamadou, W.S.; Bouali, N.; Badraoui, R.; Hadj Lajimi, R.; Hamdi, A.; Alreshidi, M.; Patel, M.; Adnan, M.; Siddiqui, A.J.; Noumi, E.; et al. Chemical Composition and the Anticancer, Antimicrobial, and Antioxidant Properties of Acacia Honey from the Hail Region: The in vitro and in silico Investigation. Evid. Based Complement. Alternat. Med. 2022, 2022, 1518511. [Google Scholar] [CrossRef]
- Elasbali, A.M.; Al-Soud, W.A.; Al-Oanzi, Z.H.; Qanash, H.; Alharbi, B.; Binsaleh, N.K.; Alreshidi, M.; Patel, M.; Adnan, M. Cytotoxic Activity, Cell Cycle Inhibition, and Apoptosis-Inducing Potential of Athyrium hohenackerianum (Lady Fern) with Its Phytochemical Profiling. Evid. Based Complement. Alternat. Med. 2022, 2022, 2055773. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, B.; Patel, H.; Thakar, S.; Ahmad, I.; Bansode, D. Optimizing the Sunitinib for cardiotoxicity and thyro-toxicity by scaffold hopping approach. Silico Pharmacol. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Oh, J.M.; Parambi, D.G.T.; Kumar, S.; Musa, A.; Ghoneim, M.M.; Nayl, A.A.; El-Ghrab, A.H.; Ahmed, I.; Patel, H.; et al. Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson’s disease. J. Mol. Struct. 2022, 2022, 133545. [Google Scholar] [CrossRef]
- Ahmad, I.; Pawara, R.; Patel, H. In silico toxicity investigation of Methaqualone’s conjunctival, retinal, and gastrointestinal hemorrhage by molecular modelling approach. Mol. Simul. 2022, 48, 1639–1649. [Google Scholar] [CrossRef]
- Tople, M.S.; Patel, N.B.; Patel, P.P.; Purohit, A.K.; Ahmad, I.; Patel, H. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-Chloroquinoline based Schiff-bases. J. Mol. Struct. 2023, 1271, 134016. [Google Scholar] [CrossRef]
- Vila, R. Flavonoids and further polyphenols in the genus Thymus. In Thyme: The Genus Thymus; Stahl-Biskup, E., Sáez, F., Eds.; Taylor and Francis: Oxford, UK, 2002; pp. 144–176. [Google Scholar]
- Xiao, L.; Ting, H.; Xiuhuan, W.; Meng, S.; Xin, Y.; Shusheng, F.; Le, W.; Xiaoping, W.; Xiao, X.; Hong, S.; et al. Traditional uses, chemical constituents and biological activities of plants from the genus Thymus. Chem. Biodivers. 2019, 16, e1900254. [Google Scholar]
- Tohidi, B.; Rahimmalek, M.; Trindade, H. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind. Crops Prod. 2019, 134, 89–99. [Google Scholar] [CrossRef]
- Emami Bistgani, Z.; Mamedov, N.; Lotfy Ashour, M. Genus Thymus in Iran—Ethnobotany, Phytochemical, Molecular, and Pharmacological Features. In Biodiversity, Conservation and Sustainability in Asia; Öztürk, M., Khan, S.M., Altay, V., Efe, R., Egamberdieva, D., Khassanov, F.O., Eds.; Springer: Cham, Germany, 2022. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J. Food Sci. Technol. 2016, 53, 1957–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.M.; Ramu, R.; Shirahatti, P.S.; Shivamallu, C.; Amachawadi, R.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021, 7, e07054. [Google Scholar] [CrossRef] [PubMed]
- Alreshidi, M.; Noumi, E.; Bouslama, L.; Ceylan, O.; Veettil, V.N.; Adnan, M.; Danciu, C.; Elkahoui, S.; Badraoui, R.; Al-Motair, K.A.; et al. Phytochemical screening, antibacterial, antifungal, antiviral, cytotoxic, and anti-quorum-sensing properties of Teucrium polium L. aerial parts methanolic extract. Plants 2020, 9, 1418. [Google Scholar] [CrossRef] [PubMed]
- Bradic, J.; Petkovic, A.; Tomovic, M. Phytochemical and Pharmacological Properties of Some Species of the Genus Galium, L. (Galium verum and mollugo). Serb. J. Exp. Clin. Res. 2021, 22, 187–193. [Google Scholar] [CrossRef]
- Smitha, C.K.; Udayan, P.S. GC-MS and HR-LCMS fingerprinting of various parts of Oroxylum indicum (L.) Vent. A comparative phytochemical study based on plant part substitution approach. J. Pharmacogn. Phytochem. 2020, 9, 1817–1824. [Google Scholar]
- Sofrenić, I.; Ljujić, J.; Simić, K.; Ivanović, S.; Jeremić, J.S.; Ćirić, A.; Soković, M.; Anđelković, B. Application of LC–MS/MS with ion mobility for chemical analysis of propolis extracts with antimicrobial potential. J. Serb. Chem. Soc. 2021, 86, 1205–1218. [Google Scholar] [CrossRef]
- Yamaguti-Sasaki, E.; Ito, L.A.; Canteli, V.C.; Ushirobira, T.M.; Ueda-Nakamura, T.; Dias Filho, B.P.; Nakamura, C.V.; de Mello, J.C. Antioxidant capacity and in vitro prevention of dental plaque formation by extracts and condensed tannins of Paullinia cupana. Molecules 2007, 12, 1950. [Google Scholar] [CrossRef]
- Ali, J.S.; Saleem, H.; Mannan, A.; Zengin, G.; Mahomoodally, M.F.; Locatelli, M.; Abidin, S.A.Z.; Ahemad, N.; Zia, M. Metabolic fingerprinting, antioxidant characterization, and enzyme-inhibitory response of Monotheca buxifolia (Falc.) A. DC. extracts. BMC Complement. Med. Ther. 2020, 20, 313. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Asif, H.; Alamgeer; Asim, M.H.; Muhammad Irfan, H.; Ejaz, H.; Elsherif, M.A.; Junaid, K. Protective effect of butanolic fraction of Delphinium brunonianum on fructose-mediated metabolic alterations in rats. Metabolites 2022, 12, 481. [Google Scholar] [CrossRef]
- Leblanc, M.L.; Russo, J.; Kudelka, A.P.; Smith, J.A. An in vitro study of inhibitory activity of gossypol, a cottonseed extract, in human carcinoma cell lines. Pharmacol. Res. 2020, 46, 551–555. [Google Scholar] [CrossRef]
- Cao, H.; Sethumadhavan, K.; Wu, X.; Zeng, X. Cottonseed-derived gossypol and ethanol extracts differentially regulate cell viability and VEGF gene expression in mouse macrophages. Sci. Rep. 2021, 11, 15700. [Google Scholar] [CrossRef]
- Badraoui, R.; Rebai, T.; Elkahoui, S.; Alreshidi, M.; Veettil, V.N.; Noumi, E.; Al-Motair, A.; Aouadi, K.; Kadri, A.; de Feo, V.; et al. Allium subhirsutum L. as a potential source of antioxidant and anticancer bioactive molecules: HR-LCMS phytochemical profiling, in vitro and in vivo pharmacological study. Antioxidants 2020, 9, 1003. [Google Scholar] [CrossRef]
- Snoussi, M.; Redissi, A.; Mosbah, A.; de Feo, V.; Adnan, M.; Aouadi, K.; Alreshidi, M.; Patel, M.; Kadri, A.; Noumi, E. Emetine, a potent alkaloid for the treatment of SARS-CoV-2 targeting papain-like protease and non-structural proteins: Pharmacokinetics, molecular docking and dynamic studies. J. Biomol. Struct. Dyn. 2021, 40, 10122–10135. [Google Scholar] [CrossRef]
- Li, C.P.; Prescott, B.; Chi, L.L.; Martino, E.C. Antiviral and antibacterial activity of thymus extracts. Proc. Soc. Exp. Biol. Med. 1963, 114, 504–509. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Cigremis, Y.; Ilcim, A. In vitro antimicrobial and antioxidant activity of acetone and methanol extracts from Thymus leucotrichius (Lamiaceae). Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 649–657. [Google Scholar]
- Al-Mariri, A.; Safi, M. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. Iran J. Med. Sci. 2014, 39, 36–43. [Google Scholar]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef]
- Mojab, F.; Poursaeed, M.; Mehrgan, H.; Pakdaman, S. Antibacterial activity of Thymus daenensis methanolic extract. Pak. J. Pharm. Sci. 2008, 21, 210–213. [Google Scholar]
- Qaralleh, H.M.; Abboud, M.M.; Khleifat, K.M.; Tarawneh, K.A.; Althunibat, O.Y. Antibacterial activity in vitro of Thymus capitatus from Jordan. Pak. J. Pharm. Sci. 2009, 22, 247–251. [Google Scholar]
- Abu-Darwis, M.S.; Al-Ramamneh, E.A.; Kyslychenko, V.S.; Karpiuk, U.V. The antimicrobial activity of essential oils and extracts of some medicinal plants grown in Ash-shoubak region-South of Jordan. Pak. J. Pharm. Sci. 2012, 25, 239–246. [Google Scholar]
- Mohsenipour, Z.; Hassanshahian, M. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria. Avicenna J. Phytomed. 2015, 5, 309–318. [Google Scholar]
- Varga, E.; Bardocz, A.; Belák, Á.; Maráz, A.; Boros, D.; Felinger, A.; Böszörményi, A.; Horváth, G. Antimicrobial activity and chemical composition of thyme essential oils and the polyphenolic content of different thymus extracts. Farmacia 2015, 63, 357–361. [Google Scholar]
- Kaki, F.A.; Benkiniouar, R.; Touil, A.; Demirtas, I.; Merzoug, A.; Khattabi, L. Thymus numidicus: Phenolic constituents, antibacterial, and antioxidant activities of butanolic extract. Environ. Exp. Biol. 2021, 19, 67–72. [Google Scholar]
- Zhumakanova, B.S.; Korona-Głowniak, I.; Skalicka-Woźniak, K.; Ludwiczuk, A.; Baj, T.; Wojtanowski, K.K.; Józefczyk, A.; Zhaparkulova, K.A.; Sakipova, Z.B.; Malm, A.; et al. Phytochemical fingerprinting and in vitro antimicrobial and antioxidant activity of the aerial parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov growing widely in southern Kazakhstan. Molecules 2021, 26, 3193. [Google Scholar] [CrossRef] [PubMed]
- Niculae, M.; Hanganu, D.; Oniga, I.; Benedec, D.; Ielciu, I.; Giupana, R.; Sandru, C.D.; Ciocârlan, N.; Spinu, M. Phytochemical profile and antimicrobial potential of extracts obtained from Thymus marschallianus Willd. Molecules 2019, 24, 3101. [Google Scholar] [CrossRef]
- Ivasenko, S.; Orazbayeva, P.; Skalicka–Wozniak, C.; Ludwiczuk, A.; Marchenko, A.; Ishmuratova, M.; Poleszak, E.; Korona-Glowniak, I.; Akhmetova, S.; Karilkhan, I.; et al. Antimicrobial activity of ultrasonic extracts of two chemotypes of Thymus serpyllum L. of central Kazakhstan and their polyphenolic profiles. Open Access Maced. J. Med. Sci. 2021, 9, 61–67. [Google Scholar] [CrossRef]
- Ustuner, O.; Anlas, C.; Bakirel, T.; Ustun-Alkan, F.; Diren Sigirci, B.; Ak, S.; Akpulat, H.A.; Donmez, C.; Koca-Caliskan, U. In vitro evaluation of antioxidant, anti-inflammatory, antimicrobial and wound healing potential of Thymus sipyleus Boiss. subsp. rosulans (Borbas) Jalas. Molecules 2019, 24, 3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megdiche-Ksouri, W.; Saada, M.; Soumaya, B.; Snoussi, S.; Zaouali, Y.; Ksouri, R. Potential use of wild Thymus algeriensis and Thymus capitatus as source of antioxidant and antimicrobial agents. J. New Sci. 2015, 23, 1046–1056. [Google Scholar]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Fawole, O.A.; Ndhlala, A.R.; Amoo, S.O.; Finnie, J.F.; Van Staden, J. Antiinflammatory and phytochemical properties of twelve medicinal plants used for treating gastrointestinal ailments in South Africa. J. Ethnopharmacol. 2009, 123, 237–243. [Google Scholar] [CrossRef]
- Tabti, L.; Dib Mel, A.; Gaouar, N.; Samira, B.; Tabti, B. Antioxidant and antifungal activity of extracts of the aerial parts of Thymus capitatus (L.) Hoffmanns against four phytopathogenic fungi of Citrus sinensis. Jundishapur J. Nat. Pharm. Prod. 2014, 9, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Hammoudi Halat, D.; Krayem, M.; Khaled, S.; Younes, S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022, 14, 2104. [Google Scholar] [CrossRef]
- Abdel-Gabbar, M.; Ahmed, R.R.; Kandeil, M.A.; Mohamed, A.E.D.H.; Ali, S.M. Administration of ginger and/or thyme has ameliorative effects on liver and kidney functions of V-line rabbits: Histological and biochemical studies. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1758–1767. [Google Scholar] [CrossRef]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.C. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef]
- Kumar, A.; Kaushik, P.; Incerpi, S.; Pedersen, J.Z.; Goel, S.; Prasad, A.K.; Rohil, V.; Parmar, V.S.; Saso, L.; Len, C.; et al. Evaluation of the free radical scavenging activities of ellagic acid and ellagic acid peracetate by EPR spectrometry. Molecules 2021, 26, 4800. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Mighri, H.; Ghannay, S.; Aouadi, K.; Adnan, M.; Elasbali, A.M.; Noumi, E.; Snoussi, M.; Kadri, A. HPLC-MS profiling, antioxidant, antimicrobial, antidiabetic, and cytotoxicity activities of Arthrocnemum indicum (Willd.) Moq. Extracts. Plants 2022, 11, 232. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Okumura, K.; Hosoya, T.; Kawarazaki, K.; Izawa, N.; Kumazawa, S. Antioxidant activity of phenolic compounds from fava bean sprouts. J. Food Sci. 2016, 81, C1394–C1398. [Google Scholar] [CrossRef] [PubMed]
- Medda, S.; Fadda, A.; Dessena, L.; Mulas, M. Quantification of total phenols, tannins, anthocyanins content in Myrtus communis L. and antioxidant activity evaluation in function of plant development stages and altitude of origin site. Agronomy 2021, 11, 1059. [Google Scholar] [CrossRef]
- Vattem, D.A.; Mihalik, K.; Crixell, S.H.; McLean, R.J. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 2007, 78, 302–310. [Google Scholar] [CrossRef]
- Šikić Pogačar, M.; Klančnik, A.; Bucar, F.; Langerholc, T.; Smole Možina, S. Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. J. Sci. Food Agric. 2016, 96, 2723–2730. [Google Scholar] [CrossRef]
- Mulugeta, M.; Fazlurrahman, K.; Archana, P. Chemical composition and antibacterial, anti-biofilm and anti-virulence activities of plant extracts against human pathogenic bacteria. Nat. Prod. J. 2022, 12, 54–68. [Google Scholar]
- Vukovic-Gacic, B.; Simic, D. Identification of natural antimutagens with modulating effects on DNA repair. Basic Life Sci. 1993, 61, 269–277. [Google Scholar]
- Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Samec, M.; Jasek, K.; Vybohova, D.; Liskova, A.; Mojzis, J.; Adamkov, M.; et al. Anticancer activities of Thymus vulgaris L. In experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci. 2019, 20, 1749. [Google Scholar] [CrossRef] [Green Version]
- Barmoudeh, Z.; Ardakani, M.T.; Doustimotlagh, A.H.; Bardania, H. Evaluation of the Antioxidant and Anticancer Activities of Hydroalcoholic Extracts of Thymus daenensis Čelak and Stachys pilifera Benth. J. Toxicol. 2022, 2022, 1924265. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef]
- Deng, L.; Dai, P.; Ciro, A.; Smee, D.F.; Djaballah, H.; Shuman, S. Identification of novel antipoxviral agents: Mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J. Virol. 2007, 18, 13392–13402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin Low, J.S.; Chen, K.C.; Wu, K.X.; Mah-Lee Nm, M.; Chu, H.J.J. Antiviral activity of emetine dihydrochloride against dengue virus infection. J. Antivir. Antiretrovir. 2009, 1, 62–71. [Google Scholar] [CrossRef]
- Bicknell, G.R.; Snowden, R.T.; Cohen, G.M. Formation of high molecular mass of DNA fragments is a marker of apoptosis in the human leukaemic cell line, U937. J. Cell Sci. 1994, 107, 2483–2489. [Google Scholar] [CrossRef]
- Meijerman, I.; Blom, W.M.; de Bont, G.J.; Mulder, J.; Nagelkerke, J.F. Induction of apoptosis and changes in nuclear Gactin are mediated by different pathways: The effects of inhibitors of protein and RNA synthesis in isolated rat hepatocytes. Toxicol. Appl. Pharmacol. 1999, 156, 46–55. [Google Scholar] [CrossRef]
- Watanabe, N.; Iwamoto, T.; Dickinson, D.A.; Iles, K.E.; Forman, H.J. Activation of the mitochondrial caspase in the absence of protein synthesis does not require c-Jun N-terminal kinase. Arch. Biochem. Biophys. 2002, 405, 231–240. [Google Scholar] [CrossRef]
- Moller, M.; Weiss, J.; Wink, M. Reduction of cytotoxicity of the alkaloid emetine through P-glycoprotein (MDR1/ABCB1) in human caco-2 and leukemia cell lines. Planta Med. 2006, 72, 1121–1126. [Google Scholar] [CrossRef]
- Mellon, J.E.; Zelaya, C.A.; Dowd, M.K. Inhibitory effects of gossypol-related compounds on growth of Aspergillus flavus. Lett. Appl. Microbiol. 2011, 52, 406–412. [Google Scholar] [CrossRef]
- Huang, Y.W.; Wang, L.S.; Dowd, M.K.; Wan, P.J.; Lin, Y.C. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells. Anticancer Res. 2009, 29, 2179–2188. [Google Scholar]
- Chien, C.C.; Ko, C.H.; Shen, S.C.; Yang, L.Y.; Chen, Y.C. The role of COX-2/PGE2 in gossypol-induced apoptosis of colorectal carcinoma cells. J. Cell Physiol. 2012, 227, 3128–3137. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, A.J.; Castoreno, A.B.; Kuo, S.Y.; Wang, Q.; Kuballa, P.; Xavier, R.; Shamji, A.F.; Schreiber, S.L.; Wagner, B.K.; et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 2013, 4, e690. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Leong, J.; Ye, W.; Xu, P.; Lin, S.H.; Liu, J.Y.; Lin, Y.C. (-)-Gossypol-enriched cottonseed oil inhibits proliferation and adipogenesis of human breast pre-adipocytes. Anticancer Res. 2013, 33, 949–955. [Google Scholar] [PubMed]
- Qiu, X.; Janson, C.A.; Smith, W.W.; Green, S.M.; McDevitt, P.; Johanson, K.; Carter, P.; Hibbs, M.; Lewis, C.; Chalker, A.; et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. Publ. Protein Soc. 2001, 10, 2008–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010, 466, 935–940. [Google Scholar] [CrossRef]
- Declercq, J.P.; Evrard, C.; Clippe, A.; Stricht, D.V.; Bernard, A.; Knoops, B. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J. Mol. Biol. 2001, 311, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Borelli, C.; Ruge, E.; Lee, J.H.; Schaller, M.; Vogelsang, A.; Monod, M.; Korting, H.C.; Huber, R.; Maskos, K. X-ray structures of Sap1 and Sap5: Structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 2008, 72, 1308–1319. [Google Scholar] [CrossRef]
- Marusiak, A.A.; Stephenson, N.L.; Baik, H.; Trotter, E.W.; Li, Y.; Blyth, K.; Mason, S.; Chapman, P.; Puto, L.A.; Read, J.A.; et al. Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis. Cancer Res. 2016, 76, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Good, J.A.; Wang, F.; Rath, O.; Kaan, H.Y.; Talapatra, S.K.; Podgórski, D.; MacKay, S.P.; Kozielski, F. Optimized S-trityl-L-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models. J. Med. Chem. 2013, 56, 1878–1893. [Google Scholar] [CrossRef]
- Williams, R.S.; Green, R.; Glover, J.N. Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat. Struct. Biol. 2001, 8, 838–842. [Google Scholar] [CrossRef]
N° | Compounds | Chemical Class | Retention Time | Molecular Weight (g/mol) | Chemical Formula |
---|---|---|---|---|---|
1 | Asn-Met-His | Tripeptides | 2.923 | 400.1528 | C15 H24 N6 O5 S |
2 | Ser-Met-Arg | Tripeptides | 5.152 | 392.1808 | C14 H28 N6 O5 S |
3 | Ser-Met-Ser | Tripeptides | 5.271 | 323.1115 | C11 H21 N3 O6 S |
4 | His-Cys-Asn | Tripeptides | 5.445 | 372.118 | C13 H20 N6 O5 S |
5 | Phe-His-Gln | Tripeptides | 5.99 | 430.1967 | C20 H26 N6 O5 |
6 | Glu-Ser | Dipeptides | 8.822 | 234.086 | C8 H14 N2 O6 |
7 | Val-Ser-Lys | Tripeptides | 12.675 | 332.2103 | C14 H28 N4 O5 |
8 | Ser-Val-Lys | Tripeptides | 13.674 | 332.2105 | C14 H28 N4 O5 |
9 | 10-Hydroxyloganin | Isoprenoids | 0.963 | 406.1437 | C17 H26 O11 |
10 | 2-4-6-8-10-dodecapentaenal | Fatty acyls | 1.081 | 174.1044 | C12 H14 O |
11 | 7-Epiloganin-tetraacetate | Isoprenoids | 4.776 | 558.1982 | C25 H34 O14 |
12 | 2-4-6-Pyrimidinetrione-5-ethyl-1-b-D-glucopyranosyl-5-1-methylbutyl | Polyunsaturated fatty acids | 4.83 | 388.1865 | C17 H28 N2 O8 |
13 | 4-Ketoretinoic acid glucuronide | Diterpene glycosides | 6.218 | 490.2201 | C26 H34 O9 |
14 | Epicatechin pentaacetate | Flavonoids | 7.875 | 500.1362 | C25 H24 O11 |
15 | Benzenebutanoic acid, 2,5-dihydroxy-3,4-dimethoxy-6-methyl- | Idebenone metabolites | 7.913 | 270.108 | C13 H18 O6 |
16 | Irigenin, Dibenzyl ether | Isoflavones | 7.89 | 540.1667 | C32 H28 O8 |
17 | Desmethyl dehydronifedipine | Vitamin B complex | 8.532 | 330.0848 | C16 H14 N2 O6 |
18 | Taxa-4(20),11(12)-dien- 5alpha-acetoxy-10beta-ol | Isoprenoids | 8.752 | 346.2467 | C22 H34 O3 |
19 | Gossypol | Polyphenolic aldehydes | 9.316 | 518.1823 | C30 H30 O8 |
20 | Dehydrorotenone | Flavonoids | 10.699 | 392.1235 | C23 H20 O6 |
21 | 6-9-12-15-18-Tetracosapentaynoic-acid | Fatty acyls | 11.857 | 348.2058 | C24 H28 O2 |
22 | Emetine | Alkaloids | 15.853 | 480.3018 | C29 H40 N2 O4 |
23 | 13R-hydroxy-9E-11Zoctadecadienoic | Fatty Acyls | 15.943 | 296.2339 | C18 H32 O3 |
24 | 1-(9Z-heptadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-3-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycerol | Glycerolipids | 17.033 | 916.7577 | C60 H100 O6 |
Code | Bacterial Strains | T. musilii Methanolic Extract | Ampicillin Mean ± SD (mm) | |||
---|---|---|---|---|---|---|
mGIZ ± SD 1 (mm) | MIC 2 | MBC 3 | MBC/MIC Ratio | |||
B1 | E. coli ATCC 35218 | 17.33 ± 0.57 cd | 6.25 | 100 | 16 | 7.00 ± 0.00 d |
B2 | P. aeruginosa ATCC 27853 | 12.33 ± 0.57 f | 12.5 | 50 | 4 | 7.33 ±0.57 d |
B3 | Proteus mirabilis ATCC 29245 | 15.00 ± 1.15 e | 6.25 | 25 | 4 | 6.33 ± 0.57 d |
B4 | K. pneumoniae ATCC 27736 | 15.33 ± 0.57 e | 6.25 | 50 | 8 | 6.66 ± 0.57 d |
B9 | S. aureus MDR (Clinical strain) | 16.66 ± 0.57 de | 6.25 | 25 | 4 | 7.33 ± 0.57 d |
B10 | E. cloacae (Clinical strain) | 16.00 ± 0.00 de | 6.25 | 12.5 | 2 | 6.66 ± 0.57 d |
Code | Yeasts and molds | mGIZ ± SD (mm) | MIC | MFC 4 | MFC/MIC ratio | Amphotericin B Mean ± SD (mm) |
Y1 | C. albicans ATCC 10231 | 29.33 ± 1.15 a | 3.125 | 25 | 8 | 22.66 ± 1.15 a |
Y2 | C. neoformans ATCC 14116 | 27.00 ± 1.00 b | 0.781 | 1.562 | 2 | 15.33 ± 0.57 b |
Y3 | C. vaginalis (Clinical strain) | 29.33 ± 2.30 a | 3.125 | 25 | 8 | 6.66 ± 0.57 d |
Y4 | Candida sp. (Clinical strain) | 18.66 ± 1.52 c | 1.562 | 25 | 16 | 12.33 ± 0.57 c |
M1 | A. fumigatus ATCC 204305 | 6.00 ± 0.00 g | - | - | - | 15.00 ± 1.00 b |
M2 | A. niger | 6.00 ± 0.00 g | - | - | - | 6.00 ± 0.00 d |
Tests | DPPH• IC50 (mg/mL) | ABTS•+ IC50 (mg/mL) | β-Carotene IC50 (mg/mL) | FRAP IC50 (mg/mL) |
---|---|---|---|---|
T. musilii methanolic extract | 0.077 ± 0.0015 | 0.040 ± 0.011 | 0.287 ± 0.012 | 0.106 ± 0.007 |
BHT (Butylated hydroxytoluene) | 0.023 ± 3 × 10−4 | 0.018 ± 4 × 10−4 | 0.042 ± 3.5 × 10−3 | 0.05 ± 3 × 10−3 |
Ascorbic Acid | 0.022 ± 5 × 10−4 | 0.021 ± 1 × 10−3 | 0.017 ± 1 × 10−3 | 0.09 ± 7 × 10−3 |
Test | T. musilii Methanolic Extract (µg/mL) | ||
---|---|---|---|
100 | 75 | 50 | |
Swarming inhibition (%) | 39.73 ± 1.50 | 23.67 ± 1.50 | 14.29 ± 1.00 |
Swimming inhibition (%) | 25.18 ± 1.00 | 15.11 ± 0.50 | (-) |
Micro-Organisms Tested | Concentration Used | Percentage of Biofilm Inhibition (%) |
---|---|---|
S. aureusATCC 25923 | MIC = 5 mg/mL | 42.29 ± 2.39 b |
MIC/2 = 2.5 mg/mL | 21.67 ± 1.58 de | |
L. monocytogenesATCC 7644 | MIC = 10 mg/mL | 49.54 ± 4.50 a |
MIC/2 = 5 mg/mL | 17.24 ± 1.37 e | |
E. coliATCC 25922 | MIC = 5 mg/mL | 41.96 ± 3.42 b |
MIC/2 = 2.5 mg/mL | 25.41 ± 2.24 d | |
MIC/4 = 1.25 mg/mL | 9.94 ± 0.55 f | |
S.typhimuriumATCC 14028 | MIC = 10 mg mL | 53.96 ± 4.21 a |
MIC/2 = 5 mg/mL | 36.59 ± 2.84 c | |
MIC/4 = 2.5 mg/mL | 11.12 ± 0.95 f |
Entry | Phyto-Constituents | ||||||||
---|---|---|---|---|---|---|---|---|---|
10 | 13 | 15 | 17 | 18 | 20 | 21 | 22 | 23 | |
Physicochemical, Lipophilicity, and Drug-Likeness properties | |||||||||
Molecular weight | 174.24 | 314.42 | 270.28 | 330.29 | 346.50 | 392.40 | 348.48 | 480.64 | 296.44 |
Num. heavy atoms | 13 | 23 | 19 | 24 | 25 | 29 | 26 | 35 | 21 |
Num. arom. heavy atoms | 0 | 0 | 6 | 12 | 0 | 16 | 0 | 12 | 0 |
Fraction Csp3 | 0.08 | 0.40 | 0.46 | 0.19 | 0.77 | 0.26 | 0.54 | 0.59 | 0.72 |
Num. rotatable bonds | 5 | 5 | 6 | 5 | 2 | 3 | 7 | 7 | 14 |
Num. H-bond acceptors | 1 | 3 | 6 | 7 | 3 | 6 | 2 | 6 | 3 |
Num. H-bond donors | 0 | 1 | 3 | 1 | 1 | 0 | 1 | 1 | 2 |
Molar Refractivity | 57.63 | 95.48 | 69.60 | 86.67 | 102.50 | 108.73 | 110.06 | 147.05 | 90.63 |
TPSA (Å2) | 17.07 | 54.37 | 96.22 | 122.31 | 46.53 | 67.13 | 37.30 | 52.19 | 57.53 |
Consensus Log Po/w | 3.01 | 4.19 | 1.62 | 1.67 | 4.03 | 3.83 | 5.91 | 4.19 | 4.54 |
Lipinskiˈs Rule | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Bioavailability Score | 0.55 | 0.85 | 0.56 | 0.56 | 0.55 | 0.55 | 0.85 | 0.55 | 0.85 |
Pharmacokinetic properties | |||||||||
GI absorption | High | High | High | High | High | High | High | High | High |
BBB permeant | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes |
P-gp substrate | No | No | No | No | No | No | No | Yes | No |
CYP1A2 inhibitor | No | Yes | No | No | No | Yes | Yes | No | Yes |
CYP2C19 inhibitor | No | Yes | No | No | No | Yes | No | No | No |
CYP2C9 inhibitor | No | Yes | No | Yes | No | Yes | Yes | No | Yes |
CYP2D6 inhibitor | No | No | No | No | No | No | No | No | Yes |
CYP3A4 inhibitor | No | No | No | No | No | Yes | No | No | No |
Log Kp (cm/s) | −5.15 | −4.80 | −6.99 | −6.55 | −5.77 | −5.87 | −3.79 | −5.87 | −4.31 |
TPC | TFC | TTC | DPPH | ABTS | β-Carotene | FRAP | |
---|---|---|---|---|---|---|---|
TPC | 1 | ||||||
TFC | −1.000 ** | 1 | |||||
TTC | 1.000 ** | −1.000 ** | 1 | ||||
DPPH | −1.000 ** | 1.000 ** | −1.000 ** | 1 | |||
ABTS | −0.996 * | 0.996 * | −0.996 * | 0.996 * | 1 | ||
β-carotene | −1.000 ** | 1.000 ** | −1.000 ** | 1.000 ** | 0.996 * | 1 | |
FRAP | −0.995 * | 0.995 * | −0.995 * | 0.995 * | 1.000 ** | 0.995 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noumi, E.; Ahmad, I.; Bouali, N.; Patel, H.; Ghannay, S.; ALrashidi, A.A.; Abdulhakeem, M.A.; Patel, M.; Ceylan, O.; Badraoui, R.; et al. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life 2023, 13, 62. https://doi.org/10.3390/life13010062
Noumi E, Ahmad I, Bouali N, Patel H, Ghannay S, ALrashidi AA, Abdulhakeem MA, Patel M, Ceylan O, Badraoui R, et al. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life. 2023; 13(1):62. https://doi.org/10.3390/life13010062
Chicago/Turabian StyleNoumi, Emira, Iqrar Ahmad, Nouha Bouali, Harun Patel, Siwar Ghannay, Ayshah Aysh ALrashidi, Mohammad A. Abdulhakeem, Mitesh Patel, Ozgur Ceylan, Riadh Badraoui, and et al. 2023. "Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities" Life 13, no. 1: 62. https://doi.org/10.3390/life13010062
APA StyleNoumi, E., Ahmad, I., Bouali, N., Patel, H., Ghannay, S., ALrashidi, A. A., Abdulhakeem, M. A., Patel, M., Ceylan, O., Badraoui, R., Mousa Elayyan, A. E., Adnan, M., Kadri, A., & Snoussi, M. (2023). Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life, 13(1), 62. https://doi.org/10.3390/life13010062