Green Biomass-Based Protein for Sustainable Feed and Food Supply: An Overview of Current and Future Prospective
Abstract
:1. Introduction
2. Data from the History of Green Biomass as a Protein Source: The Forgotten Early Visions about the Establishment of the Very First Green Protein Biorefinery Factory in Hungary and England: The Green Fodder Mill Concept of Károly (Karl) Ereky
3. Green Source of Protein
3.1. Dedicated Plant Species
Plant Species | Crude Protein Content of Leaf Protein Concentrate (LPC) m/m% | Method of Protein Content Measurement | Protein Isolation Method | Reference |
---|---|---|---|---|
Dedicated plant species | ||||
Alfalfa (Medicago sativa) | 40.3 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Alfalfa (Medicago sativa) | 41.0 | Kjeldahl | Lactobacilus salivarius fermentation | [66] |
Alfalfa (Medicago sativa) | 40.5 (Green LPC) 32.3 (White LPC) | Kjeldahl/Dumas | Thermal coagulation using two-step heating | [67] |
Alfalfa (Medicago sativa) | 46.0 | unknown | Thermal coagulation | [59] |
Alfalfa (Medicago sativa) | 37.8–47.4 | Dumas | Acid coagulation | [68] |
Jerusalem artichoke (Helianthus tuberosus) | 33.4 | Kjeldahl | Microwave coagulation | [57] |
Perennial Rye grass (Lolium perenne) | 33.9 | Kjeldahl | Thermal coagulation | [69] |
Perennial Rye grass (Lolium perenne, variety; Trocadero and Calvano) | 24.5 (Green LPC) 22.8 (White LPC) | Kjeldahl/Dumas | Thermal coagulation using two-step heating | [67] |
Ryegrass (Lolium perenne) | 50.7 | unknown | Thermal coagulation | [59] |
Red clover (Trifolium pratense) | 40.0 | Kjeldahl | Lactobacilus salivarius fermentation | [66] |
Red clover (Trifolium pratense L., variety; Rajah and Suez) | 34.6 (Green LPC) 35.6 (White LPC) | Kjeldahl/Dumas | Thermal coagulation using two-step heating | [67] |
White clover (Trifolium repens L., variety; Klondike and Silvester) | 40.4 (Green LPC) 45.1 (White LPC) | Kjeldahl/Dumas | Thermal coagulation using two-step heating | [67] |
Clover and grass mix (Trifolium pratense and Lolium multiflorum) | 40.0 | Kjeldahl | Lactobacilus salivarius fermentation | [66] |
Clover and grass mix | 47.0 | unknown | Thermal coagulation | [59] |
Green agrowastes | ||||
Green pepper (Capsicum annuum) | 31.2 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Green pepper (Capsicum annuum) | 26.2 | Kjeldahl | Lactic acid fermentation | own results (unpublished data) |
Horseradish (Armoracia rusticana) | 25.3 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Horseradish (Armoracia rusticana) | 24.7 | Kjeldahl | Lactic acid fermentation | own results (unpublished data) |
Forage soy (Glycine max) | 41.9 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Forage soy (Glycine max) | 37.1 | Kjeldahl | Lactic acid fermentation | own results (unpublished data) |
Triticale (×Triticosecale) | 41.0 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Triticale (×Triticosecale) | 34.1 | Kjeldahl | Lactic acid fermentation | own results (unpublished data) |
Broccoli (Brassica oleracea, Italica) | 35.3 | Kjeldahl | Microwave coagulation | [70] |
Broccoli (Brassica oleracea, Italica) | 39.2 | Kjeldahl | Lactic acid fermentation | [70] |
Cauliflower (Brassica oleracea, var. botrytis) | 44.4 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Cauliflower (Brassica oleracea, var. botrytis) | 43.1 | Kjeldahl | Lactic acid fermentation | own results (unpublished data) |
Brussels sprouts (Brassica oleracea, var. gemmifera) | 37.4 | Kjeldahl | Microwave coagulation | own results (unpublished data) |
Brussels sprouts (Brassica oleracea, var. gemmifera) | 34.4 | Kjeldahl | Lactic acid fermentation | own results (unpublished data) |
Potato haulm (Solanum tuberosum) | 45.3 | unknown | Thermal coagulation | [71] |
Sugar beet (Beta vulgaris) | 31.3–41.1 | Dumas | Thermal coagulation | [60] |
Sugar beet (Beta vulgaris) | 31.1–37.6 (White LPC); 43.6–47.7 (White LPC) | Kjeldahl | Thermal coagulation | [72] |
Broccoli (Brassica oleracea, Italica) | 27.2 (White LPC); 30.4 White LPC | Dumas | Thermal coagulation | [73] |
Kale (Brassica oleracea, var. Sabellica) | 16.7 (White LPC); 30.4 (White LPC) | Dumas | Thermal coagulation | [73] |
Cassava (Manihot esculenta) | 40.4–45.1 | Dumas | Thermal coagulation, acid precipitation and spontaneous fermentation | [74] |
3.2. Green Agrowastes
4. Biorefining of Protein from Green Biomass
4.1. Extraction of Leaf Protein
4.2. Precipitation of Leaf Protein
4.2.1. Thermal Coagulation
4.2.2. Microwave Coagulation
4.2.3. pH Precipitation
4.2.4. Acid-Assisted Thermal Coagulation
4.2.5. Microbial Fermentation
4.2.6. Protein Precipitation by Flocculants
4.2.7. Supercritical CO2 Extraction
4.2.8. Ultrafiltration
5. Application of Green Protein Today
5.1. State of Art of Green Biomass-Originated Protein in Europe
5.2. State of Art of Green Biomass-Originated Protein in America
5.3. State of Art of Green Biomass-Originated Protein in Africa
Funding
Conflicts of Interest
References
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hambræus, L. Protein and Amino Acids in Human Nutrition. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-801238-3. [Google Scholar]
- Pirie, N.W. Leaf Protein: And Its By-Products in Human and Animal Nutrition; Cambridge University Press: Cambridge, UK, 1987; ISBN 978-0-521-33030-5. [Google Scholar]
- Parrish, G.K.; Kroger, M.; Weaver, J.C.; Furia, T. The Prospects of Leaf Protein as a Human Food-and a Close Look at Alfalfa. Crit. Rev. Food Technol. 1974, 5, 1–13. [Google Scholar] [CrossRef]
- Kinsella, J. Evaluation of Plant Leaf Protein as a Source of Food Protein. Chem. Ind. 1970, 17, 550–554. [Google Scholar] [PubMed]
- Pirie, N.W. Protein Nutritional Quality. Baroda J. Nutr. 1975, 2, 43–48. [Google Scholar]
- Bud, R. History of “Biotechnology”. Nature 1989, 337, 10. [Google Scholar] [CrossRef]
- Bud, R. Janus-Faced Biotechnology: An Historical Perspective. TIBTECH 1989, 7, 230–233. [Google Scholar] [CrossRef]
- Bud, R. Biotechnology in the Twentieth Century. Soc. Stud. Sci. 1991, 21, 415–457. [Google Scholar] [CrossRef]
- Bud, R. The Uses of Life: A History of Biotechnology, 1st ed.; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-47699-7. [Google Scholar]
- Fari, M.G.; Menezes, E.A.; Bud, R.; Kralovanszky, P.U. Horticultural Biotechnology, as Efficient Means for Developing Countries Suggested by K. Ereky. Acta Hortic. 2001, 560, 557–564. [Google Scholar] [CrossRef]
- Fári, M.G.; Kralovánszky, U.P. The Founding Father of Biotechnology: Károly (Karl) Ereky. Int. J. Hortic. Sci. 2006, 12, 9–12. [Google Scholar] [CrossRef]
- Fári, M.G.; Popp, J. (Eds.) Biotechnology-Anno 1917–1919. Károly Ereky’s Vision about the Application of Life Sciences. (Ereky Károly Víziója az Élettudomány Alkalmazásáról, in Hungarian); Szaktudás Publishing House: Budapest, Hungary, 2015; ISBN 978-615-5224-65-2. [Google Scholar]
- Fári, M.G.; Popp, J. (Eds.) Biotechnology-Anno 1920–1938 and Today. In Károly Ereky’s Program About Solving the Protein Problem and Today’s Tasks, (Biotechnológia anno 1920–1938 és ma-Ereky Károly programja a fehérjeprobléma megoldásáról és napjaink feladatai, in Hungarian); Szaktudás Publishing House: Budapest, Hungary, 2016; ISBN 978-615-5224-67-6. [Google Scholar]
- Ereky, K. Biotechnologie der Fleisch-, Fett-und Milcherzengung im Landwirtschaftlichen Grossbetriebe für Naturwissenschaftlich Gebildete Landwirte, Verfasst; Paul Parey: Singhofen, Germany, 1919. [Google Scholar]
- Ereky, K. Green Fodder Pulp Mill and Large-Scale Animal Husbandry Enterprises: (A Zöldtakarmánymalom és a Nagy Istállóüzemek, in Hungarian); Athenaeum Irodalmi és Nyomdai Részvény-Társulat: Budapest, Hungary, 1925. [Google Scholar]
- Hammond, J. Agricultural Physiology. In Science Progress in the Twentieth Century (1919–1933); Sage Publications Ltd.: London, UK, 1929; Volume 24, pp. 231–238. [Google Scholar]
- Ereky, K. Die Steigerungsmöglichkeiten der landwirtschaftlichen Lebensmittelproduktion. Naturwissenschaften 1920, 8, 1033–1038. [Google Scholar] [CrossRef]
- Ereky, K. De Factoren Tot Vermeerdering Der Landbouwproducten. U. H. Duitsch. 1921, 3, 314–326. [Google Scholar]
- Ereky, K. Process for the Manufacture and for the Preservation of Green Fodder Pulp or Other Plant Pulp and Dry Product Made Thereform. British Patent No. 270,629, 28 September 1926. [Google Scholar]
- Ereky, K. Eljárás Zöldnövény-Pép Előállítására És Konzerválására. Hungarian Patent No. 92,680, 7 May 1926. [Google Scholar]
- Ereky, K. Procédé Pour Préparer et Conserver de la Pulpe D’herbages. EU Patent No. 623,150, 14 October 1926. [Google Scholar]
- Ereky, K. Verfahren zur Herstellung von Grünpflanzenbrei Und Konservierung Desselben. Austrian Patent No. 118,622, 25 July 1926. [Google Scholar]
- Ereky, K. Improvements in Machines Suitable for the Manufacture of Green Fodder Pulp. British Patent No. 291,752, 27 September 1927. [Google Scholar]
- Ereky, K. Gép Főleg Zöldnövénypép Előállítására. Hungarian Patent No. 95,006, 8 June 1927. [Google Scholar]
- Ereky, K. Pulp Manufacture (Production de Pulpe). Canadian Patent No. 282,415, 14 August 1928. [Google Scholar]
- Ereky, K. New Methods of Preparing Green Vegetables for the Table. Food Manuf. 1927, 2, 207. [Google Scholar]
- Ereky, K. Grünbreimühle und Grünkonservenfabrikation; Königliche Ungarische Universität Druckerei: Budapest, Hungary, 1926; p. 26. [Google Scholar]
- Ereky, K. Green Pulper and Green Mill; Atheneum Books: New York, NY, USA, 1926. [Google Scholar]
- Ereky, K. Reconstruction of the Hungarian Agriculture: (A Magyar Mezőgazdaság Rekonstrukciója); Mezőgazdasági Könyvtár: Budapest, Hungary, 1928. (in Hungarian) [Google Scholar]
- Duckham, A.N. Grass and Fodder Crop Conservation in Transportable Form. Memorandum. Agricultural Economics in the Empire. Report of a Committee Appointed by the Empire. Mark. Board 1928, 8, 1–43. [Google Scholar]
- Goodall, C. Improvements Relating to the Treatment of Grass and Other Vegetable Substances. British Patent No. 457,789, 7 December 1935. [Google Scholar]
- Smith, H.A. Process for the Manufacture of a Feed Material from Lettuce. U.S. Patent No. 2,190,176, 19 August 1937. [Google Scholar]
- Slade, R.E.; Birkinshaw, J.H. Improvements in, or Relating to the Utilization of Grass and Other Green Crops. British Patent GB511525A, 18 February 1938. [Google Scholar]
- Slade, R.E.; Branskombe, D.J.; Gount, W.E. Improvement in or Relating to the Production of Food from Plant Leaves. British Patent No. 577,172, 8 May 1940. [Google Scholar]
- Slade, R.E.; Braitscombe, D.J.; Mcgowan, J.C. Protein extraction. Chem. Ind. 1946, 25, 194–197. [Google Scholar]
- Pirie, N.W. The Direct Use of Leaf Protein in Human Nutrition. Chem. Ind. 1942, 61, 45–48. [Google Scholar]
- Pirie, N.W. Green Leaves as a Source of Proteins and Other Nutrients. Nature 1942, 149, 251. [Google Scholar] [CrossRef]
- Pirie, N.W. Some practical aspects of leaf protein manufacture. Food Manuf. 1942, 17, 283–286. [Google Scholar]
- Fiorentini, R.; Galoppini, C. The Proteins from Leaves. Plant Food Hum. Nutr. 1983, 32, 335–350. [Google Scholar] [CrossRef]
- Kromus, S.; Kamm, B.; Kamm, M.; Fowler, P.; Narodoslawsky, M. Green Biorefineries: The Green Biorefinery Concept–Fundamentals and Potential. In Biorefineries-Industrial Processes and Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 253–294. ISBN 978-3-527-61984-9. [Google Scholar]
- Tamayo Tenorio, A.; Kyriakopoulou, K.E.; Suarez-Garcia, E.; Van den Berg, C.; Van der Goot, A.J. Understanding Differences in Protein Fractionation from Conventional Crops, and Herbaceous and Aquatic Biomass-Consequences for Industrial Use. Trends Food Sci. Technol. 2018, 71, 235–245. [Google Scholar] [CrossRef]
- Nishimura, K.; Ogawa, T.; Ashida, H.; Yokota, A. Molecular Mechanisms of RuBisCO Biosynthesis in Higher Plants. Plant Biotechnol. 2008, 25, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.J. Chloroplast Proteins and Their Synthesis. In Plant Proteins; Butterworths: London, UK, 1977. [Google Scholar]
- Andersson, I.; Backlund, A. Structure and Function of Rubisco. Plant Physiol. Biochem. 2008, 46, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Nieuwland, M.; Geerdink, P.; Engelen-Smit, N.P.; Van der Meer, I.M.; America, A.H.; Mes, J.J.; Kootstra, A.M.J.; Henket, J.T.; Mulder, W.J. Isolation and Gelling Properties of Duckweed Protein Concentrate. ACS Food Sci. Technol. 2021, 1, 908–916. [Google Scholar] [CrossRef]
- Guide to Genetically Modified Alfalfa. Available online: https://www.worc.org/publication/guide-to-genetically-modified-alfalfa/ (accessed on 20 December 2022).
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Wiggering, H.; Finckh, M.R.; Heß, J. Fachforum Leguminosen: Wissenschaft, Wirtschaft, Gesellschaft-Ökosystemleistungen von Leguminosen Wettbewerbsfähig Machen: Forschungsstrategie der Deutschen Agrarforschungsallianz; Stand 07/2012; Deutsche Agrarforschungsallianz (DAFA): Braunschweig, Germany, 2012; ISBN 978-3-86576-092-0. [Google Scholar]
- Wilkins, R.J.; Jones, R. Alternative Home-Grown Protein Sources for Ruminants in the United Kingdom. Anim. Feed. Sci. Technol. 2000, 85, 23–32. [Google Scholar] [CrossRef]
- Früh, B.; Schlatter, B.; Isensee, A.; Maurer, V.; Willer, H. Report on Organic Protein Availability and Demand in Europe = Deliverable 1.2 of the CORE Organic Project (ICOPP); Research Institute of Organic Agriculture (FIBL): Frick, Switzerland, 2014. [Google Scholar]
- Li, X.; Brummer, E.C. Applied Genetics and Genomics in Alfalfa Breeding. Agronomy 2012, 2, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É. Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus Tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef]
- Açıkgöz, E. Yem bitkileri; Uludağ Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü: Bursa, Turkey, 2001; ISBN 975-564-124-6. [Google Scholar]
- Anil, L.; Park, J.; Phipps, R.H.; Miller, F.A. Temperate Intercropping of Cereals for Forage: A Review of the Potential for Growth and Utilization with Particular Reference to the UK. Grass Forage Sci. 1998, 53, 301–317. [Google Scholar] [CrossRef]
- De Zumelzú, D.M.; Costero, B.; Cavaleri, P.; Maich, R. Selection Responses for Some Agronomic Traits in Hexaploid Triticale. Agriscientia 2002, 19, 45–50. [Google Scholar]
- Kaszás, L.; Alshaal, T.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; El-Ramady, H.; Fári, M.; Domokos-Szabolcsy, É. Refining High-Quality Leaf Protein and Valuable Co-Products from Green Biomass of Jerusalem Artichoke (Helianthus Tuberosus L.) for Sustainable Protein Supply. Biomass Conv. Bioref. 2020, 12, 2149–2164. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, H.; Thomsen, S.T.; Schjoerring, J.K. The Potential for Biorefining of Triticale to Protein and Sugar Depends on Nitrogen Supply and Harvest Time. Ind. Crops Prod. 2020, 149, 112333. [Google Scholar] [CrossRef]
- Corona, A.; Parajuli, R.; Ambye-Jensen, M.; Hauschild, M.Z.; Birkved, M. Environmental Screening of Potential Biomass for Green Biorefinery Conversion. J. Clean. Prod. 2018, 189, 344–357. [Google Scholar] [CrossRef]
- Tamayo Tenorio, A.; Gieteling, J.; De Jong, G.A.H.; Boom, R.M.; Van der Goot, A.J. Recovery of Protein from Green Leaves: Overview of Crucial Steps for Utilisation. Food Chem. 2016, 203, 402–408. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Karkov Ytting, N.; Lübeck, M. Influence of the Development Stage of Perennial Forage Crops for the Recovery Yields of Extractable Proteins Using Lactic Acid Fermentation. J. Clean. Prod. 2019, 218, 1055–1064. [Google Scholar] [CrossRef]
- Solati, Z.; Jørgensen, U.; Eriksen, J.; Søegaard, K. Dry Matter Yield, Chemical Composition and Estimated Extractable Protein of Legume and Grass Species during the Spring Growth: Protein Extractability in Legumes and Grasses. J. Sci. Food Agric. 2017, 97, 3958–3966. [Google Scholar] [CrossRef]
- La Cour, R.; Schjoerring, J.K.; Jørgensen, H. Enhancing Protein Recovery in Green Biorefineries by Lignosulfonate-Assisted Precipitation. Front. Sustain. Food Syst. 2019, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Grimi, N.; Jaffrin, M.Y.; Ding, L.; Tang, B. A Short Review on the Research Progress in Alfalfa Leaf Protein Separation Technology. J. Chem. Technol. Biotechnol. 2017, 92, 2894–2900. [Google Scholar] [CrossRef]
- Siegert, W.; Boguhn, J.; Maurer, H.P.; Weiss, J.; Zuber, T.; Möhring, J.; Rodehutscord, M. Effect of Nitrogen Fertilisation on the Amino Acid Digestibility of Different Triticale Genotypes in Caecectomised Laying Hens: Effect of Nitrogen Fertilisation on the Amino Acid. J. Sci. Food Agric. 2017, 97, 144–150. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Molinuevo-Salces, B.; Kiel, P.; Steenfeldt, S.; Uellendahl, H.; Lübeck, M. Lactic Acid Fermentation for Refining Proteins from Green Crops and Obtaining a High Quality Feed Product for Monogastric Animals. J. Clean. Prod. 2017, 162, 875–881. [Google Scholar] [CrossRef]
- Damborg, V.K.; Jensen, S.K.; Weisbjerg, M.R.; Adamsen, A.P.; Stødkilde, L. Screw-Pressed Fractions from Green Forages as Animal Feed: Chemical Composition and Mass Balances. Anim. Feed. Sci. Technol. 2020, 261, 114401. [Google Scholar] [CrossRef]
- Hansen, M.; Andersen, C.A.; Jensen, P.R.; Hobley, T.J. Scale-Up of Alfalfa (Medicago sativa) Protein Recovery Using Screw Presses. Foods 2022, 11, 3229. [Google Scholar] [CrossRef]
- Ravindran, R.; Koopmans, S.; Sanders, J.P.M.; McMahon, H.; Gaffey, J. Production of Green Biorefinery Protein Concentrate Derived from Perennial Ryegrass as an Alternative Feed for Pigs. Clean Technol. 2021, 3, 656–669. [Google Scholar] [CrossRef]
- Domokos-Szabolcsy, É.; Elhawat, N.; Domingos, G.J.; Kovács, Z.; Koroknai, J.; Bodó, E.; Fári, M.G.; Alshaal, T.; Bákonyi, N. Comparison of Wet Fractionation Methods for Processing Broccoli Agricultural Wastes and Evaluation of the Nutri-Chemical Values of Obtained Products. Foods 2022, 11, 2418. [Google Scholar] [CrossRef] [PubMed]
- Hanczakowski, P.; Skraba, B.; Młodkowski, M. Nutritive Value of Leaf-Protein Concentrate from Potato Haulm for Rats and Chicks. Anim. Feed. Sci. Technol. 1981, 6, 413–419. [Google Scholar] [CrossRef]
- Jwanny, E.W.; Montanari, L.; Fantozzi, P. Protein Production for Human Use from Sugarbeet: Byproducts. Bioresour. Technol. 1993, 43, 67–70. [Google Scholar] [CrossRef]
- Prade, T.; Muneer, F.; Berndtsson, E.; Nynäs, A.-L.; Svensson, S.-E.; Newson, W.R.; Johansson, E. Protein Fractionation of Broccoli (Brassica oleracea, Var. Italica) and Kale (Brassica oleracea, Var. Sabellica) Residual Leaves—A Pre-Feasibility Assessment and Evaluation of Fraction Phenol and Fibre Content. Food Bioprod. Process. 2021, 130, 229–243. [Google Scholar] [CrossRef]
- Gundersen, E.; Christiansen, A.H.C.; Jørgensen, K.; Lübeck, M. Production of Leaf Protein Concentrates from Cassava: Protein Distribution and Anti-Nutritional Factors in Biorefining Fractions. J. Clean. Prod. 2022, 379, 134730. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Forough, M.; Garavand, F.; Alizadeh, S.; Salehabadi, A.; Khaneghah, A.M.; Jafari, S.M. Plant Protein-Based Food Packaging Films; Recent Advances in Fabrication, Characterization, and Applications. Trends Food Sci. Technol. 2022, 120, 154–173. [Google Scholar] [CrossRef]
- Berndtsson, E.; Andersson, R.; Johansson, E.; Olsson, M.E. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. IJERPH 2020, 17, 2406. [Google Scholar] [CrossRef] [Green Version]
- Berndtsson, E.; Nynäs, A.-L.; Newson, W.; Langton, M.; Andersson, R.; Johansson, E.; Olsson, M.E. 21. The Underutilised Side Streams of Broccoli and Kale–Valorisation via Proteins and Phenols. In Sustainable Governance and Management of Food Systems; Vinnari, E., Vinnari, M., Eds.; Wageningen Academic Publishers: Turku, Finland, 2019; pp. 153–159. [Google Scholar]
- Baraniak, B.M.; Waleriańczyk, E. Flocculation. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Finglas, P., Toldra, F., Eds.; Academic Press: Oxford, UK, 2003; pp. 2531–2535. ISBN 978-0-12-227055-0. [Google Scholar]
- Bals, B.D.; Dale, B.E.; Balan, V. Recovery of Leaf Protein for Animal Feed and High-Value Uses. In Biorefinery Co-Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 179–197. ISBN 978-0-470-97669-2. [Google Scholar]
- Pirie, N.W.; Pirie, N.W. Leaf Protein: Its Agronomy, Preparation, Quality and Use; IBP Handbook No. 20; International Biological Programme: London, UK, 1971; ISBN 978-0-632-08350-3. [Google Scholar]
- Arlabosse, P.; Blanc, M.; Kerfaï, S.; Fernandez, A. Production of Green Juice with an Intensive Thermo-Mechanical Fractionation Process. Part I: Effects of Processing Conditions on the Dewatering Kinetics. Chem. Eng. J. 2011, 168, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Colas, D.; Doumeng, C.; Pontalier, P.Y.; Rigal, L. Green Crop Fractionation by Twin-Screw Extrusion: Influence of the Screw Profile on Alfalfa (Medicago sativa) Dehydration and Protein Extraction. Chem. Eng. Process. Process Intensif. 2013, 72, 1–9. [Google Scholar] [CrossRef]
- Colas, D.; Doumeng, C.; Pontalier, P.Y.; Rigal, L. Twin-Screw Extrusion Technology, an Original Solution for the Extraction of Proteins from Alfalfa (Medicago sativa). Food Bioprod. Process. 2013, 91, 175–182. [Google Scholar] [CrossRef]
- Byers, M.; Sturrock, J.W. The Yields of Leaf Protein Extracted by Large-Scale Processing of Various Crops. J. Sci. Food Agric. 1965, 16, 341–355. [Google Scholar] [CrossRef]
- Knuckles, B.E.; Bickoff, E.M.; Kohler, G.O. PRO-XAN Process. Methods for Increasing Protein Recovery from Alfalfa. J. Agric. Food Chem. 1972, 20, 1055–1057. [Google Scholar] [CrossRef]
- Morrison, J.E.; Pirie, N.W. The Large-Scale Production of Protein from Leaf Extracts. J. Sci. Food Agric. 1961, 12, 1–5. [Google Scholar] [CrossRef]
- Edwards, R.H.; De Fremery, D.; Mackey, B.E.; Kohler, G.O. Factors Affecting Juice Extraction and Yield of Leaf Protein Concentrate from Ground Alfalfa. Trans. ASAE 1978, 21, 55–59. [Google Scholar] [CrossRef]
- King, C.; McEniry, J.; O’Kiely, P.; Richardson, M. The Effects of Hydrothermal Conditioning, Detergent and Mechanical Pressing on the Isolation of the Fibre-Rich Press-Cake Fraction from a Range of Grass Silages. Biomass Bioenergy 2012, 42, 179–188. [Google Scholar] [CrossRef]
- Sari, Y.W.; Mulder, W.J.; Sanders, J.P.M.; Bruins, M.E. Towards Plant Protein Refinery: Review on Protein Extraction Using Alkali and Potential Enzymatic Assistance. Biotechnol. J. 2015, 10, 1138–1157. [Google Scholar] [CrossRef]
- Sari, Y.W.; Syafitri, U.; Sanders, J.P.M.; Bruins, M.E. How Biomass Composition Determines Protein Extractability. Ind. Crops Prod. 2015, 70, 125–133. [Google Scholar] [CrossRef]
- Hanna, M.A.; Ogden, R.L. Expression of Alfalfa Juice. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf60232a070 (accessed on 20 December 2022).
- Arulvasu, C.; Shakthi, S.K.S.; Babu, G.; Radhakrishnan, N. Purification and Identification of Bioactive Protein from Leaves of Datura inoxia P. Mil. Biomed. Prev. Nutr. 2014, 4, 143–149. [Google Scholar] [CrossRef]
- Liu, Q.H.; Zhang, T.W.; Tian-Cai, L.I. Review on Extraction, Purification and Application of Leaf Protein. Guizhou Agric. Sci. 2011, 32, 468–471. [Google Scholar]
- Bals, B.; Dale, B.E. Economic Comparison of Multiple Techniques for Recovering Leaf Protein in Biomass Processing. Biotechnol. Bioeng. 2011, 108, 530–537. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Lübeck, M. Production of Leaf Protein Concentrates in Green Biorefineries as Alternative Feed for Monogastric Animals. Anim. Feed. Sci. Technol. 2020, 268, 114605. [Google Scholar] [CrossRef]
- Martin, A.H.; Nieuwland, M.; De Jong, G.A.H. Characterization of Heat-Set Gels from RuBisCO in Comparison to Those from Other Proteins. J. Agric. Food Chem. 2014, 62, 10783–10791. [Google Scholar] [CrossRef] [PubMed]
- Lamsal, B.P.; Koegel, R.G.; Gunasekaran, S. Some Physicochemical and Functional Properties of Alfalfa Soluble Leaf Proteins. LWT-Food Sci. Technol. 2007, 40, 1520–1526. [Google Scholar] [CrossRef]
- Fári, M.G.; Domokos-Szabolcsy, É. Method for Producing Plant Protein Coagulum. Hungarian Patent WO/2019/150144, 8 August 2019. [Google Scholar]
- Fári, M.G.; Domokos-Szabolcsy, É. Növényifehérje-Koagulum Előállítására Szolgáló Eljárás. Hungarian Patent P1800041/40, 2018. [Google Scholar]
- Betschart, A.; Kinsella, J.E. Extractability and Solubility of Leaf Protein. J. Agric. Food Chem. 1973, 21, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Coldebella, P.F.; Gomes, S.D.; Evarini, J.A.; Cereda, M.P.; Coelho, S.R.M.; Coldebella, A. Evaluation of Protein Extraction Methods to Obtain Protein Concentrate from Cassava Leaf. Eng. Agríc. 2013, 33, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
- Horigome, T.; Cho, Y.S.; Ohshima, M. A Study on the Hypocholesterolemic Activity of Various Leaf Proteins of Italian Ryegrass (Lolium multiflorum Lam.) in the Rat. Ital. J. Food Sci. 1990, 2, 227–233. [Google Scholar]
- Santamaria-Fernandez, M. Protein Recovery and Biogas Production From Organically Grown Biomass: A Green Biorefinery Concept. Master’s Thesis, Aarhus University, Aarhus, Denmark, 2015. [Google Scholar]
- Knuckles, B.E.; Edwards, R.H.; Kohler, G.O.; Whitney, L.F. Flocculants in the Separation of Green and Soluble White Protein Fractions from Alfalfa. J. Agric. Food Chem. 1980, 28, 32–36. [Google Scholar] [CrossRef]
- Baraniak, B. The Effect of Flocculant Applied in the Process of Fractionating Alfalfa Juice on the Chemical Composition of the Obtained Protein Concentrates. Anim. Feed. Sci. Technol. 1990, 31, 305–311. [Google Scholar] [CrossRef]
- Bray, W.J.; Humphries, C. Preparation of White Leaf Protein Concentrate Using a Polyanionic Flocculant. J. Sci. Food Agric. 1979, 30, 171–176. [Google Scholar] [CrossRef]
- Zosel, A. Der Schubmodul von Hochpolymeren als Funktion von Druck und Temperatur. Kolloid-Z. U. Z. Polymere 1964, 199, 113–125. [Google Scholar] [CrossRef]
- Weder, J.K.P. Effect of Supercritical Carbon Dioxide on Proteins. Z Lebensm. Unters. Forch. 1980, 171, 95–100. [Google Scholar] [CrossRef]
- Thiering, R.; Hofland, G.; Foster, N.; Witkamp, G.J.; Van De Wielen, L. Carbon Dioxide Induced Soybean Protein Precipitation: Protein Fractionation, Particle Aggregation, and Continuous Operation. Biotechnol. Prog. 2001, 17, 513–521. [Google Scholar] [CrossRef]
- Thiering, R.; Hofland, G.; Foster, N.; Witkamp, G.J.; Van de Wielen, L. Fractionation of Soybean Proteins with Pressurized Carbon Dioxide as a Volatile Electrolyte. Biotechnol. Bioeng. 2001, 73, 1–11. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Yee, W.C. Enriched Fractions of Alpha-Lactalbumin (α-LA) and Beta-Lactoglobulin (β-LG) from Whey Protein Concentrate Using Carbon Dioxide. Functional Properties in Aqueous Solution 1. J. Food Process. Preserv. 2001, 25, 267–282. [Google Scholar] [CrossRef]
- McHugh, M.A.; Krukonis, V.J. Supercritical Fluid Extraction, 2nd ed.; Butterworth-Heinemann: Boston, MA, USA, 1993; ISBN 978-0-08-051817-6. [Google Scholar]
- Zhang, J.; Burrows, S.; Gleason, C.; Matthews, M.A.; Drews, M.J.; LaBerge, M.; An, Y.H. Sterilizing Bacillus Pumilus Spores Using Supercritical Carbon Dioxide. J. Microbiol. Methods 2006, 66, 479–485. [Google Scholar] [CrossRef]
- Kromus, S.; Wachter, B.; Koschuh, W.; Mandl, M.; Krotscheck, C.; Narodoslawsky, M. The Green Biorefinery Austria–Development of an Integrated System for Green Biomass Utilization. Chem. Biochem. Eng. Q. 2004, 18, 8–12. [Google Scholar]
- Hernández, M.T.; Centeno, C.; Martínez, C.; Hernández, A. Effect of Solvent Extraction on the Nitrogen Compounds in Alfalfa Protein Concentrates. J. Agric. Food Chem. 1995, 43, 3065–3069. [Google Scholar] [CrossRef]
- Karlsson, J.O.; Parodi, A.; Van Zanten, H.H.E.; Hansson, P.-A.; Röös, E. Halting European Union Soybean Feed Imports Favours Ruminants over Pigs and Poultry. Nat. Food 2020, 2, 38–46. [Google Scholar] [CrossRef]
- Nynäs, A.-L. White Proteins from Green Leaves in Food Applications. In Introductory Paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science; Department of Plant Breeding, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018. [Google Scholar]
- Julier, B.; Gastal, F.; Louarn, G.; Badenhausser, I.; Annicchiarico, P.; Crocq, G.; Le Chatelier, D.; Guillemot, E.; Emile, J.C. Lucerne (Alfalfa) in European Cropping Systems. In Legumes in Cropping Systems; Murphy-Bokern, D., Stoddard, F.L., Watson, C.A., Eds.; CABI: Oxfordshire, UK, 2017; pp. 168–192. ISBN 978-1-78064-498-1. [Google Scholar]
- Kamm, B.; Schönicke, P.; Hille, C. Green Biorefinery–Industrial Implementation. Food Chem. 2016, 197, 1341–1345. [Google Scholar] [CrossRef]
- Database-Eurostat. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 20 December 2022).
- Bonou, A.; Colley, T.A.; Hauschild, M.Z.; Olsen, S.I.; Birkved, M. Life Cycle Assessment of Danish Pork Exports Using Different Cooling Technologies and Comparison of Upstream Supply Chain Efficiencies between Denmark, China and Australia. J. Clean. Prod. 2020, 244, 118816. [Google Scholar] [CrossRef]
- Corona, A.; Ambye-Jensen, M.; Vega, G.C.; Hauschild, M.Z.; Birkved, M. Techno-Environmental Assessment of the Green Biorefinery Concept: Combining Process Simulation and Life Cycle Assessment at an Early Design Stage. Sci. Total Environ. 2018, 635, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Termansen, M.; Gylling, M.; Jørgensen, U.; Hermansen, J.; Knudsen, M.T.; Adamsen, A.P.S.; Ambye-Jensen, M.; Vestby, M.; Jensen, S.K.; Andersen, H.E.; et al. Green Biomass–Protein Production through Biorefining; DCA-Danish Centre for Food and Agriculture: Tjele, Denmark, 2017. [Google Scholar]
- Fernandez, M.S. A Novel Green Biorefinery Concept: Protein Refining by Lactic Acid Fermentation and Biogas Production from Green Biomass. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2018; pp. 1–185. [Google Scholar]
- DCA. Green Protein. Available online: https://dca.au.dk/en/knowledge-sharing/bioeconomy-and-biobased-production/biobase/green-protein (accessed on 20 December 2022).
- Kamm, B.; Hille, C.; Schönicke, P.; Dautzenberg, G. Green Biorefinery Demonstration Plant in Havelland (Germany). Biofuels Bioprod. Biorefining 2010, 4, 253–262. [Google Scholar] [CrossRef]
- Kamm, B. Introduction of Biomass and Biorefineries. In The Role of Green Chemistry in Biomass Processing and Conversion; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–26. ISBN 978-0-470-64410-2. [Google Scholar]
- Carton, O.; Maguire, M.F.; Craig, J. The Nutritive Value of Preserved Grass Juice for Growing Pigs. Ir. J. Agric. Res. 1983, 22, 95–104. [Google Scholar]
- Holló, J.; Kralovánszky, U.P. Biotechnology in Hungary. Adv. Biochem. Eng. Biotechnol. 2000, 69, 151–173. [Google Scholar] [CrossRef]
- Bódi, L.; Fári, M.G. Eljárás Magasabb Beltartalmi Értékű Lucernaszárítmányokelőállítására. Hungarian Patent Application No. P0,203,889, 11 November 2002. [Google Scholar]
- Päivärinta, E.; Itkonen, S.; Pellinen, T.; Lehtovirta, M.; Erkkola, M.; Pajari, A.-M. Replacing Animal-Based Proteins with Plant-Based Proteins Changes the Composition of a Whole Nordic Diet—A Randomised Clinical Trial in Healthy Finnish Adults. Nutrients 2020, 12, 943. [Google Scholar] [CrossRef] [Green Version]
- Zanin. APEF, Association Pour La Promotion Des Extraits Foliaires En Nutrition|Feedipedia. 1998. Available online: https://www.feedipedia.org/node/18347 (accessed on 20 December 2022).
- EFSA. Opinion on the Safety of ‘Alfalfa Protein Concentrate’ as Food—EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/997 (accessed on 20 December 2022).
- Grela, E. Production Technology, Chemical Composition and Use of Alfalfa Protein-Xanthophyll Concentrate as Dietary Supplement. J. Food Process. Technol. 2014, 5, 1000373. [Google Scholar] [CrossRef] [Green Version]
- Fellet, M. A Fresh Take on Fake Meat. ACS Cent. Sci. 2015, 1, 347–349. [Google Scholar] [CrossRef] [Green Version]
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Pulses and Food Security: Dietary Protein, Digestibility, Bioactive and Functional Properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Schweiggert-Weisz, U.; Eisner, P.; Bader-Mittermaier, S.; Osen, R. Food Proteins from Plants and Fungi. Curr. Opin. Food Sci. 2020, 32, 156–162. [Google Scholar] [CrossRef]
- De Marchi, M.; Costa, A.; Pozza, M.; Goi, A.; Manuelian, C.L. Detailed Characterization of Plant-Based Burgers. Sci. Rep. 2021, 11, 2049. [Google Scholar] [CrossRef]
- Grau, H.R.; Aide, M. Globalization and Land-Use Transitions in Latin America. Ecol. Soc. 2008, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Kearney, J. Food Consumption Trends and Drivers. Phil. Trans. R. Soc. B 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, C.E.; Nunes-Galbes, N.M.; Borgheresi, R.; Cezarino, L.O.; Martins, F.P.; Liboni, L.B. Psychological Barriers to Sustainable Dietary Patterns: Findings from Meat Intake Behaviour. Sustainability 2022, 14, 2199. [Google Scholar] [CrossRef]
- Goldstein, B.; Moses, R.; Sammons, N.; Birkved, M. Potential to Curb the Environmental Burdens of American Beef Consumption Using a Novel Plant-Based Beef Substitute. PLoS ONE 2017, 12, e0189029. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Aebi, A.; Bijleveld van Lexmond, M.F.I.J.; Bojaca, C.R.; Bonmatin, J.-M.; Furlan, L.; Guerrero, J.A.; Mai, T.V.; Pham, H.V.; Sanchez-Bayo, F.; et al. Resolving the Twin Human and Environmental Health Hazards of a Plant-Based Diet. Environ. Int. 2020, 144, 106081. [Google Scholar] [CrossRef]
- Mason-D’Croz, D.; Barnhill, A.; Bernstein, J.; Bogard, J.; Dennis, G.; Dixon, P.; Fanzo, J.; Herrero, M.; McLaren, R.; Palmer, J.; et al. Ethical and Economic Implications of the Adoption of Novel Plant-Based Beef Substitutes in the USA: A General Equilibrium Modelling Study. Lancet Planet. Health 2022, 6, e658–e669. [Google Scholar] [CrossRef]
- Janssen, M.; Chang, B.P.I.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in Food Consumption During the COVID-19 Pandemic: Analysis of Consumer Survey Data From the First Lockdown Period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 635859. [Google Scholar] [CrossRef]
- FAO. The State of Food Insecurity in the World: Addressing Food Insecurity in Protracted Crises; FAO: Rome, Italy, 2010; ISBN 978-92-5-106610-2. [Google Scholar]
- De Schouwer, F.; Claes, L.; Vandekerkhove, A.; Verduyckt, J.; De Vos, D.E. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. ChemSusChem 2019, 12, 1272–1303. [Google Scholar] [CrossRef]
- Ložnjak Švarc, P.; Jensen, M.B.; Langwagen, M.; Poulsen, A.; Trolle, E.; Jakobsen, J. Nutrient Content in Plant-Based Protein Products Intended for Food Composition Databases. J. Food Compos. Anal. 2022, 106, 104332. [Google Scholar] [CrossRef]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. JAHA 2019, 8, e012865. [Google Scholar] [CrossRef] [PubMed]
- Arbach, C.T.; Alves, I.A.; Serafini, M.R.; Stephani, R.; Perrone, Í.T.; De Carvalho da Costa, J. Recent Patent Applications in Beverages Enriched with Plant Proteins. NPJ Sci. Food 2021, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.G.; Bliss, F.A. Expression of Enhanced Seed Protein Content in Inbred Backcross Lines of Common Bean. J. Am. Soc. Hortic. Sci. 1983, 108, 787–791. [Google Scholar] [CrossRef]
- Hallauer, A.R. Evolution of Plant Breeding. Crop Breed. Appl. Biotechnol. 2011, 11, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Babu, R.; Prasanna, B.M. Molecular Breeding for Quality Protein Maize (QPM). In Genomics of Plant Genetic Resources; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 489–505. ISBN 978-94-007-7574-9. [Google Scholar]
- Rojas Conzuelo, Z.; Robyr, R.; Kopf-Bolanz, K.A. Optimization of Protein Quality of Plant-Based Foods Through Digitalized Product Development. Front. Nutr. 2022, 9, 902565. [Google Scholar] [CrossRef]
- Estell, M.; Hughes, J.; Grafenauer, S. Plant Protein and Plant-Based Meat Alternatives: Consumer and Nutrition Professional Attitudes and Perceptions. Sustainability 2021, 13, 1478. [Google Scholar] [CrossRef]
- Moreira, M.N.B.; Da Veiga, C.P.; Da Veiga, C.R.P.; Reis, G.G.; Pascuci, L.M. Reducing Meat Consumption: Insights from a Bibliometric Analysis and Future Scopes. Future Foods 2022, 5, 100120. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Marinangeli, C.P.F.; Mansilla, W.D.; Shoveller, A.-K. Navigating Protein Claim Regulations in North America for Foods Containing Plant-Based Proteins. CFW 2018, 63, 207–216. [Google Scholar] [CrossRef]
- Tonsor, G.T.; Lusk, J.L.; Schroeder, T.C. Market Potential of New Plant-based Protein Alternatives: Insights from Four US Consumer Experiments. Appl. Econ. Perspect. Policy 2022, aepp.13253. [Google Scholar] [CrossRef]
- Fundação Getúlio Vargas. Food Industry in Brazil; FGV Projetos: Rio de Janeiro, Brazil, 2016; ISBN 978-85-64878-44-0. [Google Scholar]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat Consumption: Trends and Quality Matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Xiu, S.; Shahbazi, A. Development of Green Biorefinery for Biomass Utilization: A Review. Trends Ren. Energy 2015, 1, 4–15. [Google Scholar] [CrossRef]
- Paiva, M.J.A.; Borges, L.L.R.; Costa, N.A.; Vieira, E.N.R.; Picoli, E.A.T.; Domokos-Szabolcsy, E.; Pereira, G.C. Atividade Antioxidante Do Extrato de Pennisetum Purpureum (Schum: Poaceae) Cv. BRS Capiaçu Aos 90 Dias Pós Rebrota. In Simpósio Integrado de Inovação Em Tecnologia de Alimentos; Departamento de Ciência e Tecnologia de Alimentos, UFV, Viçosa-MG: Viçosa, Brazil, 2022. [Google Scholar]
- Lancaster, P.A.; Brooks, J.E. Cassava Leaves as Human Food. Econ. Bot. 1983, 37, 331–348. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; Van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-Y.; Ng, I.-S.; Chen, P.T.; Chiang, C.-J.; Chao, Y.-P. Biorefining of Protein Waste for Production of Sustainable Fuels and Chemicals. Biotechnol. Biofuels 2018, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- USDE. Sustainable Aviation Fuel: Review of Technical Pathways Report. Available online: https://www.energy.gov/eere/bioenergy/downloads/sustainable-aviation-fuel-review-technical-pathways-report (accessed on 20 December 2022).
- Sodamade, A.; Bolaji, O.S.; Adeboye, O.O. Proximate Analysis, Mineral Contents and Functional Properties of Moringa oleifera Leaf Protein Concentrate. J. Appl. Chem. 2013, 4, 47–51. [Google Scholar]
- Moure, A.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Functionality of Oilseed Protein Products: A Review. Food Res. Int. 2006, 39, 945–963. [Google Scholar] [CrossRef]
- Sayre, R.; Beeching, J.R.; Cahoon, E.B.; Egesi, C.; Fauquet, C.; Fellman, J.; Fregene, M.; Gruissem, W.; Mallowa, S.; Manary, M.; et al. The BioCassava Plus Program: Biofortification of Cassava for Sub-Saharan Africa. Annu. Rev. Plant Biol. 2011, 62, 251–272. [Google Scholar] [CrossRef]
- Bokanga, M. Processing OF Cassava Leaves for Human Consumption. Acta Hortic. 1994, 375, 203–208. [Google Scholar] [CrossRef]
- Tewe Olumide, O. The Global Cassava Development Strategy and Implementation Plan. Available online: https://www.fao.org/3/y0169e/y0169e00.htm (accessed on 21 December 2022).
- Agbede, J.; Aletor, V. Comparative Evaluation of Weaning Foods from Glyricidia and Leucaena Leaf Protein Concentrates and Some Commercial Brands in Nigeria. J. Sci. Food Agric. 2004, 84, 21–30. [Google Scholar] [CrossRef]
- Agbede, J.O.; Aletor, V.A. Chemical Characterization and Protein Quality Evaluation of Leaf Protein Concentrates from Glyricidia sepium and Leucaena leucocephala. Int. J. Food Sci. Technol. 2004, 39, 253–261. [Google Scholar] [CrossRef]
Amino Acids | Alfalfa (LPC) | Alfalfa (Green Juice) | Jerusalem Artichoke (LPC-MW) | Green Pepper (LPC-MW) | Green Soy (LPC-MW) | Cauliflower (LPC-MW) | Soy (Seed Extracted) | Triticale (Green Juice) | Triticale (LPC-Microwave) | Triticale (LPC-Lactic Acid) |
---|---|---|---|---|---|---|---|---|---|---|
ASP | 5.22 | 4.33 | 4.24 | 2.86 | 4.29 | 5.23 | 5.64 | 2.72 | 3.84 | 2.68 |
THR | 2.44 | 1.76 | 1.88 | 1.27 | 1.97 | 2.73 | 1.93 | 1.11 | 1.59 | 1.62 |
SER | 2.34 | 1.67 | 1.91 | 1.30 | 2.10 | 2.40 | 2.43 | 1.19 | 1.69 | 1.72 |
GLU | 5.27 | 4.01 | 4.09 | 3.34 | 4.57 | 5.95 | 8.76 | 2.68 | 3.55 | 3.57 |
PRO | 2.10 | 1.44 | 2.04 | 1.53 | 2.10 | 2.60 | 2.34 | 1.24 | 1.78 | 1.78 |
GLY | 2.55 | 1.79 | 1.70 | 1.68 | 2.23 | 2.71 | 2.06 | 1.23 | 2.07 | 2.06 |
ALA | 2.89 | 2.02 | 1.94 | 1.79 | 2.66 | 2.52 | 1.99 | 1.60 | 2.43 | 2.38 |
CYS | 0.11 | 0.11 | 0.22 | 0.15 | 0.15 | 0.77 | 0.20 | 0.12 | 0.20 | 0.20 |
VAL | 2.73 | 1.96 | 1.47 | 1.77 | 2.25 | 1.93 | 2.27 | 1.42 | 2.04 | 2.05 |
MET | 0.25 | 0.21 | 0.61 | 0.32 | 0.67 | 1.11 | 0.31 | 0.29 | 0.41 | 0.42 |
ILE | 2.20 | 1.58 | 1.25 | 1.41 | 1.71 | 1.99 | 2.14 | 0.97 | 1.47 | 1.47 |
LEU | 4.37 | 2.96 | 3.21 | 2.74 | 3.84 | 3.83 | 3.70 | 2.03 | 3.26 | 3.26 |
TYR | 1.53 | 1.11 | 1.35 | 1.29 | 1.82 | 2.33 | 1.50 | 0.97 | 1.51 | 1.53 |
PHE | 2.74 | 1.83 | 1.99 | 1.73 | 2.42 | 3.43 | 2.44 | 1.31 | 2.24 | 2.26 |
HIS | 1.11 | 0.74 | 1.28 | 0.67 | 0.92 | 1.03 | 2.47 | 0.52 | 0.80 | 0.82 |
LYS | 4.15 | 2.33 | 1.90 | 1.94 | 2.76 | 1.94 | 3.92 | 1.44 | 1.91 | 1.89 |
ARG | 2.10 | 0.22 | 2.07 | 1.72 | 2.67 | 2.78 | 2.61 | 1.54 | 2.18 | 2.12 |
Element | Alfalfa (Green Juice) | Alfalfa (LPC) | Broccoli (Green Juice) | Soy Seed (Extracted) |
---|---|---|---|---|
Mo | 7.9 | 4.1 | 1.4 | 1.9 |
Cu | 11.4 | 23.9 | 2.9 | 13.0 |
Ba | 6.3 | 12.4 | 6.1 | 20.6 |
B | 32.8 | 20.2 | 13.5 | 26.2 |
Zn | 33.6 | 38.2 | 29.8 | 36.3 |
Mn | 28.4 | 48.4 | 47.7 | 32.3 |
Sr | 69.0 | 65.9 | 183.0 | 7.4 |
Al | 92.0 | 145.8 | 68.8 | 36.7 |
Fe | 145.3 | 315.9 | 97.2 | 88.4 |
Na | 411.9 | 91.0 | 5116.2 | 7.1 |
Mg | 3845 | 2149 | 8759 | 2268 |
S | 4310 | 4682 | 13,653 | 2283 |
P | 5457 | 7290 | 3308 | 5721 |
Ca | 16,050 | 16,017 | 16,266 | 1862 |
K | 40,020 | 21,245 | 20,770 | 14,654 |
LPC-Alfalfa | LPC-Broccoli | LPC-JA | |||
---|---|---|---|---|---|
Chemical Name | Chemical Formula | Chemical Name | Chemical Formula | Chemical Name | Chemical Formula |
4′.5.7-Trihydroxyflavanone (Naringenin) | C15H12O5 | Isoliquiritigenin (2′,4,4′-trihydroxychalcone) | C15H12O4 | γ-Aminobutyric acid | C4H9NO2 |
4′.5.7-Trihydroxyflavanone 6.8-C-glucoside | C27H32O15 | Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | C15H10O7 | Quinic acid | C7H12O6 |
4’.7-Dihydroxyflavanone | C15H12O4 | Quercetin-O-hexoside-O-hexosylhexoside isomer 1 | C33H40O22 | Betaine (Trimethylglycine) | C5H11NO2 |
Quercetin | C15H10O7 | Quercetin-3-O-[caffeoyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-glucoside | C42H46O25 | Malic acid | C4H6O5 |
Quercetin-3-O-glucoside | C21H20O12 | Quercetin-O-(sinapoyl)hexosylhexoside-O-hexoside | C44H50O26 | Nicotinic acid (Niacin) | C6H5NO2 |
Apigenin-4′-O-glucuronide-7-O-[glucuronyl-(1→2)-glucuronide] | C33H34O23 | Quercetin-3-O-[feruloyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-glucoside | C43H48O25 | Citric acid | C6H8O7 |
Apigenin-O-glucoside-O-glucuronide | C27H28O16 | Quercetin-O-hexoside-O-hexosylhexoside isomer 2 | C33H40O22 | Neochlorogenic acid (5-O-Caffeoylquinic acid) | C16H18O9 |
Apigenin-7-O-[feruloyl-(→2)-[glucuronyl-(1→3)]-glucuronyl-(1→2)]glucuronide | C43H42O26 | Quercetin-O-hexosylhexoside isomer 1 | C27H30O17 | Salicylic acid-2-O-glucoside | C13H16O8 |
Apigenin-4′-O-glucuronide-7-O-[feruloyl-(→2)-glucuronyl-(1→2)-glucuronide] | C43H42O26 | Quercetin-di-O-hexoside | C27H30O17 | Chlorogenic acid (3-O-Caffeoylquinic acid) | C16H18O9 |
Apigenin-7-O-glucuronide | C21H28O11 | Quercetin-O-hexosylhexoside isomer 2 | C27H30O17 | Chryptochlorogenic acid (4-O-Caffeoylquinic acid) | C16H18O9 |
Apigenin (4′.5.7-Trihydroxyflavone) | C15H10O5 | Quercetin-3-O-glucoside (Isoquercitrin) | C21H20O12 | 4-O-(4-Coumaroyl) quinic acid | C16H18O8 |
Chrysoeriol-7-O-glucuronide | C22H20O12 | Kaempferol (3,4′,5,7-Tetrahydroxyflavone) | C15H10O6 | Vanillin (4-Hydroxy-3-methoxybenzaldehyde) | C8H8O3 |
Chrysoeriol (3′-Methoxy-4′.5.7-trihydroxyflavone) | C16H12O6 | Kaempferol-O-hexoside-O-hexosylhexoside | C33H40O21 | 5-O-(4-Coumaroyl)quinic acid | C16H18O8 |
Chrysoeriol-glucuronyl-glucuronide | C28H28O18 | Kaempferol-7-O-glucoside-3-O-sophoroside | C33H40O21 | Indole-3-acetic acid | C10H9NO2 |
Genkwanin (4′,5-Dihydroxy-7-methoxyflavone) | C16H12O5 | Kaempferol-O-(caffeoyl)hexosylhexoside-O-hexoside | C42H46O24 | 4-O-(4-Coumaroyl)quinic acid cis isomer | C16H18O8 |
Luteolin-7-O-glucuronide | C21H18O12 | Kaempferol-3-O-[caffeoyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-glucoside | C42H46O24 | Isoscopoletin (6-Hydroxy-7-methoxycoumarin) | C10H8O4 |
Luteolin (3′.4′.5.7-Tetrahydroxyflavone) | C15H10O6 | Kaempferol-O-(caffeoyl)hexosylhexoside-O-hexosylhexoside | C48H56O29 | 5-O-Feruloylquinic acid | C17H20O9 |
Tricin-7-O-glucuronide | C23H22O13 | Kaempferol-3-O-[caffeoyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-[glucosyl-(1→4)-glucoside] | C48H56O29 | Riboflavin | C17H20N4O6 |
Tricin-7-O-[feruloyl-(→2)-glucuronyl-(1→2)-glucuronide] | C39H38O22 | Kaempferol-3-O-[sinapoyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-glucoside | C44H50O25 | Scopoletin (7-Hydroxy-6-methoxycoumarin) | C10H8O4 |
Tricin (3′.5′-Dimethoxy-4′.5.7-trihydroxyflavone) | C17H14O7 | Kaempferol-3-O-[sinapoyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-[glucosyl-(1→4-)glucoside] | C50H60O30 | Azelaamic acid (9-Amino-9-oxononanoic acid) | C9H17NO3 |
Tricin-O-hexoside | C22H24O12 | Kaempferol-3-O-[feruloyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-glucoside | C43H48O24 | 6-Methylcoumarin | C10H8O2 |
4′.7-Dihydroxyflavone | C15H10O4 | Kaempferol-3-O-[feruloyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-[glucosyl-(1→4)-glucoside] | C49H58O29 | 5-O-(4-Coumaroyl)quinic acid cis isomer | C16H18O8 |
Methoxy-tetrahydroxyflavone | C16H12O7 | Kaempferol-O-[p-coumaroyl-(→2)-glucosyl-(1→2)-glucoside]-7-O-glucoside | C42H46O23 | Indole-4-carbaldehyde | C9H7NO |
Dimethoxy-hydroxyflavone | C17H14O5 | Kaempferol-3,7-di-O-glucoside (Paeonoside) | C27H30O16 | Fraxidin or Isofraxidin | C11H10O5 |
3′-Methoxy-4′.5.5′.7-tetrahydroxyflavone-7-O-glucuronide | C22H20O13 | Kaempferol-O-(sinapoyl)hexosylhexoside-O-(sinapoyl)hexoside | C55H60O29 | Loliolide | C11H16O3 |
Apigenin-8-C-glucoside-6-C-xyloside | C26H28O14 | Kaempferol-di-O-hexoside | C27H30O16 | 4-Hydroxy-3-methoxycinnamaldehyde (Coniferyl aldehyde) | C10H10O3 |
Apigenin-6-C-glucoside-8-C-xyloside | C26H28O14 | Kaempferol-O-(caffeoyl)hexosylhexoside | C36H36O19 | 7-Deoxyloganic acid isomer | C16H24O9 |
Alfalone (4′.7-Dimethoxy-6-hydroxyisoflavone) | C17H14O5 | Kaempferol-O-(sinapoyl)hexosylhexoside | C38H40O20 | Di-O-caffeoylquinic acid isomer 1 | C25H24O12 |
Formononetin (7-Hydroxy-4′-methoxyisoflavone) | C16H12O4 | Kaempferol-7-O-sophoroside | C27H30O16 | Di-O-caffeoylquinic acid isomer 2 | C25H24O12 |
Ononin (Formononetin 7-O-glucoside) | C22H22O9 | Kaempferol-O-(feruloyl)hexosylhexoside | C37H38O19 | Salvianolic acid derivative isomer 1 | C27H22O12 |
Biochanin A (4′-Methylgenistein) | C16H12O5 | Kaempferol-O-(4-coumaroyl)hexosylhexoside | C36H36O18 | Butein (2′,3,4,4′-Tetrahydroxychalcone) | C15H12O5 |
Isoliquiritigenin (2′,4,4′-trihydroxychalcone) | C15H12O4 | Kaempferol-O-(disinapoyl)hexosylhexosylhexoside-O-hexoside | C61H70O34 | Quercetin-3-O-glucuronide | C21H18O13 |
Medicagenic acid | C30H46O6 | Kaempferol-O-hexosylhexoside | C27H30O16 | Isoquercitrin (Hirsutrin, Quercetin-3-O-glucoside) | C21H20O12 |
Medicagenic acid 28-O-[xylosyl-(1→4)-rhamnosyl-(1→2)-arabinosyl]ester | C46H72O18 | Kaempferol-3-O-glucoside (Astragalin) | C21H20O11 | Chrysoeriol-O-glucoside | C22H22O11 |
Medicoside H (Medicagenic acid 3-O-glucosyl-28-O-[rhamnosyl-(1→2)-arabinosyl]ester) | C47H74O19 | Isorhamnetin-O-hexosylhexoside | C28H32O17 | Salvianolic acid derivative isomer 2 | C27H22O12 |
Medicoside G (Medicagenic acid 3,28-di-O-glucoside) | C42H66O16 | Isorhamnetin-3-O-glucoside | C22H22O12 | Di-O-caffeoylquinic acid isomer 3 | C25H24O12 |
Medicagenic acid 3-O-glucuronide-28-O-[xylosyl-(1→4)-rhamnosyl-(1→2)-arabinosyl]ester | C52H80O24 | Isorhamnetin-7-O-glucoside-3-O-sophoroside (Brassicoside) | C34H42O22 | Azelaic acid | C9H16O4 |
Medicagenic acid rhamnosyl-pentosyl-glucuronide | C47H72O20 | 4′.7-Dihydroxyflavanone (Liquiritigenin) | C15H12O4 | Kaempferol-3-O-glucuronide | C21H18O12 |
Medicoside J (Medicagenic acid 3-O-glucosyl-28-O-[xylosyl-(1→4)-rhamnosyl-(1→2)-arabinosyl]ester) | C52H82O23 | 4′,5,7-Trihydroxyflavanone (Naringenin) | C15H12O5 | Apigenin-O-malonylglucoside | C24H22O13 |
Soyasapogenol B rhamnosyl-hexosyl-glucuronide | C48H78O18 | Apigenin (4′,5,7-Trihydroxyflavone) | C15H10O5 | Astragalin (Kaempferol-3-O-glucoside) | C21H20O11 |
Soyasapogenol B rhamnosyl-pentosyl-glucuronide | C47H76O17 | Apigenin-7-O-glucuronide | C21H28O11 | Isorhamnetin-3-O-glucoside | C22H22O12 |
Azukisaponin II | C42H68O14 | Luteolin (3′.4′.5.7-Tetrahydroxyflavone) | C15H10O6 | Kukulkanin B (2′,4′,4-Trihydroxy-3′-methoxyxchalcone) | C16H14O5 |
Unknown saponins | Neochlorogenic acid (5-O-Caffeoylquinic acid) | C16H18O9 | Isorhamnetin-3-O-glucuronide | C22H20O13 | |
unknown saponin. Aglycon: 440.32905 (C29H44O3) | C58H92O28 | Chlorogenic acid (3-O-Caffeoylquinic acid) | C16H18O9 | Dihydroactinidiolide | C11H16O2 |
unknown saponin. Aglycon: 504.34509 (C30H48O6) | C41H64O16 | Chryptochlorogenic acid (4-O-Caffeoylquinic acid) | C16H18O9 | Dimethoxy-tetrahydroxyflavone | C17H14O8 |
unknown saponin. Aglycon: 486.33452 (C29H42O3) | C42H64O16 | Caffeic acid | C9H8O4 | Dihydroxy-methoxyflavone | C16H12O5 |
unknown saponin. Aglycon: 454.34470 (C30H46O3) | C47H74O19 | 4-Coumaric acid | C9H8O3 | Dimethoxy-trihydroxyflavone isomer 1 | C17H14O7 |
Sinapic acid | C11H12O5 | Trihydroxy-trimethoxyflavone | C18H16O8 | ||
Di-O-sinapoylgentiobiose | C34H42O19 | Dimethoxy-trihydroxyflavone isomer 2 | C17H14O7 | ||
Tri-O-sinapoylgentiobiose | C45H52O23 | Liquiritigenin (4′,7-Dihydroxyflavanone) | C15H12O4 | ||
Feruloyl-sinapoyldihexoside | C33H40O18 | Hymenoxin (5,7,Dihydroxy-3′,4′,6,8-tetramethoxyflavone) | C19H18O8 | ||
Di-O-sinapoylglucose | C28H32O14 | Epiafzelechin trimethyl ether | C18H20O5 | ||
Feruloyl-disinapoyldihexoside | C44H50O22 | Nevadensin (5,7-Dihydroxy-4′,6,8-trimethoxyflavone) | C18H16O7 | ||
Syringaldehyde (3,5-Dimethoxy-4-hydroxybenzaldehyde) | C9H10O4 | ||||
Glucobrassicin (3-Indolylmethyl glucosinolate) | C16H20N2O9S2 | ||||
3-Methylsulphinylpropyl isothiocyanate | C5H9NOS2 | ||||
4-Methoxy-3-indolylmethyl glucosinolate | C17H22N2O10S2 | ||||
Sulforaphane | C6H11NOS2 | ||||
Neoglucobrassicin (1-Methoxy-3-indolylmethyl glucosinolate) | C17H22N2O10S2 | ||||
Scopoletin (7-Hydroxy-6-methoxycoumarin) | C10H8O4 | ||||
Other phytocompounds | |||||
γ-Aminobutyric acid | C4H9NO2 | ||||
Indole-4-carbaldehyde | C9H7NO | ||||
Abscisic acid | C15H20O4 | ||||
Kynurenic acid | C10H7NO3 |
Heading of the Source | Address (Internet)/Reference (Patent) | Main Information (Alleged)/Abstract |
---|---|---|
10 Best Sources of Plant-Based Protein by Whitney E. RD | https://www.house-foods.com/eat-happy/10-best-sources-of-plant-based-protein-by-whitney-e.-rd accessed on 28 November 2022 | Protein sources for a plant-based diet (Personal information) |
Australian Plant Proteins: Optimized faba bean protein extraction | https://www.csiro.au/en/work-with-us/funding-programs/sme/csiro-kick-start/app accessed on 28 November 2022 | Upcoming of plant-based protein products. Disclosure of ongoing research (institutional) |
Plant-Based Foods &Proteins Summit Americas | https://bridge2food.com/summits/americas/ accessed on 28 November 2022 | Ongoing and upcoming courses and meetings on innovation, business, and industry data on plant-based food and products. Disclosure of information on innovation, market and training |
Go Plant-Based with Pistachios | https://americanpistachios.org/nutrition-and-health/the-plant-based-athlete accessed on 28 November 2022 https://americanpistachios.org/sites/default/files/inline-files/GoPlantBasedWithPistachiosFactSheet_112416.pdf accessed on 28 November 2022 | Advertisement and information of a organized society of a protein-rich plant source (pistachio) |
Plant-Based Protein Market—Global and Canadian Market Analysis | https://nrc.canada.ca/en/research-development/research-collaboration/programs/plant-based-protein-market-global-canadian-market-analysis accessed on 30 November 2022 | Executive summary of plant-based protein market, advertisement |
Plant-Based Protein Market—Market Insights on Plant-Based Protein covering sales outlook, demand forecast & up-to-date key trends | https://www.futuremarketinsights.com/reports/plant-based-protein-market accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-based Protein Market Forecast, 2021–2031 | https://www.transparencymarketresearch.com/plantbased-protein-market.html accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-based Protein Market by Type (Soy Protein, Wheat Protein, Pea Protein, Potato Protein, Rice Protein, Corn Protein), Crop Type (GMO), Source Process (Organic), Application (Food and Beverages, Animal Feed, Nutritional Supplements)—Global Forecast to 2028 | https://www.meticulousresearch.com/product/plant-based-protein-market-5031 accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant Based Protein Market Worth $23.4 Billion By 2028—Exclusive Report by Meticulous Research® | https://www.globenewswire.com/en/news-release/2022/01/03/2360111/0/en/Plant-Based-Protein-Market-Worth-23-4-Billion-By-2028-Exclusive-Report-by-Meticulous-Research.html accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-based proteins: A growth industry in Canada’s backyard | https://www.edc.ca/en/blog/canada-plant-based-protein-growth.html accessed on 17 January 2023 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-based Proteins Market-Market Study on Plant-based Proteins: Popularity of Pea & Wheat Proteins to Rise Faster Than Others | https://www.persistencemarketresearch.com/market-research/plantbased-protein-market.asp accessed on 17 January 2023 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-based Foods Market to Hit $162 Billion in Next Decade, Projects Bloomberg Intelligence | https://www.bloomberg.com/company/press/plant-based-foods-market-to-hit-162-billion-in-next-decade-projects-bloomberg-intelligence/ accessed on 28 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant Based Protein Market, By Source (Soybeans, Wheat, Pea, Others), By Type (Isolates, Concentrates, Textured), By Form (Dry Form, Wet Form), By Application, and By Region Forecast to 2030 | https://www.emergenresearch.com/industry-report/plant-based-protein-market accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Alternative Proteins Market | https://www.datamintelligence.com/research-report/alternative-proteins-market accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Alternative proteins: The race for market share is on | https://www.mckinsey.com/~/media/McKinsey/Industries/Agriculture/Our%20Insights/Alternative%20proteins%20The%20race%20for%20market%20share%20is%20on/Alternative-proteins-The-race-for-market-share-is-on.pdf accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Plant Based Protein Supplements Market Size, Share & Trends Analysis Report By Raw Material (Soy, Spirulina, Pumpkin Seed, Wheat, Hemp, Rice, Pea, Others), By Product, By Distribution Channel, By Application, By Region, And Segment Forecasts, 2022–2030 | https://www.grandviewresearch.com/industry-analysis/plant-based-protein-supplements-market accessed on 17 January 2023 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Vegan Protein Market: Global Industry Analysis and Trends (2022–2029) Key Trends, Technology Trends, Market Share and Size | https://www.maximizemarketresearch.com/market-report/global-vegan-protein-market/87218/ accessed on 30 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Increased Usage of Plant Based Protein for Various Applications is Anticipated to Accelerate the Overall Growth of the Market Further | https://www.databridgemarketresearch.com/press-release/global-plant-based-protein-market accessed on 28 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
Brazil’s Future Farm launches its US expansion with the mission to democratize plant-based meat | https://www.fooddive.com/news/brazils-future-farm-launches-its-us-expansion-with-the-mission-to-democrat/602655/ accessed on 28 November 2022 | Plant-based meat advertisement/interview |
Latin America & Caribbean: Green finance state of the market 2019 I | https://www.climatebonds.net/resources/reports/latin-america-caribbean-green-finance-state-market-2019 accessed on 26 November 2022 | Green bonds market analysis/report, prospective advertisement and information for financial investment |
Plant Protein Primer, Exploring the Landscape of Plant Protein Sources for Applications in Plant-Based Meat, Eggs, and Dairy | https://gfi.org/wp-content/uploads/2021/02/2021-02-23_Plant_Protein_Primer_GFI.pdf accessed on 28 November 2022 | Presentation, plant species for protein extraction, market analysis |
Plant-based Protein Market by Source (Soy, Wheat, and Pea), Type (Isolates, Concentrates, and Textured), Application (Dairy Alternatives, Meat Alternatives, and Performance Nutrition, Animal Feed), and Region (North America, Europe, Asia Pacific, South America, Middle East and Africa), Global trends and forecast from 2019 to 2028 | https://exactitudeconsultancy.com/reports/1246/plant-based-protein-market/ accessed on 28 November 2022 | Plant-based protein market analysis/report, prospective advertisement, and information for financial investment |
The future of plant-based food, according to industry leaders | https://www.veganfoodandliving.com/vegan-business/the-future-of-plant-based-food/ accessed on 30 November 2022 | Plant-based food and protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-based proteins: building a sustainable future | https://impact.economist.com/perspectives/sites/default/files/plant_based_protein_eiu_infographic.pdf accessed on 30 November 2022 | Infographic on Plant-based food and protein market analysis/report, prospective advertisement, and information for financial investment |
Plant-Based Innovation For Latin America: Beyond Burgers | https://www.mintel.com/blog/food-market-news/plant-based-innovation-for-latin-america-beyond-burgers accessed on 2 December 2022 | |
NotCo becomes Chile’s newest unicorn | https://www.leadersleague.com/fr/news/notco-becomes-chile-s-newest-unicorn accessed on 17 January 2023 | Financial information of Plant-based food company. |
Creating a Sustainable Food Future | https://research.wri.org/wrr-food accessed on 30 November 2022 | Folder on sustainable food production from World Resources Institute |
You Heard it Here first: The Plant-Based Revolution | https://www.mintel.com/blog/food-market-news/you-heard-it-here-first-predicting-the-plant-based-revolution accessed on 2 December 2022 | Data on plant-based food trend |
Fazenda do futuro | https://www.fazendafuturo.io/pt-br accessed on 17 January 2023 | Home site of Future Farm Company |
NotCo | https://notco.com/br/ accessed on 17 January 2023 | Home site of NotCo Company |
Beyond Meat | https://www.beyondmeat.com/en-US/ accessed on 17 January 2023 | Home site of Beyond Meat Company |
The New Live Geen Co. | https://thenewbutchers.com.br/nossos-produtos/ accessed on 17 January 2023 | Home site of The Live Green Company |
https://www.thelivegreenco.com/ accessed on 17 January 2023 | Home site of NotCo Company | |
Patents | Address (internet)/Reference (patent) | Main information (alleged)/Abstract |
Protein Compositions for Plant-Based Food Products and Methods for Making | WO 2021/119498, June, 2021. accessed on 28 November 2022 | Disclosed is a method for making protein emulsions for use in making products such as meat substitutes, meat extenders, egg substitutes, dairy analogs, etc., as well as methods for using the emulsion(s) to make various meat substitutes, egg substitutes, dairy analogs etc. Vegetable protein crumbles for use as meat substitutes are also disclosed, either alone or in combination with the emulsion(s). |
Protein-Rich micoalgal biomass compositions of optimized sensory quality | US 10,119,947 B2, November, 2018. accessed on 28 November 2022 | The invention relates to a method for determining the organoleptic quality of protein-rich microalgal biomass composition, comprising the determination of the content of 11 volatile organic compounds, wherein the 11 volatile organic compounds are pentanal, hexanal, 1-oxten-2one), 3,5-octadien-2-one, nonanal, 2-no-nenal, (E, E)-2,4-nonadienal and hexanoic acid. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domokos-Szabolcsy, É.; Yavuz, S.R.; Picoli, E.; Fári, M.G.; Kovács, Z.; Tóth, C.; Kaszás, L.; Alshaal, T.; Elhawat, N. Green Biomass-Based Protein for Sustainable Feed and Food Supply: An Overview of Current and Future Prospective. Life 2023, 13, 307. https://doi.org/10.3390/life13020307
Domokos-Szabolcsy É, Yavuz SR, Picoli E, Fári MG, Kovács Z, Tóth C, Kaszás L, Alshaal T, Elhawat N. Green Biomass-Based Protein for Sustainable Feed and Food Supply: An Overview of Current and Future Prospective. Life. 2023; 13(2):307. https://doi.org/10.3390/life13020307
Chicago/Turabian StyleDomokos-Szabolcsy, Éva, Seckin Reyhan Yavuz, Edgard Picoli, Miklós Gabor Fári, Zoltán Kovács, Csaba Tóth, László Kaszás, Tarek Alshaal, and Nevien Elhawat. 2023. "Green Biomass-Based Protein for Sustainable Feed and Food Supply: An Overview of Current and Future Prospective" Life 13, no. 2: 307. https://doi.org/10.3390/life13020307
APA StyleDomokos-Szabolcsy, É., Yavuz, S. R., Picoli, E., Fári, M. G., Kovács, Z., Tóth, C., Kaszás, L., Alshaal, T., & Elhawat, N. (2023). Green Biomass-Based Protein for Sustainable Feed and Food Supply: An Overview of Current and Future Prospective. Life, 13(2), 307. https://doi.org/10.3390/life13020307