Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin
Abstract
:1. Introduction
1.1. Antibiotics, Antibiotic Resistance
1.2. Listeria monocytogenes and Food Safety
1.3. Listeriosis and Antibiotics
1.4. Determination of Antibiotic Resistance in L. monocytogenes
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antimicrobial Susceptibility Testing—Disc Diffusion Method
2.3. Fingerprinting—RAPD- and REP-PCR
3. Results
3.1. Antibiotic Susceptibility
3.2. Fingerprinting Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 20 December 2022).
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Chaudhury, R.R. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med. 2016, 13, e1001974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The PLOS Medicine Editors Antimicrobial Resistance: Is the World UNprepared? PLoS Med. 2016, 13, e1002130. [CrossRef] [Green Version]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016.
- Google Scholar Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&as_ylo=2016&as_yhi=2016&q=Tackling+drug-resistant+infections+globally%3A+final+report+and+recommendations&btnG= (accessed on 2 January 2023).
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC Actions to Fight Antibiotic Resistance. Available online: https://www.cdc.gov/drugresistance/actions-to-fight.html (accessed on 11 March 2023).
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foucault, C.; Brouqui, P. How to fight antimicrobial resistance. FEMS Immunol. Med. Microbiol. 2007, 49, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics Overuse in Animal Agriculture: A Call to Action for Health Care Providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Spellberg, B.; Hansen, G.R.; Kar, A.; Cordova, C.D.; Price, L.B.; Johnson, J.R. Antibiotic Resistance in Humans and Animals. NAM Perspect. 2016. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.; Hennessey, M.; Arnold, J.-C.; McCubbin, K.D.; Lembo, T.; Mateus, A.; Kitutu, F.E.; Samanta, I.; Hutchinson, E.; Davis, A.; et al. Crossover-Use of Human Antibiotics in Livestock in Agricultural Communities: A Qualitative Cross-Country Comparison between Uganda, Tanzania and India. Antibiotics 2022, 11, 1342. [Google Scholar] [CrossRef]
- Jordan, K.; McAuliffe, O. Listeria monocytogenes in Foods. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 86, pp. 181–213. ISBN 9780128139776. [Google Scholar]
- Rogalla, D.; Bomar, P.A. Listeria monocytogenes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Lecuit, M. Human listeriosis and animal models. Microbes Infect. 2007, 9, 1216–1225. [Google Scholar] [CrossRef]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Kramarenko, T.; Roasto, M.; Meremäe, K.; Kuningas, M.; Põltsama, P.; Elias, T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013, 30, 24–29. [Google Scholar] [CrossRef]
- Jami, M.; Ghanbari, M.; Zunabovic, M.; Domig, K.J.; Kneifel, W. Listeria monocytogenes in Aquatic Food Products—A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 798–813. [Google Scholar] [CrossRef]
- Zhu, Q.; Gooneratne, S.R.; Hussain, M.A. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlier, C.; Perrodeau, É.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Centres for Disease Prevention and Control Listeria Outbreaks | Listeria | CDC. Available online: https://www.cdc.gov/listeria/outbreaks/index.html (accessed on 9 February 2023).
- European Centre for Disease Prevention and Control Listeriosis | ECDC. Available online: https://www.ecdc.europa.eu/en/listeriosis (accessed on 9 February 2023).
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- CDC Diagnosis and Treatment | Listeria | CDC. Available online: https://www.cdc.gov/listeria/diagnosis.html (accessed on 3 January 2023).
- CDC Information for Health Professionals and Laboratories | Listeria | CDC. Available online: https://www.cdc.gov/listeria/technical.html (accessed on 3 January 2023).
- Temple, M.E.; Nahata, M.C. Treatment of Listeriosis. Ann. Pharmacother. 2000, 34, 656–661. [Google Scholar] [CrossRef]
- NORD Listeriosis. Available online: https://rarediseases.org/rare-diseases/listeriosis/ (accessed on 12 September 2022).
- ACOG Management of Pregnant Women with Presumptive Exposure to Listeria monocytogenes. Available online: https://www.acog.org/en/clinical/clinical-guidance/committee-opinion/articles/2014/12/management-of-pregnant-women-with-presumptive-exposure-to-listeria-monocytogenes (accessed on 3 January 2023).
- Guerrero, M.F.; Torres, R.; Mancebo, B.; González-López, J.; Górgolas, M.; Jusdado, J.; Roblas, R. Antimicrobial treatment of invasive non-perinatal human listeriosis and the impact of the underlying disease on prognosis. Clin. Microbiol. Infect. 2012, 18, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Constable, P.D. Listeriosis in Animals—Generalized Conditions—MSD Veterinary Manual. Available online: https://www.msdvetmanual.com/generalized-conditions/listeriosis/listeriosis-in-animals (accessed on 12 September 2022).
- Bilung, L.M.; Chai, L.S.; Tahar, A.S.; Ted, C.K.; Apun, K. Prevalence, Genetic Heterogeneity, and Antibiotic Resistance Profile of Listeria spp. and Listeria monocytogenes at Farm Level: A Highlight of ERIC- and BOX-PCR to Reveal Genetic Diversity. BioMed Res. Int. 2018, 2018, 3067494. [Google Scholar] [CrossRef] [Green Version]
- Parra-Flores, J.; Holý, O.; Bustamante, F.; Lepuschitz, S.; Pietzka, A.; Contreras-Fernández, A.; Castillo, C.; Ovalle, C.; Alarcón-Lavín, M.P.; Cruz-Córdova, A.; et al. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated from Ready-to-Eat Foods in Chile. Front. Microbiol. 2022, 12, 796040. [Google Scholar] [CrossRef]
- Keet, R.; Rip, D. Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiol. 2021, 7, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Farhoumand, P.; Hassanzadazar, H.; Soltanpour, M.S.; Aminzare, M.; Abbasi, Z. Prevalence, genotyping and antibiotic resistance of Listeria monocytogenes and Escherichia coli in fresh beef and chicken meats marketed in Zanjan, Iran. Iran. J. Microbiol. 2020, 12, 537–546. [Google Scholar] [CrossRef]
- Skowron, K.; Wałecka-Zacharska, E.; Wiktorczyk-Kapischke, N.; Skowron, K.J.; Grudlewska-Buda, K.; Bauza-Kaszewska, J.; Bernaciak, Z.; Borkowski, M.; Gospodarek-Komkowska, E. Assessment of the Prevalence and Drug Susceptibility of Listeria monocytogenes Strains Isolated from Various Types of Meat. Foods 2020, 9, 1293. [Google Scholar] [CrossRef]
- Capita, R.; Felices-Mercado, A.; García-Fernández, C.; Alonso-Calleja, C. Characterization of Listeria monocytogenes Originating from the Spanish Meat-Processing Chain. Foods 2019, 8, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebakota, D.O.; Abiodun, O.A.; Nosa, O.O. Prevalence of Antibiotics Resistant Listeria monocytogenes Strains in Nigerian Ready-to-eat Foods. Food Saf. 2018, 6, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiśniewski, P.; Zakrzewski, A.J.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments. Pathogens 2022, 11, 1099. [Google Scholar] [CrossRef] [PubMed]
- Rugna, G.; Carra, E.; Bergamini, F.; Franzini, G.; Faccini, S.; Gattuso, A.; Morganti, M.; Baldi, D.; Naldi, S.; Serraino, A.; et al. Distribution, virulence, genotypic characteristics and antibiotic resistance of Listeria monocytogenes isolated over one-year monitoring from two pig slaughterhouses and processing plants and their fresh hams. Int. J. Food Microbiol. 2021, 336, 108912. [Google Scholar] [CrossRef]
- Obaidat, M.M. Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101447. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute. M45 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Bowker, K.; Åhman, J.; Natås, O.; Nissan, I.; Littauer, P.; Matuschek, E. Antimicrobial Susceptibility Testing of Listeria monocytogenes with EUCAST Breakpoints: A Multi-Laboratory Study. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi68fq_x-D9AhUO6CoKHeqwAC4QFnoECA0QAQ&url=https%3A%2F%2Fwww.nbt.nhs.uk%2Fsites%2Fdefault%2Ffiles%2FAntimicrobial%2520susceptibility%2520testing%2520of%2520Listeria%2520monocytogenes.pdf&usg=AOvVaw1ri-dIlz87czjbb1ofs60Z (accessed on 6 February 2023).
- EUCAST EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 6 February 2023).
- Paillard, D.; Dubois, V.; Duran, R.; Nathier, F.; Guittet, C.; Caumette, P.; Quentin, C. Rapid Identification of Listeria Species by Using Restriction Fragment Length Polymorphism of PCR-Amplified 23S rRNA Gene Fragments. Appl. Environ. Microbiol. 2003, 69, 6386–6392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Ye, Q.; Chen, M.; Zhang, J.; Xue, L.; Wang, J.; Wu, S.; Zeng, H.; Gu, Q.; Zhang, Y.; et al. Multiplex PCR for the Identification of Pathogenic Listeria in Flammulina velutipes Plant Based on Novel Specific Targets Revealed by Pan-Genome Analysis. Front. Microbiol. 2021, 11, 634255. [Google Scholar] [CrossRef] [PubMed]
- Kawacka, I.; Olejnik-Schmidt, A. Genoserotyping of Listeria monocytogenes Strains Originating from Meat Products and Meat Processing Environments. ŻNTJ 2022, 2, 34–44. [Google Scholar] [CrossRef]
- Vogel, B.F.; Jørgensen, L.V.; Ojeniyi, B.; Huss, H.H.; Gram, L. Diversity of Listeria monocytogenes isolates from cold-smoked salmon produced in different smokehouses as assessed by Random Amplified Polymorphic DNA analyses. Int. J. Food Microbiol. 2001, 65, 83–92. [Google Scholar] [CrossRef]
- Jeršek, B.; Gilot, P.; Gubina, M.; Klun, N.; Mehle, J.; Tcherneva, E.; Rijpens, N.; Herman, L. Typing of Listeria monocytogenes Strains by Repetitive Element Sequence-Based PCR. J. Clin. Microbiol. 1999, 37, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Khakabimamaghani, S.; Najafi, A.; Ranjbar, R.; Raam, M. GelClust: A software tool for gel electrophoresis images analysis and dendrogram generation. Comput. Methods Programs Biomed. 2013, 111, 512–518. [Google Scholar] [CrossRef]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Yusuf, E.; Van Westreenen, M.; Goessens, W.; Croughs, P. The accuracy of four commercial broth microdilution tests in the determination of the minimum inhibitory concentration of colistin. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 42. [Google Scholar] [CrossRef]
Antibiotic | Sensitive Isolates | Intermediate Isolates | Resistant Isolates |
---|---|---|---|
Ampicillin (10 µg) | ≥17 mm | N/A 1 | ≤16 mm |
153 (100%) | - | 0 (0%) | |
Chloramphenicol (30 µg) | ≥18 mm | 13–17 mm | ≤12 mm |
153 (100%) | 0 (0%) | 0 (0%) | |
Ciprofloxacin (5 µg) | ≥21 mm | 16–20 mm | ≤15 mm |
143 (93.5%) | 10 (6.5%) | 0 (0%) | |
Erythromycin (15 µg) | ≥23 mm | 14–22 mm | ≤13 mm |
153 (100%) | 0 (0%) | 0 (0%) | |
Gentamicin (10 µg) | ≥15 mm | 13–14 mm | ≤12 mm |
153 (100%) | 0 (0%) | 0 (0%) | |
Penicillin (10 IU µg) | ≥15 mm | N/A | ≤14 mm |
153 (100%) | - | 0 (0%) | |
Streptomycin (10 µg) | ≥15 mm | 12–14 mm | ≤11 mm |
153 (100%) | 0 (0%) | 0 (0%) | |
Sulfamethoxazole/trimethoprim (1.25/23.75 µg) | ≥16 mm | 11–15 mm | ≤10 mm |
153 (100%) | 0 (0%) | 0 (0%) | |
Tetracycline (30 µg) | ≥19 mm | 15–18 mm | ≤14 mm |
153 (100%) | 0 (0%) | 0 (0%) | |
Vancomycin (30 µg) | ≥17 mm | 15–16 mm | ≤14 mm |
153 (100%) | 0 (0%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawacka, I.; Pietrzak, B.; Schmidt, M.; Olejnik-Schmidt, A. Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin. Life 2023, 13, 821. https://doi.org/10.3390/life13030821
Kawacka I, Pietrzak B, Schmidt M, Olejnik-Schmidt A. Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin. Life. 2023; 13(3):821. https://doi.org/10.3390/life13030821
Chicago/Turabian StyleKawacka, Iwona, Bernadeta Pietrzak, Marcin Schmidt, and Agnieszka Olejnik-Schmidt. 2023. "Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin" Life 13, no. 3: 821. https://doi.org/10.3390/life13030821
APA StyleKawacka, I., Pietrzak, B., Schmidt, M., & Olejnik-Schmidt, A. (2023). Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin. Life, 13(3), 821. https://doi.org/10.3390/life13030821