Phenotypic Characterization of Oral Mucor Species from Eurasian Vultures: Pathogenic Potential and Antimicrobial Ability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mucor Isolates
2.2. DNA Extraction
2.3. DNA Amplification and Sequencing
2.4. Phenotypic Characterization of Isolates Pathogenic Potential
2.5. Antimicrobial Activity
3. Results
3.1. Macroscopic and Microscopic Identification of Mucor spp.
3.2. Molecular Identification of Mucor spp.
3.3. Phenotypic Chacaterization of Mucor spp. Pathogenic Profile
3.4. Antimicrobial Potential of the Mucor spp. Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogada, D.L.; Keesing, F.; Virani, M.Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. N. Y. Acad. Sci. 2012, 1249, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Moleón, M.; Sánchez-Zapata, J.; Margalida, A.; Carrete, M.; Owen-Smith, N.; Donázar, J. Humans and Scavengers: The Evolution of Interactions and Ecosystem Services. BioScience 2014, 64, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Oliva-Vidal, P.a.S.-G.E.a.M.A. Scavenging in changing environments: Woody encroachment shapes rural scavenger assemblages in Europe. Oikos 2022, 2022, e09310. [Google Scholar] [CrossRef]
- Safford, R.; Andevski, J.; Botha, A.; Bowden, C.; Crockford, N.; Garbett, R.; Margalida, A.; Ramírez, I.; Shobrak, M.; Tavares, J.P.; et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 2019, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- McClure, C.J.; Westrip, J.R.; Johnson, J.A.; Schulwitz, S.E.; Virani, M.Z.; Davies, R.; Symes, A.; Wheatley, H.; Thorstrom, R.; Amar, A.; et al. State of the world’s raptors: Distributions, threats, and conservation recommendations. Biol. Conserv. 2018, 227, 390–402. [Google Scholar] [CrossRef]
- Margalida, A.; Colomer, M. Modelling the effects of sanitary policies on European vulture conservation. Sci. Rep. 2012, 2, 753. [Google Scholar] [CrossRef] [Green Version]
- Guitart, R.; Sachana, M.; Caloni, F.; Croubels, S.; Vandenbroucke, V.; Berny, P. Animal poisoning in Europe. Part 3: Wildlife. Vet. J. 2010, 183, 260–265. [Google Scholar] [CrossRef]
- Ferguson-Lees, J. Raptors of the World/James Ferguson-Lees and David A. Christie; Helm, C., Ed.; Houghton Mifflin Harcourt: Boston, MA, USA, 2001. [Google Scholar]
- Carneiro, M.; Colaço, B.; Brandão, R.; Azorín, B.; Nicolas, O.; Colaço, J.; Pires, M.J.; Agustí, S.; Casas-Díaz, E.; Lavin, S.; et al. Assessment of the exposure to heavy metals in Griffon vultures (Gyps fulvus) from the Iberian Peninsula. Ecotoxicol. Environ. Saf. 2015, 113, 295–301. [Google Scholar] [CrossRef]
- Oliva-Vidal, P.; Martínez, J.M.; Sánchez-Barbudo, I.S.; Camarero, P.R.; Colomer, M.; Margalida, A.; Mateo, R. Second-generation anticoagulant rodenticides in the blood of obligate and facultative European avian scavengers. Environ. Pollut. 2022, 315, 120385. [Google Scholar] [CrossRef]
- Oliva-Vidal, P.; Hernández-Matías, A.; García, D.; Colomer, M.À.; Real, J.; Margalida, A. Griffon vultures, livestock and farmers: Unraveling a complex socio-economic ecological conflict from a conservation perspective. Biol. Conserv. 2022, 272, 109664. [Google Scholar] [CrossRef]
- Cabral, M.J.; Almeida, J.; Almeida, P.R.; Delliger, T.; Ferrand de Almeida, N.; Me, O.; Palmeirim, J.M.; Queirós, A.I.; Rogado, L.; Santos-Reis, M. Livro Vermelho dos Vertebrados de Portugal; Instituto da Conservação da Natureza: Lisbon, Portugal, 2005; p. 659. [Google Scholar]
- Ashpole, J.; Butchart, S.; Ekstrom, J.; Everest, J.; Harding, M.; Khwaja, N.; Wheatley, H. BirdLife International IUCN Red List for birds; IUCN: Gland, Switzerland, 2023. [Google Scholar]
- Szilágyi, R. The Role of Wildlife Rehabilitation Centers in Species Reintroduction Programmes; EUROPARC Federation: Regensburg, Germany, 2020; pp. 1–30. [Google Scholar]
- Garcia, M.E.; Lanzarot, P.; Rodas, V.L.; Costas, E.; Blanco, J.L. Fungal flora in the trachea of birds from a wildlife rehabilitation centre in Spain. Vet. Med. 2007, 52, 464–470. [Google Scholar] [CrossRef]
- Shin, S.H.; Ponikau, J.U.; Sherris, D.A.; Congdon, D.; Frigas, E.; Homburger, H.A.; Swanson, M.C.; Gleich, G.J.; Kita, H. Chronic rhinosinusitis: An enhanced immune response to ubiquitous airborne fungi. J. Allergy Clin. Immunol. 2004, 114, 1369–1375. [Google Scholar] [CrossRef]
- Pitarch, A.; Gil, C.; Blanco, G. Oral mycoses in avian scavengers exposed to antibiotics from livestock farming. Sci. Total Environ. 2017, 605–606, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.C. Candidiasis and cryptococcosis in birds. Semin. Avian Exot. Pet Med. 2000, 9, 75–81. [Google Scholar] [CrossRef]
- Balseiro, A.; Espí, A.; Márquez, I.; Pérez, V.; Ferreras, M.C.; Marín, J.F.; Prieto, J.M. Pathological features in marine birds affected by the prestige’s oil spill in the north of Spain. J. Wildl. Dis. 2005, 41, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepa, A.; Nair, B.J.; Sivakumar, T.; Joseph, A.P. Uncommon opportunistic fungal infections of oral cavity: A review. J. Oral Maxillofac. Pathol. 2014, 18, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Muszewska, A.; Pawłowska, J.; Krzyściak, P. Biology, systematics, and clinical manifestations of Zygomycota infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1273–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, H.; Chakrabarti, A. Global Epidemiology of Mucormycosis. J. Fungi 2019, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Orcutt, C.J.; Bartick, T.E. Mucormycotic Meningoencephalitis and Pneumonia in a Chattering Lory (Lorius garrulus). J. Assoc. Avian Vet. 1994, 8, 85–89. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. J. Appl. Microbiol. 2021, 131, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Marchut-Mikolajczyk, O.; Kwapisz, E.; Wieczorek, D.; Antczak, T. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. Int. Biodeterior. Biodegrad. 2015, 104, 142–148. [Google Scholar] [CrossRef]
- Aziz, N.; Pandey, R.; Barman, I.; Prasad, R. Leveraging the Attributes of Mucor hiemalis-Derived Silver Nanoparticles for a Synergistic Broad-Spectrum Antimicrobial Platform. Front. Microbiol. 2016, 7, 1984. [Google Scholar] [CrossRef] [Green Version]
- Noureen, S.; Shahzad, D.; Naeem, A.; Rizvi, A.; Mughis, Z. Antibacterial Dynamics Of Mucor Species Against Multi-Drug Resistant Bacterial Species. Int. J. Sci. Technol. Res. 2021, 10, 224–228. [Google Scholar]
- Couto, M.P.C. The Homeostasis of the Vulture’s Oral Microbiome and its Interkingdom Synergies. Ph.D. Thesis, Universidade de Lisboa, Faculdade de Medicina Veterinária, Lisbon, Portugal, 2022. [Google Scholar]
- Lass-Flörl, C. Zygomycosis: Conventional laboratory diagnosis. Clin. Microbiol. Infect. 2009, 15, 60–65. [Google Scholar] [CrossRef] [Green Version]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 31, 315–322. [Google Scholar]
- Lau, A.; Chen, S.; Sorrell, T.; Carter, D.; Malik, R.; Martin, P.; Halliday, C. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J. Clin. Microbiol. 2007, 45, 380–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elavarashi, E.; Kindo, A.J.; Rangarajan, S. Enzymatic and Non-Enzymatic Virulence Activities of Dermatophytes on Solid Media. J. Clin. Diagn. Res. 2017, 11, DC23–DC25. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.; Küçüksari, R. Phenotypic and Genotypic Virulence Factors and Antimicrobial Resistance of Motile Aeromonas spp. from Fish and Ground Beef: Virulence Potential of Motile Aeromonas in Meat. J. Food Saf. 2015, 35, 551–559. [Google Scholar] [CrossRef]
- Sánchez, M.; Colom, F. Extracellular DNase activity of Cryptococcus neoformans and Cryptococcus gattii. Rev. Iberoam. Micol. 2010, 27, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Buxton, R. Blood Agar Plates and Hemolysis Protocols. Am. Soc. Microbiol. 2005, 15, 1–9. [Google Scholar]
- Abdel Halim, R.M.; Kassem, N.N.; Mahmoud, B.S. Detection of Biofilm Producing Staphylococci among Different Clinical Isolates and Its Relation to Methicillin Susceptibility. Open Access Maced. J. Med. Sci. 2018, 6, 1335–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.K.; Ekka, R.; Mishra, M.; Mohapatra, H. Association study of multiple antibiotic resistance and virulence: A strategy to assess the extent of risk posed by bacterial population in aquatic environment. Environ. Monit. Assess 2017, 189, 320. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.; Santos, R.; S Soares, R.; Reis, S.; Carvalho, S.; Rego, P.; C Peleteiro, M.; Tavares, L.; Oliveira, M. Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics 2020, 9, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.F.M. Avaliação In Vitro de Estratégias Antimicrobianas Inovadoras para Controlo de Otites Externas por Pseudomonas Aeruginosa No Cão. Ph.D. Thesis, Universidade de Lisboa, Faculdade de Medicina Veterinária, Lisbon, Portugal, 2021. [Google Scholar]
- Wong Chin, J.M.; Puchooa, D.; Bahorun, T.; Jeewon, R. Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius. Mycology 2021, 12, 231–244. [Google Scholar] [CrossRef]
- Cunha, E.; Freitas, F.B.; Braz, B.S.; Silva, J.M.D.; Tavares, L.; Veiga, A.S.; Oliveira, M. Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease. Antibiotics 2020, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.; Fell, J.; Boekhout, T.; Rober, T.V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In The Yeasts, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; pp. r1–r178. [Google Scholar]
- Nayak, A.P.; Green, B.J.; Beezhold, D.H. Fungal hemolysins. Med. Mycol. 2013, 51, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, D.P.; Eribo, B.E. Extracellular enzyme production by Rhizopus and Mucor species on solid media. Can. J. Microbiol. 1984, 30, 126–128. [Google Scholar] [CrossRef]
- Park, H.J.; Wang, W.; Curlango-Rivera, G.; Xiong, Z.; Lin, Z.; Huskey, D.A.; Hawes, M.C.; VanEtten, H.D.; Turgeon, B.G. A DNase from a Fungal Phytopathogen Is a Virulence Factor Likely Deployed as Counter Defense against Host-Secreted Extracellular DNA. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef] [Green Version]
- Ghannoum, M.A. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 2000, 13, 122–143. [Google Scholar] [CrossRef]
- Sharaf, E.F.; El-Sayed, W.S.; Abosaif, R.M. Lecithinase-producing bacteria in commercial and home-made foods: Evaluation of toxic properties and identification of potent producers. J. Taibah Univ. Sci. 2014, 8, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.S.; Taguchi, H.; Takizawa, K.; Fukusima, A.; Kim, H.S. The Enzymatic Approach of Zygomycosis-Causing Mucorales. Kor J. Med. Mycol. 2007, 12, 9–17. [Google Scholar]
- Alves, M.H.; Campos-Takaki, G.; Porto, A.; Milanez, A. Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz. J. Microbiol. 2002, 33, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Coca Armas, J.; Dustet Mendoza, J.C.; Martínez-Hernández, J. Mucor griseocyanus Lipase: Production, Characterization and Study of Some Catalytic Properties of the Immobilised Enzyme. Food Technol. Biotechnol. 2008, 46, 195. [Google Scholar]
- Perraud, R.; Laboret, F. Optimization of methyl propionate production catalysed by Mucor miehei lipase. Appl. Microbiol. Biotechnol. 1995, 44, 321–326. [Google Scholar] [CrossRef]
- Nagaoka, K.; Yamada, Y.; Koaze, Y. Studies on Mucor Lipases: Part I. Production of Lipases with a Newly Isolated Mucor sp. Agric. Biol. Chem. 1969, 33, 299–305. [Google Scholar] [CrossRef]
- Ali, S.; Khan, S.A.; Hamayun, M.; Lee, I.J. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023, 11, 510. [Google Scholar] [CrossRef]
- Gácser, A.; Stehr, F.; Kröger, C.; Kredics, L.; Schäfer, W.; Nosanchuk, J.D. Lipase 8 affects the pathogenesis of Candida albicans. Infect. Immun. 2007, 75, 4710–4718. [Google Scholar] [CrossRef] [Green Version]
- Tóth, A.; Németh, T.; Csonka, K.; Horváth, P.; Vágvölgyi, C.; Vizler, C.; Nosanchuk, J.D.; Gácser, A. Secreted Candida parapsilosis lipase modulates the immune response of primary human macrophages. Virulence 2014, 5, 555–562. [Google Scholar] [CrossRef]
- Park, M.; Park, S.; Jung, W.H. Skin Commensal Fungus Malassezia and Its Lipases. J. Microbiol. Biotechnol. 2021, 31, 637–644. [Google Scholar] [CrossRef]
- Loperena, L.; Soria, V.; Varela, H.; Lupo, S.; Bergalli, A.; Guigou, M.; Pellegrino, A.; Bernardo, A.; Calviño, A.; Rivas, F.; et al. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J. Microbiol. Biotechnol. 2012, 28, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, G.; Abdel-Nasser, M.; Sultan, M.H.; Eid, A.M.; Alotaibi, S.H.; Hassan, S.E.; Fouda, A. Fungal Biodeterioration of a Historical Manuscript Dating Back to the 14th Century: An Insight into Various Fungal Strains and Their Enzymatic Activities. Life 2022, 12, 1821. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shivaprakash, M.R.; Chakrabarti, A. Biofilm formation by zygomycetes: Quantification, structure and matrix composition. Microbiology 2011, 157, 2611–2618. [Google Scholar] [CrossRef] [Green Version]
- Kernien, J.F.; Snarr, B.D.; Sheppard, D.C.; Nett, J.E. The Interface between Fungal Biofilms and Innate Immunity. Front. Immunol. 2017, 8, 1968. [Google Scholar] [CrossRef] [Green Version]
- Sardi, J.D.C.O.; Pitangui, N.D.S.; Rodríguez-Arellanes, G.; Taylor, M.L.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Highlights in pathogenic fungal biofilms. Rev. Iberoam. Micol. 2014, 31, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.I.A.; Voigt, K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med. Mycol. 2019, 57, S245–S256. [Google Scholar] [CrossRef] [Green Version]
- Abouamama, S.; Anis, B.; Abir, S.; Maroua, H.; Sirine, B. Amylolytic and antibacterial activity of filamentous fungi isolated from the rhizosphere of different plants grown in the Tamanghasset region. Heliyon 2023, 9, e14350. [Google Scholar] [CrossRef]
- Vellanki, S.; Navarro-Mendoza, M.I.; Garcia, A.; Murcia, L.; Perez-Arques, C.; Garre, V.; Nicolas, F.E.; Lee, S.C. Mucor circinelloides: Growth, Maintenance, and Genetic Manipulation. Curr. Protoc. Microbiol. 2018, 49, e53. [Google Scholar] [CrossRef]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
Sample of Origin | Vultures’ Species | Rehabilitation Center |
---|---|---|
1 | Gyps fulvus | CERAS |
2 | Gyps fulvus | RIAS |
3 | Gyps fulvus | CERAS |
4 | Aegypius monachus | RIAS |
5 | Gyps fulvus | RIAS |
6 | Gyps fulvus | RIAS |
7 | Gyps fulvus | RIAS |
Bacteria/Yeast Isolates | Origin |
---|---|
Escherichia coli ATCC 25922 | Culture collection |
Enterococcus faecium CCUG 36804 | Culture collection |
Neisseria zoodegmatis CCUG 52598T | Culture collection |
Pseudomonas aeruginosa ATCC 27853 | Culture collection |
Pseudomonas aeruginosa 413/18 | Isolated from an otitis from a dog |
Pseudomonas aeruginosa Z25.1 | Isolated from a patient with diabetic foot infection |
Staphylococcus aureus ATCC 29213 | Culture collection |
Staphylococcus aureus Z25.2 | Isolated from a patient with diabetic foot infection |
Candida spp. S2-1 | Isolated from the oral cavity of a vulture |
Rhodotorula spp. S2-2 | Isolated from the oral cavity of a vulture |
Mucor spp. Isolate | Lipase | Lecithinase | Gelatinase | DNase | Hemolysin | Biofilm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
M1 | − | − | − | − | + | + | − | − | + | − | − | − | α-hemolysis 1 | − | − | − | ||
M2 | − | − | − | − | + | + | − | − | − | − | − | + | α-hemolysis 1 | − | − | + | ||
M3 | + | + | + | − | − | + | − | − | − | − | + | + | α-hemolysis 1 | − | − | − | ||
M4 | + | + | + | − | − | − | − | − | − | − | − | − | - | + | + | + | ||
M5 | − | − | − | − | + | + | − | − | − | − | − | + | α-hemolysis 1 | − | − | − | ||
M6 | + | + | + | − | − | − | − | − | + | − | + | + | α-hemolysis 1 | − | − | − | ||
M7 | − | − | − | − | − | − | − | − | − | − | − | + | α-hemolysis 1 | − | − | − |
Mucor spp. Filtrate | 48 h 1 | 72 h 1 |
---|---|---|
M2 | E. faecium CCUG 36804 | N. zoodegmatis CCUG 52598T, E. coli ATCC 25922 |
M3 | N. zoodegmatis CCUG 52598T | - |
M4 | E. faecium CCUG 36804 | N. zoodegmatis CCUG 52598T |
M7 | E. coli ATCC 25922 | S. aureus Z25.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, C.; Serrano, I.; Cunha, E.; Couto, M.P.; Lopes, F.; Casero, M.; Tavares, L.; Oliveira, M. Phenotypic Characterization of Oral Mucor Species from Eurasian Vultures: Pathogenic Potential and Antimicrobial Ability. Life 2023, 13, 1638. https://doi.org/10.3390/life13081638
Raposo C, Serrano I, Cunha E, Couto MP, Lopes F, Casero M, Tavares L, Oliveira M. Phenotypic Characterization of Oral Mucor Species from Eurasian Vultures: Pathogenic Potential and Antimicrobial Ability. Life. 2023; 13(8):1638. https://doi.org/10.3390/life13081638
Chicago/Turabian StyleRaposo, Catarina, Isa Serrano, Eva Cunha, Maria Patrícia Couto, Filipa Lopes, María Casero, Luís Tavares, and Manuela Oliveira. 2023. "Phenotypic Characterization of Oral Mucor Species from Eurasian Vultures: Pathogenic Potential and Antimicrobial Ability" Life 13, no. 8: 1638. https://doi.org/10.3390/life13081638
APA StyleRaposo, C., Serrano, I., Cunha, E., Couto, M. P., Lopes, F., Casero, M., Tavares, L., & Oliveira, M. (2023). Phenotypic Characterization of Oral Mucor Species from Eurasian Vultures: Pathogenic Potential and Antimicrobial Ability. Life, 13(8), 1638. https://doi.org/10.3390/life13081638