Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges
Abstract
:1. Introduction
2. DoC and NeuroRehabilitation
3. EEG Neurofeedback
3.1. BCI
3.2. TMS
3.3. tDCS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EEG | Electroencephalography |
BCI | Brain–Computer Interface |
tDCS | Transcranial direct current stimulation |
TMS | Transcranial Magnetic Stimulation |
DoC | Disorder of Consciousness |
ABI | Acquired Brain Injury |
UWS/VS | Unresponsive Wakefulness Syndrome/Vegetative State |
MCS | Minimally Conscious State |
CRS-R | Coma Recovery Scale Revised |
TBI | Traumatic Brain Injury |
LOS | Length of Stay |
NF | Neurofeedback |
SSVEPs | Steady-state visual evoked potentials |
CMD | Cognitive motor dissociation |
ERPs | Evoke event-related potentials |
LIS | Locked-in syndrome |
spTMS | Single-pulse Transcranial Magnetic Stimulation |
M1 | Primary motor cortex |
MEP | Motor-evoked potential |
EMG | Electromyography |
ppTMS | Paired-pulse TMS |
ICI | Intracortical Inhibition |
rTMS | Repetitive Transcranial Magnetic Stimulation |
DLPFC | Dorsolateral prefrontal cortex |
TEPs | TMS-evoked potentials |
PCI | Perturbational complexity index |
References
- Kamalakannan, S.K.; Gudlavalleti, A.S.; Gudlavalleti, V.S.M.; Goenka, S.; Kuper, H. Challenges in understanding the epidemiology of acquired brain injury in India. Ann. Indian Acad. Neurol. 2015, 18, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Suchy, Y. Neuropsychological Interviewing of Adults; Guilford Publications: New York, NY, USA, 2023; ISBN 978-1-4625-5182-8. [Google Scholar]
- Teasell, R.; Bayona, N.; Marshall, S.; Cullen, N.; Bayley, M.; Chundamala, J.; Villamere, J.; Mackie, D.; Rees, L.; Hartridge, C.; et al. A systematic review of the rehabilitation of moderate to severe acquired brain injuries. Brain Inj. 2007, 21, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Schnakers, C. Update on diagnosis in disorders of consciousness. Expert Rev. Neurother. 2020, 20, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.-A.; Majerus, S.; Boly, M.; Vanhaudenhuyse, A.; Schnakers, C.; Gosseries, O.; Boveroux, P.; Kirsch, M.; Demertzi, A.; Bernard, C.; et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 2011, 259, 1087–1098. [Google Scholar] [CrossRef] [Green Version]
- Giacino, J.T.; Fins, J.J.; Laureys, S.; Schiff, N.D. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 2014, 10, 99–114. [Google Scholar] [CrossRef]
- Giacino, J.T.; Katz, D.I.; Schiff, N.D.; Whyte, J.; Ashman, E.J.; Ashwal, S.; Barbano, R.; Hammond, F.M.; Laureys, S.; Ling, G.S.; et al. Practice Guideline Update Recommendations Summary: Disorders of Consciousness. Arch. Phys. Med. Rehabil. 2018, 99, 1699–1709. [Google Scholar] [CrossRef]
- Giacino, J.T.; Kalmar, K.; Whyte, J. The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 2004, 85, 2020–2029. [Google Scholar] [CrossRef]
- Oberholzer, M.; Müri, R.M. Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review. Med Sci. 2019, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Bayona, N.A.; Bitensky, J.; Teasell, R. Plasticity and Reorganization of the Uninjured Brain. Top. Stroke Rehabil. 2005, 12, 1–10. [Google Scholar] [CrossRef]
- Andelic, N.; Bautz-Holter, E.; Ronning, P.; Olafsen, K.; Sigurdardottir, S.; Schanke, A.-K.; Sveen, U.; Tornas, S.; Sandhaug, M.; Roe, C. Does an Early Onset and Continuous Chain of Rehabilitation Improve the Long-Term Functional Outcome of Patients with Severe Traumatic Brain Injury? J. Neurotrauma 2012, 29, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Turner-Stokes, L.; Pick, A.; Nair, A.; Disler, P.B.; Wade, D.T. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age. Cochrane Database Syst. Rev. 2015, 2015, CD004170. [Google Scholar] [CrossRef] [PubMed]
- Turner-Stokes, L. Evidence for the effectiveness of multi-disciplinary rehabilitation following acquired brain injury: A synthesis of two systematic approaches. J. Rehabil. Med. 2008, 40, 691–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.L.; Poon, W.S.; Chan, C.C.H.; Chan, S.S.H. Does intensive rehabilitation improve the functional outcome of patients with traumatic brain injury (TBI)? A randomized controlled trial. Brain Inj. 2007, 21, 681–690. [Google Scholar] [CrossRef]
- Hart, T.; Whyte, J.; Poulsen, I.; Kristensen, K.S.; Nordenbo, A.M.; Chervoneva, I.; Vaccaro, M.J. How Do Intensity and Duration of Rehabilitation Services Affect Outcomes From Severe Traumatic Brain Injury? A Natural Experiment Comparing Health Care Delivery Systems in 2 Developed Nations. Arch. Phys. Med. Rehabil. 2016, 97, 2045–2053. [Google Scholar] [CrossRef]
- Slade, A.; Tennant, A.; Chamberlain, M.A. A randomised controlled trial to determine the effect of intensity of therapy upon length of stay in a neurological rehabilitation setting. J. Rehabil. Med. 2002, 34, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Formisano, R.; Contrada, M.; Aloisi, M.; Buzzi, M.G.; Cicinelli, P.; Della Vedova, C.; Laurenza, L.; Matteis, M.; Spanedda, F.; Vinicola, V.; et al. Improvement rate of patients with severe brain injury during post-acute intensive rehabilitation. Neurol. Sci. Seve 2017, 39, 753–755. [Google Scholar] [CrossRef]
- Turner-Stokes, L. Cost-efficiency of longer-stay rehabilitation programmes: Can they provide value for money? Brain Inj. 2007, 21, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Jahanian Najafabadi, A.; Oh, H.; Imani, H.; Godde, B. Effect of Neurofeedback Training Combined with Transcranial Direct Current Stimulation on Primary Insomnia; IRC-Library, Information Resource Center der Jacobs University Bremen: Bremen, Germany, 2021. [Google Scholar]
- Maggio, M.G.; Naro, A.; La Rosa, G.; Cambria, A.; Lauria, P.; Billeri, L.; Latella, D.; Manuli, A.; Calabrò, R.S. Virtual Reality Based Cognitive Rehabilitation in Minimally Conscious State: A Case Report with EEG Findings and Systematic Literature Review. Brain Sci. 2020, 10, 414. [Google Scholar] [CrossRef]
- Wyckoff, S.; Birbaumer, N. Neurofeedback and Brain-Computer Interfaces. Int. Rev. Neurobiol. 2014, 86, 275–312. [Google Scholar] [CrossRef]
- Loriette, C.; Ziane, C.; Ben Hamed, S. Neurofeedback for cognitive enhancement and intervention and brain plasticity. Rev. Neurol. 2021, 177, 1133–1144. [Google Scholar] [CrossRef]
- Morlet, D.; Fischer, C. MMN and Novelty P3 in Coma and Other Altered States of Consciousness: A Review. Brain Topogr. 2013, 27, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Sokoliuk, R.; Degano, G.; Banellis, L.; Melloni, L.; Hayton, T.; Sturman, S.; Veenith, T.; Yakoub, K.M.; Belli, A.; Noppeney, U.; et al. Covert Speech Comprehension Predicts Recovery From Acute Unresponsive States. Ann. Neurol. 2020, 89, 646–656. [Google Scholar] [CrossRef]
- Ramadan, R.A.; Refat, S.; Elshahed, M.A.; Ali, R.A. Basics of Brain Computer Interface; Springer: Berlin/Heidelberg, Germany, 2014; Volume 74, pp. 31–50. [Google Scholar] [CrossRef]
- Pichiorri, F.; Mattia, D. Brain-computer interfaces in neurologic rehabilitation practice. Handb. Clin. Neurol. 2020, 168, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Coyle, D.; Stow, J.; McCreadie, K.; McElligott, J.; Carroll, Á. Sensorimotor Modulation Assessment and Brain-Computer Interface Training in Disorders of Consciousness. Arch. Phys. Med. Rehabil. 2015, 96, S62–S70. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, J.; He, Y.; Wang, F.; Laureys, S.; Xie, Q.; Yu, R. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system. BMC Neurol. 2015, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pfurtscheller, G.; Allison, B.; Bauernfeind, G.; Brunner, C.; Solis Escalante, T.; Scherer, R.; Zander, T.; Mueller-Putz, G.; Neu-per, C.; Birbaumer, N. The Hybrid BCI. Front. Neurosci. 2010, 4, 42. [Google Scholar] [CrossRef]
- Xiao, J.; Pan, J.; He, Y.; Xie, Q.; Yu, T.; Huang, H.; Lv, W.; Zhang, J.; Yu, R.; Li, Y. Visual Fixation Assessment in Patients with Disorders of Consciousness Based on Brain-Computer Interface. Neurosci. Bull. 2018, 34, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Xie, Q.; Qin, P.; Chen, Y.; He, Y.; Huang, H.; Wang, F.; Ni, X.; Cichocki, A.; Yu, R.; et al. Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain 2020, 143, 1177–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.; Pan, J.; Chen, Y.; He, Y.; Ni, X.; Zhang, J.; Wang, F.; Li, Y.; Yu, R. A gaze-independent audiovisual brain-computer Interface for detecting awareness of patients with disorders of consciousness. BMC Neurol. 2018, 18, 144. [Google Scholar] [CrossRef]
- Lulé, D.; Noirhomme, Q.; Kleih, S.C.; Chatelle, C.; Halder, S.; Demertzi, A.; Bruno, M.-A.; Gosseries, O.; Vanhaudenhuyse, A.; Schnakers, C.; et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin. Neurophysiol. 2013, 124, 101–106. [Google Scholar] [CrossRef]
- Pokorny, C.; Klobassa, D.S.; Pichler, G.; Erlbeck, H.; Real, R.G.L.; Kubler, A.; Lesenfants, D.; Habbal, D.; Noirhomme, Q.; Risetti, M.; et al. The Auditory P300-Based Single-Switch BCI: Paradigm Transition from Healthy Subjects to Minimally Conscious Patients. Artif. Intell. Med. 2013, 59, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; He, Y.; Yu, T.; Pan, J.; Xie, Q.; Cao, C.; Zheng, H.; Huang, W.; Gu, Z.; Yu, Z.; et al. Toward Assessment of Sound Locaization in Disorders of Consciousness Using a Hybrid Audiovisual Brain–Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1422–1432. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, Q.; Lin, Q.; Yu, T.; Yu, R.; Li, Y. Assessment of Visual Pursuit in Patients With Disorders of Consciousness Based on a Brain-Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1141–1151. [Google Scholar] [CrossRef]
- Allison, B.Z.; Cho, W.; Ortner, R.; Heilinger, A.; Edlinger, G.; Guger, C. Validation of a Brain-Computer Interface (BCI) System Designed for Patients with Disorders of Consciousness (DOC): Regular and Sham Testing with Healthy Participants. In Proceedings of the Augmented Cognition, Enhancing Cognition and Behavior in Complex Human Environments, Vancoucer, BC, Canada, 9–14 July 2017; Schmorrow, D.D., Fidopiastis, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 253–265. [Google Scholar]
- Spataro, R.; Heilinger, A.; Allison, B.; De Cicco, D.; Marchese, S.; Gregoretti, C.; La Bella, V.; Guger, C. Preserved somatosensory discrimination predicts consciousness recovery in unresponsive wakefulness syndrome. Clin. Neurophysiol. 2018, 129, 1130–1136. [Google Scholar] [CrossRef]
- Murovec, N.; Heilinger, A.; Xu, R.; Ortner, R.; Spataro, R.; La Bella, V.; Miao, Y.; Jin, J.; Chatelle, C.; Laureys, S.; et al. Effects of a Vibro-Tactile P300 Based Brain-Computer Interface on the Coma Recovery Scale-Revised in Patients With Disorders of Consciousness. Front. Neurosci. 2020, 14, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatelle, C.; Spencer, C.A.; Cash, S.S.; Hochberg, L.R.; Edlow, B.L. Feasibility of an EEG-based brain-computer interface in the intensive care unit. Clin. Neurophysiol. 2018, 129, 1519–1525. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, L.; Lin, Q.; Xiao, J.; Huang, Y.; Huang, H.; Zhou, X.; Shi, X.; Wang, F.; He, Y.; et al. Hybrid asynchronous brain–computer interface for yes/no communication in patients with disorders of consciousness. J. Neural Eng. 2021, 18, 056001. [Google Scholar] [CrossRef]
- Eliseyev, A.; Gonzales, I.J.; Le, A.; Doyle, K.; Egbebike, J.; Velazquez, A.; Agarwal, S.; Roh, D.; Park, S.; Connolly, E.S. De-velopment of a Brain-Computer Interface for Patients in the Critical Care Setting. PLoS ONE 2021, 16, e0245540. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.; Jalinous, R.; Freeston, I. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Valero-Cabre, A.; Pascual-Leone, A. Noninvasive Human Brain Stimulation. Annu. Rev. Biomed. Eng. 2007, 9, 527–565. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.T. An Introduction to the Basic Principles of Magnetic Nerve Stimulation. J. Clin. Neurophysiol. 1991, 8, 26–37. [Google Scholar] [CrossRef]
- Barker, A. Transcranial Magnetic Stimulation—Past, present and future. Brain Stimul. 2017, 10, 540. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial Magnetic Stimulation: A Primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valero-Cabré, A.; Amengual, J.L.; Stengel, C.; Pascual-Leone, A.; Coubard, O.A. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci. Biobehav. Rev. 2017, 83, 381–404. [Google Scholar] [CrossRef]
- Nahas, Z. Handbook of Transcranial Magnetic Stimulation. J. Psychiatry Neurosci. 2002, 28, 373–375. [Google Scholar]
- Wagner, T.; Rushmore, J.; Eden, U.; Valero-Cabre, A. Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 2009, 45, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Amassian, V.E.; Stewart, M.; Quirk, G.J.; Rosenthal, J.L. Physiological Basis of Motor Effects of a Transient Stimulus to Cere-bral Cortex. Neurosurgery 1987, 20, 74–93. [Google Scholar] [CrossRef]
- Amassian, V.; Quirk, G.J.; Stewart, M. A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1990, 77, 390–401. [Google Scholar] [CrossRef]
- Ganis, G.; Keenan, J.P.; Kosslyn, S.M.; Pascual-Leone, A. Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cereb. Cortex 2000, 10, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Mottaghy, F.M.; Pascual-Leone, A.; Kemna, L.J.; Töpper, R.; Herzog, H.; Müller-Gärtner, H.-W.; Krause, B.J. Modulation of a brain–behavior relationship in verbal working memory by rTMS. Cogn. Brain Res. 2003, 15, 241–249. [Google Scholar] [CrossRef]
- Noda, Y.; Barr, M.S.; Zomorrodi, R.; Cash, R.F.H.; Lioumis, P.; Chen, R.; Daskalakis, Z.J.; Blumberger, D.M. Single-Pulse Transcranial Magnetic Stimulation-Evoked Potential Amplitudes and Latencies in the Motor and Dorsolateral Prefrontal Cortex among Young, Older Healthy Participants, and Schizophrenia Patients. J. Pers. Med. 2021, 11, 54. [Google Scholar] [CrossRef]
- Bashir, S.; Mizrahi, I.; Weaver, K.; Fregni, F.; Pascual-Leone, A.; Ba, I.M.; Ba, K.W. Assessment and Modulation of Neural Plasticity in Rehabilitation With Transcranial Magnetic Stimulation. PM&R 2010, 2, S253–S268. [Google Scholar] [CrossRef] [Green Version]
- Andary, M.T.; Crewe, N.; Ganzel, S.K.; Haines-Pepi, C.; Kulkarni, M.R.; Stanton, D.F.; Thompson, A.; Yosef, M. Traumatic Brain Injury/Chronic Pain Syndrome: A Case Comparison Study. Clin. J. Pain 1997, 13, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Jorge, R.E.; Acion, L.; Starkstein, S.E.; Magnotta, V. Hippocampal Volume and Mood Disorders After Traumatic Brain Injury. Biol. Psychiatry 2007, 62, 332–338. [Google Scholar] [CrossRef]
- Hou, L.; Han, X.; Sheng, P.; Tong, W.; Li, Z.; Xu, D.; Yu, M.; Huang, L.; Zhao, Z.; Lu, Y.; et al. Risk Factors Associated with Sleep Disturbance following Traumatic Brain Injury: Clinical Findings and Questionnaire Based Study. PLoS ONE 2013, 8, e76087. [Google Scholar] [CrossRef]
- Lucke-Wold, B.P.; Nguyen, L.; Turner, R.C.; Logsdon, A.F.; Chen, Y.-W.; Smith, K.E.; Huber, J.D.; Matsumoto, R.; Rosen, C.L.; Tucker, E.S.; et al. Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure 2015, 33, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huusko, N.; Pitkänen, A. Parvalbumin immunoreactivity and expression of GABAA receptor subunits in the thalamus after experimental TBI. Neuroscience 2014, 267, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control | Cerebral Cortex | Oxford Academic. Available online: https://academic.oup.com/cercor/article/25/8/2306/313160 (accessed on 29 May 2023).
- Lapitskaya, N.; Gosseries, O.; De Pasqua, V.; Pedersen, A.R.; Nielsen, J.F.; de Noordhout, A.M.; Laureys, S. Abnormal Corticospinal Excitability in Patients with Disorders of Consciousness. Brain Stimul. 2013, 6, 590–597. [Google Scholar] [CrossRef]
- Bagnato, S.; Boccagni, C.; Sant’angelo, A.; Prestandrea, C.; Rizzo, S.; Galardi, G. Patients in a vegetative state following traumatic brain injury display a reduced intracortical modulation. Clin. Neurophysiol. 2012, 123, 1937–1941. [Google Scholar] [CrossRef]
- Amandusson, Å.; Flink, R.; Axelson, H. Comparison between adaptive and fixed stimulus paired-pulse transcranial magnetic stimulation (ppTMS) in normal subjects. Clin. Neurophysiol. Pract. 2017, 2, 91–97. [Google Scholar] [CrossRef]
- Opie, G.M.; Foo, N.; Killington, M.; Ridding, M.C.; Semmler, J.G. Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Neuroplasticity Are Altered after Mild Traumatic Brain Injury. J. Neurotrauma 2019, 36, 2774–2784. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Gomez-Tortosa, E.; Grafman, J.; Alway, D.; Nichelli, P.; Hallett, M. Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe. Neurology 1994, 44, 494–498. [Google Scholar] [CrossRef]
- Rotenberg, A.; Horvath, J.C.; Pascual-Leone, A. The Transcranial Magnetic Stimulation (TMS) Device and Foundational Techniques. Neuromethods 2014, 3–13. [Google Scholar] [CrossRef]
- Fitzgerald, P.; Fountain, S.; Daskalakis, Z. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 2006, 117, 2584–2596. [Google Scholar] [CrossRef] [PubMed]
- Silvanto, J.; Cattaneo, Z.; Battelli, L.; Pascual-Leone, A. Baseline Cortical Excitability Determines Whether TMS Disrupts or Facilitates Behavior. J. Neurophysiol. 2008, 99, 2725–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris-Love, M.L.; Cohen, L.G. Noninvasive Cortical Stimulation in Neurorehabilitation: A Review. Arch. Phys. Med. Rehabil. 2006, 87, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, T.; Chen, A.C. Repetitive Transcranial Magnetic Stimulation for the Recovery of Stroke Patients with Dis-turbance of Consciousness. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2015, 8, 674–675. [Google Scholar]
- Liu, X.; Meng, F.; Gao, J.; Zhang, L.; Zhou, Z.; Pan, G.; Luo, B. Behavioral and Resting State Functional Connectivity Effects of High Frequency rTMS on Disorders of Consciousness: A Sham-Controlled Study. Front. Neurol. 2018, 9, 982. [Google Scholar] [CrossRef]
- Naro, A.; Russo, M.; Leo, A.; Bramanti, P.; Quartarone, A.; Calabrò, R.S. A Single Session of Repetitive Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex in Patients with Unresponsive Wakefulness Syndrome: Preliminary Results. Neurorehabilit. Neural Repair 2015, 29, 603–613. [Google Scholar] [CrossRef]
- Xia, X.; Liu, Y.; Bai, Y.; Liu, Z.; Yang, Y.; Guo, Y.; Xu, R.; Gao, X.; Li, X.; He, J. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness. Neuroreport 2017, 28, 1022–1029. [Google Scholar] [CrossRef]
- Fan, J.; Zhong, Y.; Wang, H.; Aierken, N.; He, R. Repetitive transcranial magnetic stimulation improves consciousness in some patients with disorders of consciousness. Clin. Rehabil. 2022, 36, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Manganotti, P.; Formaggio, E.; Storti, S.F.; Fiaschi, A.; Battistin, L.; Tonin, P.; Piccione, F.; Cavinato, M. Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Brain Excitability in Severely Brain-Injured Patients in Minimally Conscious or Vegetative State. Brain Stimul. 2013, 6, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Cincotta, M.; Giovannelli, F.; Chiaramonti, R.; Bianco, G.; Godone, M.; Battista, D.; Cardinali, C.; Borgheresi, A.; Sighinolfi, A.; D’Avanzo, A.M.; et al. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: A randomised, sham-controlled study. Cortex 2015, 71, 368–376. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, Z.; Wu, W.; Zheng, X.; Zhong, H.; Huang, X.; Xie, Q.; Qian, X. Effects of 10 Hz individualized repetitive transcranial magnetic stimulation on patients with disorders of consciousness: A study protocol for an exploratory double-blind crossover randomized sham-controlled trial. Trials 2023, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Wang, Y.; Li, C.; Li, X.; He, J.; Bai, Y. Transcranial magnetic stimulation-evoked connectivity reveals modulation effects of repetitive transcranial magnetic stimulation on patients with disorders of consciousness. Neuroreport 2019, 30, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Ilmoniemi, R.J.; Kičić, D. Methodology for Combined TMS and EEG. Brain Topogr. 2010, 22, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Gosseries, O.; Di, H.; Laureys, S.; Boly, M. Measuring Consciousness in Severely Damaged Brains. Annu. Rev. Neurosci. 2014, 37, 457–478. [Google Scholar] [CrossRef] [Green Version]
- Massimini, M.; Ferrarelli, F.; Huber, R.; Esser, S.K.; Singh, H.; Tononi, G. Breakdown of Cortical Effective Connectivity During Sleep. Science 2005, 309, 2228–2232. [Google Scholar] [CrossRef]
- Ferrarelli, F.; Massimini, M.; Sarasso, S.; Casali, A.; Riedner, B.A.; Angelini, G.; Tononi, G.; Pearce, R.A. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. USA 2010, 107, 2681–2686. [Google Scholar] [CrossRef]
- Ragazzoni, A.; Pirulli, C.; Veniero, D.; Feurra, M.; Cincotta, M.; Giovannelli, F.; Chiaramonti, R.; Lino, M.; Rossi, S.; Miniussi, C. Vegetative versus Minimally Conscious States: A Study Using TMS-EEG, Sensory and Event-Related Potentials. PLoS ONE 2013, 8, e57069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casali, A.G.; Gosseries, O.; Rosanova, M.; Boly, M.; Sarasso, S.; Casali, K.R.; Casarotto, S.; Bruno, M.-A.; Laureys, S.; Tononi, G.; et al. A Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior. Sci. Transl. Med. 2013, 5, 198ra105. [Google Scholar] [CrossRef]
- Casarotto, S.; Comanducci, A.; Rosanova, M.; Sarasso, S.; Fecchio, M.; Napolitani, M.; Pigorini, A.; Casali, A.G.; Trimarchi, P.D.; Boly, M.; et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 2016, 80, 718–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Xia, X.; Kang, J.; Yin, X.; Yang, Y.; He, J.; Li, X. Evaluating the Effect of Repetitive Transcranial Magnetic Stimulation on Disorders of Consciousness by Using TMS-EEG. Front. Neurosci. 2016, 10, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Niu, Z.; Xia, X.; Bai, Y.; Liang, Z.; He, J.; Li, X. Application of Fast Perturbational Complexity Index to the Diagnosis and Prognosis for Disorders of Consciousness. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 509–518. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Han, P.; Zeng, Y.-Y.; Wang, Y.-L.; Lv, H.-L. The Clinical Effect of Repetitive Transcranial Magnetic Stimulation on the Disturbance of Consciousness in Patients in a Vegetative State. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Pape, T.L.B.; Herrold, A.A.; Livengood, S.L.; Guernon, A.; Weaver, J.A.; Higgins, J.P.; Rosenow, J.M.; Walsh, E.; Bhaumik, R.; Pacheco, M.; et al. A Pilot Trial Examining the Merits of Combining Amantadine and Repetitive Transcranial Magnetic Stimulation as an Intervention for Persons With Disordered Consciousness After TBI. J. Head Trauma Rehabil. 2020, 35, 371–387. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Cabral, M.E.; Baltar, A.; Borba, R.; Galvão, S.; Santos, L.; Fregni, F.; Monte-Silva, K. Transcranial Direct Current Stimulation: Before, during, or after Motor Training? Neuroreport 2015, 26, 618–622. [Google Scholar] [CrossRef]
- George, M.S.; Ketter, T.A.; Post, R.M. Prefrontal cortex dysfunction in clinical depression. Depression 1994, 2, 59–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W. Transcranial direct current stimulation in disorders of consciousness: A review. Int. J. Neurosci. 2017, 128, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Liouta, E.; Andreadis, N.; Korfias, S.; Ktonas, P.; Stranjalis, G.; Sakas, D.E. Transcranial Direct Current Stimulation Effects in Disorders of Consciousness. Arch. Phys. Med. Rehabil. 2013, 95, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W. Chapter 26 Transcranial direct current stimulation (tDCS). Suppl. Clin. Neurophysiol. 2003, 56, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Bermpohl, F.; Vergara, A.O.; Muniz, A.L.; Nahas, F.H.; Leme, P.B.; Rigonatti, S.P.; Fregni, F. Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression. J. Affect. Disord. 2007, 101, 91–98. [Google Scholar] [CrossRef]
- Boggio, P.S.; Ferrucci, R.; Rigonatti, S.P.; Covre, P.; Nitsche, M.; Pascual-Leone, A.; Fregni, F. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J. Neurol. Sci. 2006, 249, 31–38. [Google Scholar] [CrossRef]
- Borckardt, J.J.; Linder, K.J.B.; Ricci, R.; Li, X.; Anderson, B.R.; Arana, A.B.; Nahas, Z.; Amassian, V.M.; Long, J.; George, M.S.; et al. Focal Electrically Administered Therapy. J. ECT 2009, 25, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Elwassif, M.; Bansal, V.; Diaz, J.; Battaglia, F.; Bikson, M. A System and Device for Focal Transcranial Direct Cur-rent Stimulation Using Concentric Ring Electrode Configurations. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2008, 1, 318. [Google Scholar]
- Doemkes, S.; Karaköse, T.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Cabibel, V.; Muthalib, M.; Teo, W.-P.; Perrey, S.; et al. Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex. J. Neurophysiol. 2007, 97, 3109–3117. [Google Scholar] [CrossRef] [Green Version]
- Radman, T.; Ramos, R.; Brumberg, J.; Bikson, M. Role of cortical cell type and neuronal morphology in electric field stimulation. Brain Stimul. 2008, 1, 247–248. [Google Scholar] [CrossRef]
- Accornero, N.; Voti, P.L.; La Riccia, M.; Gregori, B. Visual evoked potentials modulation during direct current cortical polarization. Exp. Brain Res. 2006, 178, 261–266. [Google Scholar] [CrossRef]
- Fregni, F.; Pascual-Leone, A. Technology Insight: Noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 2007, 3, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Kuhn, A.; Pérez-Fernández, C.; Cánovas, R.; Flores, P.; Sánchez-Santed, F. Transcranial direct current stimulation as a motor neurorehabilitation tool: An empirical review. Biomed. Eng. Online 2017, 16, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordacre, B.; Moezzi, B.; Ridding, M.C. Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study. Hum. Brain Mapp. 2018, 39, 3326–3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Xia, X.; Kang, J.; Yang, Y.; He, J.; Li, X. TDCS modulates cortical excitability in patients with disorders of consciousness. NeuroImage Clin. 2017, 15, 702–709. [Google Scholar] [CrossRef]
- Carrière, M.; Mortaheb, S.; Raimondo, F.; Annen, J.; Barra, A.; Fossati, M.C.B.; Chatelle, C.; Hermann, B.; Martens, G.; Di Perri, C.; et al. Neurophysiological Correlates of a Single Session of Prefrontal tDCS in Patients with Prolonged Disorders of Consciousness: A Pilot Double-Blind Randomized Controlled Study. Brain Sci. 2020, 10, 469. [Google Scholar] [CrossRef]
- Aloi, D.; della Rocchetta, A.I.; Ditchfield, A.; Coulborn, S.; Fernández-Espejo, D. Therapeutic Use of Transcranial Direct Current Stimulation in the Rehabilitation of Prolonged Disorders of Consciousness. Front. Neurol. 2021, 12, 632572. [Google Scholar] [CrossRef]
- Schiff, N.D. Cognitive Motor Dissociation Following Severe Brain Injuries. JAMA Neurol. 2015, 72, 1413–1415. [Google Scholar] [CrossRef]
- Thibaut, A.; Bruno, M.-A.; LeDoux, D.; Demertzi, A.; Laureys, S. tDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology 2014, 82, 1112–1118. [Google Scholar] [CrossRef]
- Hermann, B.; Raimondo, F.; Hirsch, L.; Huang, Y.; Denis-Valente, M.; Pérez, P.; Engemann, D.; Faugeras, F.; Weiss, N.; Demeret, S.; et al. Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cavaliere, C.; Aiello, M.; Di Perri, C.; Amico, E.; Martial, C.; Thibaut, A.; Laureys, S.; Soddu, A. Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients. Front. Cell. Neurosci. 2016, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhao, K.; Jia, C.; You, J.; Zhou, M.; Wang, T.; Huang, C. Effect of transcranial direct current stimulation for patients with disorders of consciousness: A systematic review and meta-analysis. Front. Neurosci. 2023, 16, 1081278. [Google Scholar] [CrossRef] [PubMed]
Author(s) | Reference | Patients | Study Description | Main Findings |
---|---|---|---|---|
Coyle et al. | [27] | 4 MCS | Assessed awareness in MCS patients using an EEG-based BCI, evaluating sensorimotor rhythm modulation with visual and auditory feedback. | MCS patients demonstrated significant brain activation in the initial assessment. They received real-time feedback to enhance arousal and were able to operate a basic BCI communication system despite a lack of motor responses. |
Li et al. | [28] | 3 MCS, 6 UWS/VS, 2 EMCS | Used a combined P300 and Steady-State Visual Evoked Potential (SSVEP) BCI system for number processing and mental maths tasks. | 2 UWS/VS, 1 MCS and 2 EMCS patients performed above chance, suggesting covert cognition. |
Xiao et al. | [30] | 15 DoC | The BCI system was used to assist the visual fixation assessment of DOC patients. | 1 patient did not show visual fixation in the CRS-R assessment but achieved a significant level of accuracy in the BCI assessment. |
Pan et al. | [31] | 45 UWS/VS, 33 MCS | Motor imagery BCI was used to identify cognitive-motor dissociation. | 18 UWS/VS and 16 MCS showed a dissociation between BCI and behavioral responses. |
Xie et al. | [32] | 8 DoC | Gaze-independent audiovisual BCI system. | 3 patients demonstrated command following and number recognition. |
Lule et al. | [33] | 2 LIS, 13 MCS, 3 UWS/VS | BCI was used to detect consciousness in DOC patients by assessing their response to command and communication. | Detected command following in 1 MCS and 1 LIS patient. |
Xiao | [35] | 10 UWS/VS, 8 MCS | A novel audiovisual BCI system was developed to simulate sound localization evaluation in CRS-R | All patients showing sound localization in the CRS-R were among those detected by BCI |
Author(s) | Reference | Patients | Study Description | Main Findings |
---|---|---|---|---|
Lapitskaya et al. | [64] | 24 UWS/VS, 23 MCS, 14 healthy controls | To assess corticospinal excitability using single and paired-pulse TMS over M1 while recording MEPs with EMG, and to compare motor thresholds and MEP amplitudes between groups. | UWS/VS and MCS showed increased motor thresholds and reduced MEP amplitudes compared to healthy controls. |
Bagnato et al. | [65] | 5 UWS/VS, 10 healthy controls | To evaluate the inhibitory and excitatory interneuronal circuits in patient UWS/VS using ppTMS following a traumatic brain injury. | UWS/VS patients showed reduced intracortical inhibition compared to healthy controls. |
Xie et al. | [73] | 11 UWS/VS, 7 MCS, 2 coma | Ten patients received 28 sessions of rTMS treatment with 5 Hz on the right dorsolateral prefrontal cortex (DLPFC) in addition to conventional therapy. | In 60% of patients, GCS and CRS-R scores were significantly increased after rTMS |
Naro et al. | [75] | 10 UWS/VS, 10 healthy controls | An amount of 10 Hz rTMS over left DLPFC in daily sessions for 2 weeks. CRS-R measured before and after. | Patients showed increased arousal, cognition, and motor responses after rTMS per CRS-R. |
Xia et al. | [76] | 18 DoC (9 UWS/VS, 9 MCS) | An amount of 10 Hz rTMS over left DLPFC for 10 min. EEG was recorded before and multiple times after stimulation. | Decreased delta/theta waves and increased alpha/beta waves post-rTMS, especially in MCS patients. |
Fan et al. | [77] | 40 DoC | To investigate the therapeutic efficacy of rTMS in patients with disorders of consciousness. CRS-R compared to baseline. A 20-Hz active TMS on left DLPFC and sham-rTMS protocol. | Some patients showed significant CRS-R score increases compared to sham rTMS. |
Manganotti et al. | [78] | 3 MCS, 3 UWS/VS | To investigate the reactivity of EEG and the clinical response in six severely DoC by single session of 20-Hz rTMS over the motor cortex | One MCS patient showed neurophysiological and clinical changes. No effects seen in UWS/VS. |
Cincotta et al. | [79] | 11 UWS/VS patients | An amount of 20 Hz rTMS over M1 daily for 5 days. CRS-R measured before and after. | No significant effects on consciousness observed based on CRS-R scores. |
Xu et al. | [80] | 30 DoC | An amount of 10 Hz rTMS over individualized brain regions, double-blind crossover randomized sham-controlled trial. | Study protocol, results pending. |
Xia et al. | [81] | 14 UWS/VS, 7 MCS, 14 healthy subjects | TMS-EEG responses were recorded and compared between groups. | TMS-evoked potentials and connectivity changed in MCS but not UWS/VS. |
Ragazzoni et al. | [86] | 8 UWS/VS, 5 MCS, 5 healthy subjects | To improve the accuracy of diagnosing the differences between UWS/VS and MCS by assessing cortical reactivity and effective connectivity using TMS combined with EEG (cortical potentials evoked by TMS (TEPs)), TMS was applied to the less-affected hemisphere of patients and the dominant hemisphere of controls, targeting the primary motor cortex. A total of 400 TMS pulses (200 real, 200 sham) were delivered at random intervals between 0.25 to 0.5 Hz during a 60-min session conducted at the patients’ bedside. | TEP results suggest that cortical reactivity and connectivity are severely impaired in all UWS/VS patients, whereas in most MCS patients; the TEPs are preserved but with abnormal features. |
Casarotto et al. | [88] | 38 MCS, 43 UWS/VS, 150 healthy subjects | To stratify unresponsive patients, such as those in a vegetative state or minimally conscious state, using an independently validated index of brain complexity, single TMS pulses were delivered with a focal biphasic stimulator. TMS targets were selected bilaterally within the middle–caudal portion of the superior frontal gyrus and within the superior parietal lobule | PCI values were significantly lower in patients with disorders of consciousness. |
Bai et al. | [89] | 1 DOC | TMS-EEG to assess effects of rTMS on brain modulation of DOC. Twenty sessions of 10 Hz rTMS were applied over the DLPFC. | By the CRS-R, TEP, and PCI, a significant increase in the level of consciousness was observed. |
Wang et al. | [90] | 30 healthy subjects, 76 MCS, 105 UWS/VS | PCIst was used to the diagnosis and prognosis of DOC patients. The PCIst was used to assess the time-space complexity of TMS-evoked potentials (TEP). | PCIst demonstrated significant differences in specific frequency bands between groups. |
Zhang et al. | [91] | 48 DoC | To explore the effect of combining rTMS and conventional rehabilitation on the recovery of consciousness in patients in a persistent vegetative state (PVS). | The group receiving rTMS showed significant improvements in the CRS-R and EEG grading indices |
Pape et al. | [92] | 4 DoC | To evaluate the impact of repetitive transcranial magnetic stimulation (rTMS), amantadine (AMA), and their combination. | Auditory-language gains were observed after rTMS, which increased when rTMS preceded rTMS + AMA. |
Author(s) | Reference | Patients | Study Description | Main Findings |
---|---|---|---|---|
Angelakis et al. | [97] | 10 DoC | A 20-min anodal tDCS was applied over the left DLPFC at 2 mA intensity, 5 days per week for 2 weeks. Assessed behavior with CRS-R. | Clinical improvement was observed in all MCS patients. One UWS/VS patient improved to MCS at 1-year follow-up. |
Hordacre et al. | [108] | 10 chronic stroke | Participants were randomized to initially receive either anodal or sham tDCS to the lesioned primary motor cortex (M1). Single-pulse TMS over lesioned M1 before and after tDCS | An enhanced motor cortical connectivity was observed related to increased excitability after a single session of anodal tDCS. |
Bai et al. | [109] | 10 MCS, 10 UWS/VS | A 20-min anodal tDCS over left DLPFC at 2 mA intensity. EEG recorded before, during, and after stimulation. Assessed global changes in cortical excitability. | MCS patients showed increased cortical excitability after tDCS. UWS/VS patients had more variable responses, with differences in excitability changes over time. |
Carriere et al. | [110] | 13 DoC | A 20-min anodal tDCS over left DLPFC at 2 mA intensity. High-density EEG recorded before and after stimulation. CRS-R was administered before and after to assess behavioral changes. | Increased alpha and theta EEG power observed after tDCS. Three patients also showed behavioral improvements according to CRS-R scores. |
Thibaut et al. | [113] | 30 MCS, 25 UWS/VS | A 20-min anodal tDCS over left DLPFC. CRS-R was administered before and after stimulation. | CRS-R scores increased in 43% of MCS patients and 8% of UWS/VS patients after tDCS. |
Hermann et al. | [114] | 60 DoC | A 20-min anodal tDCS over left DLPFC at 2 mA intensity. High-density EEG and CRS-R were administered before and after stimulation. | A total of 20% of patients showed improved CRS-R scores and EEG functional connectivity after tDCS. |
Cavaliere et al. | [115] | 16 MCS | A 20-min anodal tDCS over left DLPFC at 2 mA intensity. Resting-state fMRI was performed before and after stimulation. | tDCS responders showed increased functional connectivity in motor networks compared to non-responders. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatrano, M.; Nemirovsky, I.E.; Tonin, P.; Riganello, F. Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life 2023, 13, 1675. https://doi.org/10.3390/life13081675
Vatrano M, Nemirovsky IE, Tonin P, Riganello F. Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life. 2023; 13(8):1675. https://doi.org/10.3390/life13081675
Chicago/Turabian StyleVatrano, Martina, Idan Efim Nemirovsky, Paolo Tonin, and Francesco Riganello. 2023. "Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges" Life 13, no. 8: 1675. https://doi.org/10.3390/life13081675
APA StyleVatrano, M., Nemirovsky, I. E., Tonin, P., & Riganello, F. (2023). Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life, 13(8), 1675. https://doi.org/10.3390/life13081675