Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Reagents
2.2. C. ternatea Flower Extract Preparation
2.3. Phytochemical Screening
2.4. Experimental Animals
2.5. Membrane-Stabilizing Activity
Hemolysis Induced by Heat
2.6. Evaluation of Anti-Inflammatory Activity
2.7. Evaluation of Peripheral Analgesic Activity
2.8. Network Pharmacology-Based Analysis
2.8.1. Collection of Constituents and Targets for C. ternatea
2.8.2. Collection of Targets for Endometriosis, Inflammation and Endometrial Pain
2.8.3. Analysis of Common Targets for Endometriosis
2.8.4. GO and KEGG Pathway Enrichment Analysis by Target Genes
2.9. Molecular Docking
2.10. In Silico ADMET Analysis
2.11. Molecular Dynamics Simulation
2.12. Statistical Analysis
3. Results
3.1. Phytochemical Screening
3.2. Evaluation of Membrane-Stabilizing Property
3.3. Evaluation of In Vivo Anti-Inflammatory Activity
3.4. Evaluation of Peripheral Analgesic Activity
3.5. Collection of Plant Active Constituents and Target Genes
3.6. Collection of Disease-Related Genes and Putative Target Identification
3.7. Protein–Protein Interaction Analysis
3.8. GO and KEGG Pathway Enrichment
3.9. Molecular Docking
3.10. In Silico ADMET Analysis
3.11. Molecular Dynamics Simulation for Selected Protein–Ligand Complexes
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Warner, M.L. Epidemiology of endometriosis. Obstet. Gynecol. Clin. N. Am. 1997, 24, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Cano-Herrera, G.; Salmun Nehmad, S.; de Chávez Gascón, J.; Méndez Vionet, A.; van Tienhoven, X.A.; Osorio Martínez, M.F.; Muleiro Alvarez, M.; Vasco Rivero, M.X.; López Torres, M.F.; Barroso Valverde, M.J.; et al. Endometriosis: A Comprehensive Analysis of the Pathophysiology, Treatment, and Nutritional Aspects, and Its Repercussions on the Quality of Life of Patients. Biomedicines 2024, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
- Ashary, N.; Laheri, S.; Modi, D. Homeobox genes in endometrium: From development to decidualization. Int. J. Dev. Biol. 2020, 64, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Surrey, E.; Bonafede, M.; Nelson, J.K.; Castelli-Haley, J. Real-World Evaluation of Direct and Indirect Economic Burden Among Endometriosis Patients in the United States. Adv. Ther. 2018, 35, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Outley, J.; Botteman, M.; Spalding, J.; Simon, J.A.; Pashos, C.L. Economic burden of endometriosis. Fertil. Steril. 2006, 86, 1561–1572. [Google Scholar] [CrossRef]
- Shi, J.; Tan, X.; Feng, G.; Zhuo, Y.; Jiang, Z.; Banda, S.; Wang, L.; Zheng, W.; Chen, L.; Yu, D.; et al. Research advances in drug therapy of endometriosis. Front. Pharmacol. 2023, 14, 1199010. [Google Scholar] [CrossRef]
- Struthers, R.S.; Nicholls, A.J.; Grundy, J.; Chen, T.; Jimenez, R.; Yen, S.S.C.; Bozigian, H.P. Suppression of gonadotropins and estradiol in premenopausal women by oral administration of the nonpeptide gonadotropin-releasing hormone antagonist elagolix. J. Clin. Endocrinol. Metab. 2009, 94, 545–551. [Google Scholar] [CrossRef]
- Barbara, G.; Buggio, L.; Facchin, F.; Vercellini, P. Medical Treatment for Endometriosis: Tolerability, Quality of Life and Adherence. Front. Glob. Women’s Health 2021, 2, 729601. [Google Scholar] [CrossRef]
- Kiani, K.; Lamardi, S.N.S.; Laschke, M.W.; Ardakani, H.M.; Movahedin, M.; Ostad, S.N.; Aflatoonian, R.; Moini, A. Medicinal plants and natural compounds in the treatment of experimental endometriosis: A systematic review protocol. Evid.-Based Preclin. Med. 2016, 3, e00019. [Google Scholar] [CrossRef]
- Oguis, G.K.; Gilding, E.K.; Jackson, M.A.; Craik, D.J. Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front. Plant Sci. 2019, 10, 645. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic medicine Clitoria ternatea-From traditional use to scientific assessment. J. Ethnopharmacol. 2008, 120, 291–301. [Google Scholar] [CrossRef]
- Wang, C.; Meng, Q. Global Research Trends of Herbal Medicine for Pain in Three Decades (1990–2019): A Bibliometric Analysis. J. Pain Res. 2021, 14, 1611. [Google Scholar] [CrossRef]
- Multisona, R.R.; Shirodkar, S.; Arnold, M.; Gramza-Michalowska, A. Clitoria ternatea Flower and Its Bioactive Compounds: Potential Use as Microencapsulated Ingredient for Functional Foods. Appl. Sci. 2023, 13, 2134. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Pasukamonset, P.; Chusak, C. Clitoria ternatea beverages and antioxidant usage. In Pathology, Oxidative Stress and Dietary Antioxidants; Academic Press: Cambridge, MA, USA, 2020; pp. 189–196. [Google Scholar]
- Shirodkar, S.M.; Multisona, R.R.; Gramza-Michalowska, A. The Potential for the Implementation of Pea Flower (Clitoria ternatea) Health Properties in Food Matrix. Appl. Sci. 2023, 13, 7141. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Yin, X.; McCarthy, E.C.; Cheng, M.I.; Hoang, A.T.; Chen, H.-C.; Patel, A.Y.; Allard Trout, D.; Xu, E. Pathogenic TNF-α drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity. Proc. Natl. Acad. Sci. USA 2022, 119, e2114406119. [Google Scholar] [CrossRef]
- Shawky, E. Prediction of potential cancer-related molecular targets of North African plants constituents using network pharmacology-based analysis. J. Ethnopharmacol. 2019, 238, 111826. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Z.; Li, W.; Kong, F.; Yi, P.; Huang, J.; Mao, D.; Peng, W.; Zhang, S. Network pharmacology-based prediction and verification of the active ingredients and potential targets of zuojinwan for treating colorectal cancer. Drug Des. Dev. Ther. 2020, 14, 2725–2740. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Jin, X.; Ma, Y.; Yang, Y.; Li, J.; Liang, L.; Liu, R.; Li, Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput. Biol. Chem. 2021, 90, 107402. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Shi, J. Management of diabetes mellitus with puerarin, a natural isoflavone from pueraria lobata. Am. J. Chin. Med. 2018, 46, 1771–1789. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, J.K.; Choi, Y.W.; Kim, Y.H.; Lee, E.N.; Lee, J.R.; Kim, H.S.; Baek, S.Y.; Kim, B.S.; Lee, K.S.; et al. Hexane extract of aged black garlic reduces cell proliferation and attenuates the expression of ICAM-1 and VCAM-1 in TNF-α-activated human endometrial stromal cells. Int. J. Mol. Med. 2013, 32, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Meresman, G.F.; Götte, M.; Laschke, M.W. Plants as source of new therapies for endometriosis: A review of preclinical and clinical studies. Hum. Reprod. Update 2021, 27, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.H.; Wang, C.A.; Lin, C.C.; Chen, L.C.; Chang, W.C.; Tsai, S.J. Distinct regulation of cyclooxygenase-2 by interleukin-1β in normal and endometriotic stromal cells. J. Clin. Endocrinol. Metab. 2005, 90, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.M. Endometriosis and medical therapy: From progestogens to progesterone resistance to GNRH antagonists: A review. J. Clin. Med. 2021, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Zhang, X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int. J. Biol. Sci. 2022, 18, 4400–4413. [Google Scholar] [CrossRef]
- Ahmed, N.; Rashid, P.T.; Tabassum, N.; Deea, B.J. Role of Clitoria ternatea (Butterfly Pea) Flower in Endometriosis and Related Pain: A Network Pharmacology-Based Investigation and Experimental Validation. In Proceedings of the 3rd International Electronic Conference on Biomolecules, Online, 23–25 April 2024; p. 103. [Google Scholar]
- Rashid, P.T.; Hossain, M.J.; Zahan, M.S.; Hasan, C.M.; Rashid, M.A.; Al-Mansur, M.A.; Haque, M.R. Chemico-pharmacological and computational studies of Ophiorrhiza fasciculata D. Don and Psychotria silhetensis Hook. f. focusing cytotoxic, thrombolytic, anti-inflammatory, antioxidant, and antibacterial properties. Heliyon 2023, 9, e20100. [Google Scholar] [CrossRef]
- Anosike, C.A.; Obidoa, O.; Ezeanyika, L.U. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU J. Pharm. Sci. 2012, 20, 76. [Google Scholar] [CrossRef]
- Abbas, N.; Naz, M.; AlSulaim, M.N. A Comparative Study of Analgesic, Antipyretic and Anti-inflammatory Effect of Ethanolic Extract of Trigonella foenum-graecum with Indomethacin and Diclofenac Sodium. J. Pharm. Res. Int. 2016, 10, 116730. [Google Scholar] [CrossRef]
- Saha, P.; Brishty, S.R.; Rahman, S.M.A. Pharmacological Screening of Substituted Benzimidazole Derivatives. Dhaka Univ. J. Pharm. Sci. 2021, 20, 95–102. [Google Scholar] [CrossRef]
- Subedi, N.K.; Rahman, S.M.A.; Akbar, M.A. Analgesic and Antipyretic Activities of Methanol Extract and Its Fraction from the Root of Schoenoplectus grossus. Evid. Based. Complement. Alternat. Med. 2016, 2016, 3820704. [Google Scholar] [CrossRef]
- Islam, M.A.; Shahriar, S.; Hossain, T.; Sikdar, K.Y.K.; Al Hossain, A.M.; Sarkar, M.R.; Ali, M.S. In vitro Antioxidant and In vivo Analgesic Activities of Citrullus lanatus Rind and Flesh Extract: A Comparison. Bangladesh Pharm. J. 2022, 25, 67–72. [Google Scholar] [CrossRef]
- Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci. Rep. 2018, 8, 4329. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Iny Stein, T.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinforma 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017, 45, D833–D839. [Google Scholar] [CrossRef]
- Oliveros, J.C. VENNY. An Interactive Tool for Comparing Lists with Venn Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 22 February 2024).
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, T.; Wang, Y.; Bryant, S.H. PubChem as a public resource for drug discovery. Drug Discov. Today 2010, 15, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2015; Volume 1263, pp. 243–250, ISBN 1940-6029 (Electronic) 1064-3745 (Linking). [Google Scholar]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Dassault Systems. Biovia Discovery Studio. Comprehensive Modeling and Simulations for Life Sciencese; Biovia Discovery Studio: Vélizy-Villacoublay, France, 2017. [Google Scholar]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Shaw, D.E.; Dror, R.O.; Salmon, J.K.; Grossman, J.P.; Mackenzie, K.M.; Bank, J.A.; Young, C.; Deneroff, M.M.; Batson, B.; Bowers, K.J.; et al. Millisecond-scale molecular dynamics simulations on Anton. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, OR, USA, 14–20 November 2009; Association for Computing Machinery: New York, NY, USA, 2009. [Google Scholar]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. J. Food Sci. Technol. 2021, 58, 2054–2067. [Google Scholar] [CrossRef]
- Handayani, L.; Aprilia, S.; Arahman, N.; Bilad, M.R. Identification of the anthocyanin profile from butterfly pea (Clitoria ternatea L.) flowers under varying extraction conditions: Evaluating its potential as a natural blue food colorant and its application as a colorimetric indicator. South Afr. J. Chem. Eng. 2024, 49, 151–161. [Google Scholar] [CrossRef]
- Kazuma, K.; Noda, N.; Suzuki, M. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003, 62, 229–237. [Google Scholar] [CrossRef]
- Shen, Y.; Du, L.; Zeng, H.; Zhang, X.; Prinyawiwatkul, W.; Alonso-Marenco, J.R.; Xu, Z. Butterfly pea (Clitoria ternatea) seed and petal extracts decreased HEp-2 carcinoma cell viability. Int. J. Food Sci. Technol. 2016, 51, 1860–1868. [Google Scholar] [CrossRef]
- López Prado, A.S.; Shen, Y.; Ardoin, R.; Osorio, L.F.; Cardona, J.; Xu, Z.; Prinyawiwatkul, W. Effects of different solvents on total phenolic and total anthocyanin contents of Clitoria ternatea L. petal and their anti-cholesterol oxidation capabilities. Int. J. Food Sci. Technol. 2019, 54, 424–431. [Google Scholar] [CrossRef]
- Kumar, V.; Mukherjee, K.; Kumar, S.; Mal, M.; Mukherjee, P.K. Validation of HPTLC method for the analysis of taraxerol in Clitoria ternatea. Phytochem. Anal. 2008, 19, 244–250. [Google Scholar] [CrossRef]
- Tsouri, S.; Tselo, E.; Premetis, G.E.; Furlan, V.; Pantiora, P.D.; Mavroidi, B.; Matiadis, D.; Pelecanou, M.; Papageorgiou, A.C.; Bren, U.; et al. A Monocarbonyl Curcuminoid Derivative Inhibits the Activity of Human Glutathione Transferase A4-4 and Chemosensitizes Glioblastoma Cells to Temozolomide. Pharmaceuticals 2024, 17, 365. [Google Scholar] [CrossRef] [PubMed]
- Firdausy, A.F.; Muti’ah, R.; Rahmawati, E.K. Predicting Pharmacokinetic Profiles of Sunflower’s (Helianthus annuus L.) active Compounds using in silico Approach. J. Islam. Med. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, C.H.N.D.; Raju, B.D.P.; Madhavi, T.; Sushma, N.J. Identification of bioactive compounds by FTIR analysis and in vitro antioxidant activity of Clitoria ternatea leaf and flower extracts. Indo Am. J. Pharm. Res. 2014, 4, 3894–3903. [Google Scholar]
- Ishwar, B. Anti Inflammatory, Analgesic and Phytochemical Studies of Clitoria ternatea Linn Flower Extract. Int. Res. J. Pharm. 2012, 3, 208–210. [Google Scholar]
- Pakeerathan, K.; Buddhika, H.D.K.; Dharmadasa, R.M.; Arawwawala, L.D.A.M. Phytochemical Properties of Clitoria ternatea L. (Fabaceae)-A Distinct Flower Morphometric Plants Available in Sri Lanka. In Proceedings of the 1st International Electronic Conference Agronomy Volume, Online, 3–17 May 2021. [Google Scholar]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Omale, J.; Okafor, P.N. Comparative antioxidant capacity, membrane stabilization, polyphenol composition and cytotoxicity of the leaf and stem of Cissus multistriata. Afr. J. Biotechnol. 2008, 7, 3129–3133. [Google Scholar]
- Nair, V.; Bang, W.Y.; Schreckinger, E.; Andarwulan, N.; Cisneros-Zevallos, L. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells. J. Agric. Food Chem. 2015, 63, 6355–6365. [Google Scholar] [CrossRef]
- Bharathee Ranaweera, C.; Shilpika Vidanagamage, A.; Prabhashini Kaushalya Abeysekara, W.; Rajith Niloshan Silva, A.; Kankanamge Chandana, A.; Premakumara, S.; Pathirana, R.; Daya Ratnasooriya, W. In Vitro Effects of Aqueous Extracts of Five Sri Lankan Medicinal Plants on Human Erythrocyte Membrane Stabilisation Activity. Int. J. Recent Adv. Multidiscip. Res. 2015, 2, 0486–0489. [Google Scholar]
- Devi, B.P.; Boominathan, R.; Mandal, S.C. Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root. Fitoterapia 2003, 74, 345–349. [Google Scholar] [CrossRef]
- Sarwar, S.; Rahman, M.R.; Nahar, K.; Rahman, M.A. Analgesic and Neuropharmacological Activities of Methanolic Leaf Extract of Clitoria ternatea Linn. J. Pharmacogn. Phytochem. 2014, 2, 110–114. [Google Scholar]
- Rogerio, A.P.; Fontanari, C.; Melo, M.C.C.; Ambrosio, S.R.; de Souza, G.E.P.; Pereira, P.S.; França, S.C.; da Costa, F.B.; Albuquerque, D.A.; Faccioli, L.H. Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acid. J. Pharm. Pharmacol. 2010, 58, 1265–1273. [Google Scholar] [CrossRef]
- Mondal, A.; Maity, T.K.; Bishayee, A. Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla. Medicines 2019, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.M.; Abdolmaleki, Z.; Shahidi, S. Bioflavonoid exerts analgesic and anti-inflammatory effects via transient receptor potential 1 channel in a rat model. Arq. Neuropsiquiatr. 2022, 80, 900–907. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Y.; Xie, N.; Wang, H.; Wang, F.; Zhou, J.; Qu, F. A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis. PLoS ONE 2022, 17, e0263614. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, J.; Gu, J.; Weng, H.; Wang, J.; Wang, T.; Liang, X.; Cao, L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology–Based Identification. Front. Pharmacol. 2020, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Yi, Z.; Wang, Y.; Wang, L. Network pharmacology and experimental validation to explore the potential mechanism of Sanjie Zhentong Capsule in endometriosis treatment. Front. Endocrinol. 2023, 14, 1110995. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Fan, W.; Yu, X.; Liu, J.; Liu, P. Research into the mechanism of intervention of SanQi in endometriosis based on network pharmacology and molecular docking technology. Medicine 2022, 101, e30021. [Google Scholar] [CrossRef]
- Soofi, A.; Taghizadeh, M.; Tabatabaei, S.M.; Rezaei Tavirani, M.; Shakib, H.; Namaki, S.; Safari Alighiarloo, N. Centrality Analysis of Protein-Protein Interaction Networks and Molecular Docking Prioritize Potential Drug-Targets in Type 1 Diabetes. Iran. J. Pharm. Res. IJPR 2020, 19, 121–134. [Google Scholar]
- Huang, Y.; Zhang, T.; Chen, L.; Yu, M.; Liu, Q.; Zhou, C.; Tang, Q.; Zhou, L.; Zhan, H.; Li, J.; et al. Elevated expressions of SHP2 and GAB2 correlated with VEGF in eutopic and ectopic endometrium of women with ovarian endometriosis. Gynecol. Endocrinol. 2020, 36, 813–818. [Google Scholar] [CrossRef]
- Tao, T.; Luo, D.; Gao, C.; Liu, H.; Lei, Z.; Liu, W.; Zhou, C.; Qi, D.; Deng, Z.; Sun, X.; et al. Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Promotes Inflammation and Accelerates Osteoarthritis by Activating β-Catenin. Front. Cell Dev. Biol. 2021, 9, 646386. [Google Scholar] [CrossRef]
- Rubinstein, M.M.; Hyman, D.M.; Caird, I.; Won, H.; Soldan, K.; Seier, K.; Iasonos, A.; Tew, W.P.; O’Cearbhaill, R.E.; Grisham, R.N. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer 2020, 126, 1274–1282. [Google Scholar] [CrossRef]
- Dai, F.-F.; Bao, A.-Y.; Luo, B.; Zeng, Z.-H.; Pu, X.-L.; Wang, Y.-Q.; Zhang, L.; Xian, S.; Yuan, M.-Q.; Yang, D.-Y. Identification of differentially expressed genes and signaling pathways involved in endometriosis by integrated bioinformatics analysis. Exp. Ther. Med. 2020, 19, 264–272. [Google Scholar] [CrossRef]
- McCallion, A.; Nasirzadeh, Y.; Lingegowda, H.; Miller, J.E.; Khalaj, K.; Ahn, S.H.; Monsanto, S.P.; Bidarimath, M.; Sisnett, D.J.; Craig, A.W.; et al. Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology. Front. Immunol. 2022, 13, 961599. [Google Scholar] [CrossRef]
- Paskulin, D.D.; Cunha-Filho, J.S.; Paskulin, L.D.; Souza, C.A.B.; Ashton-Prolla, P. ESR1 rs9340799 Is Associated with Endometriosis-Related Infertility and In Vitro Fertilization Failure. Dis. Markers 2013, 35, 907–913. [Google Scholar] [CrossRef]
- Burney, R.O.; Giudice, L.C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Guo, P.; Feng, Y.-Y. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop. J. Pharm. Res. 2017, 16, 1819. [Google Scholar] [CrossRef]
- Mohankumar, K.; Li, X.; Sung, N.; Cho, Y.J.; Han, S.J.; Safe, S. Bis-Indole-Derived Nuclear Receptor 4A1 (NR4A1, Nur77) Ligands as Inhibitors of Endometriosis. Endocrinology 2020, 161, bqaa027. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch. Biochem. Biophys. 2014, 559, 68–74. [Google Scholar] [CrossRef]
- Hu, M.; Yan, H.; Li, H.; Feng, Y.; Sun, W.; Ren, Y.; Ma, L.; Zeng, W.; Huang, F.; Jiang, Z.; et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci. Rep. 2023, 13, 9569. [Google Scholar] [CrossRef]
- Wu, X.; Xu, L.; Li, E.; Dong, G. Application of molecular dynamics simulation in biomedicine. Chem. Biol. Drug Des. 2022, 99, 789–800. [Google Scholar] [CrossRef]
- Kakhar Umar, A.; Zothantluanga, J.H.; Luckanagul, J.A.; Limpikirati, P.; Sriwidodo, S. Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 M(pro) inhibitor. PeerJ 2023, 11, e14915. [Google Scholar] [CrossRef]
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016, 2, e1501240. [Google Scholar] [CrossRef]
- Wade, R.C.; Goodford, P.J. The role of hydrogen-bonds in drug binding. Prog. Clin. Biol. Res. 1989, 289, 433–444. [Google Scholar]
- Bultum, L.E.; Tolossa, G.B.; Kim, G.; Kwon, O.; Lee, D. In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models. Sci. Rep. 2022, 12, 22221. [Google Scholar] [CrossRef]
- Clower, L.; Fleshman, T.; Geldenhuys, W.J.; Santanam, N. Targeting Oxidative Stress Involved in Endometriosis and Its Pain. Biomolecules 2022, 12, 1055. [Google Scholar] [CrossRef]
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell 2009, 139, 267–284. [Google Scholar] [CrossRef]
- Rouwette, T.; Avenali, L.; Sondermann, J.; Narayanan, P.; Gomez-Varela, D.; Schmidt, M. Modulation of nociceptive ion channels and receptors via protein-protein interactions: Implications for pain relief. Channels 2015, 9, 175–185. [Google Scholar] [CrossRef]
- Reubi, F.C.; Weidmann, P. Relationships between sodium clearance, plasma renin activity, plasma aldosterone, renal hemodynamics and blood pressure in essential hypertension. Clin. Exp. Hypertens. 1980, 2, 593–612. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Guo, X.; Chen, Y.; Ding, S.; Zou, G.; Zhu, L.; Li, T.; Zhang, X. GPR30-mediated non-classic estrogen pathway in mast cells participates in endometriosis pain via the production of FGF2. Front. Immunol. 2023, 14, 1106771. [Google Scholar] [CrossRef] [PubMed]
- Shifren, J.L.; Tseng, J.F.; Zaloudek, C.J.; Ryan, I.P.; Meng, Y.G.; Ferrara, N.; Jaffe, R.B.; Taylor, R.N. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: Implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J. Clin. Endocrinol. Metab. 1996, 81, 3112–3118. [Google Scholar] [PubMed]
- Yang, Y.; He, Y.; Wei, X.; Wan, H.; Ding, Z.; Yang, J.; Zhou, H. Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal the Protective Effect of Salvianolic Acid C in a Rat Model of Ischemic Stroke. Front. Pharmacol. 2022, 12, 799448. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Baek, S.-E.; Lee, W.-Y.; Baek, J.Y.; Trinh, T.A.; Park, D.H.; Lee, H.L.; Kang, K.S.; Kim, C.-E.; Yoo, J.-E. Investigating the Systems-Level Effect of Pueraria lobata for Menopause-Related Metabolic Diseases Using an Ovariectomized Rat Model and Network Pharmacological Analysis. Biomolecules 2019, 9, 747. [Google Scholar] [CrossRef]
- Wu, N.; Yuan, T.; Yin, Z.; Yuan, X.; Sun, J.; Wu, Z.; Zhang, Q.; Redshaw, C.; Yang, S.; Dai, X. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis. Drug Des. Dev. Ther. 2022, 16, 435–466. [Google Scholar] [CrossRef]
- Pantiora, P.; Furlan, V.; Matiadis, D.; Mavroidi, B.; Perperopoulou, F.; Papageorgiou, A.C.; Sagnou, M.; Bren, U.; Pelecanou, M.; Labrou, N.E. Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1. Antioxidants 2023, 12, 63. [Google Scholar] [CrossRef]
Phytochemicals | Observation |
---|---|
Alkaloids | + |
Carbohydrates | − |
Flavonoids | + |
Glycosides | + |
Saponins | − |
Steroids | + |
Tannins | + |
Sample | Concentration (mg/mL) | OD1 | OD2 | OD3 |
---|---|---|---|---|
Control | - | - | - | 1.09 ± 0.01 |
Aspirin | 0.1 | 0.095 ± 0.000 | 0.171 ± 0.001 | - |
Methanolic extract of CT flower | 2.0 | 0.082 ± 0.001 | 0.160 ± 0.000 | - |
Group | % Paw Edema Inhibition | |||
---|---|---|---|---|
1st Hour | 2nd Hour | 3rd Hour | 4th Hour | |
Control | No edema inhibition | No edema inhibition | No edema inhibition | No edema inhibition |
Standard | 52.79 | 63.22 | 70.56 | 80.38 |
Test sample (200 mg/kg) | 21.03 | 31.81 | 48.80 | 65.28 |
Test sample (400 mg/kg) | 56.22 | 64.88 | 74.19 | 81.89 |
Sample Code | Dose (mg/kg) | Number of Writhing Actions (Mean ± SEM) | % of Inhibition of Writhing |
---|---|---|---|
Control | 0 | 84.4 ± 3.78 | - |
Standard | 25 | 16.8 ± 2.52 *** | 77.49 |
Test sample | 200 | 20.6 ± 3.70 *** | 75.60 |
400 | 19.6 ± 3.262 *** | 76.78 |
Phytochemicals | PubChem ID | Predicted Oral Bioavailability Score | Method of Identification | References of Identification Method |
---|---|---|---|---|
Flavylium | 145858 | 0.55 | UV, NMR, LC-MS/MS | [52] |
Kaempferol | 5280863 | 0.55 | UV, NMR, LC-MS/MS; LC-MS/Q-TOF | [52,53] |
Quercetin | 5280343 | 0.55 | UV, NMR, LC-MS/MS; LC-MS/Q-TOF | [52,53] |
Quercetion-3-o-β-d glucoside | 5280804 | 0.55 | UV, NMR, LC-MS/MS | [52] |
Palmitic acid | 985 | 0.85 | HPLC-PDA, LC-MS/ESI | [54] |
Stearic acid | 5281 | 0.85 | HPLC-PDA, LC-MS/ESI | [54] |
Petroselinic acid | 5281125 | 0.85 | HPLC-PDA, LC-MS/ESI | [54] |
Arachidic acid | 10467 | 0.85 | HPLC-PDA, LC-MS/ESI | [54] |
Behenic acid | 8215 | 0.85 | HPLC-PDA, LC-MS/ESI | [54] |
Phytanic acid | 26840 | 0.85 | HPLC-PDA, LC-MS/ESI | [54] |
Phytosterols | 12303662 | 0.55 | HPLC-PDA, LC-MS/ESI | [54] |
Campesterol | 173183 | 0.55 | HPLC-PDA, LC-MS/ESI | [54] |
Stigmasterol | 5280794 | 0.55 | HPLC-PDA, LC-MS/ESI | [54] |
Ellagic acid | 5281855 | 0.55 | HPLC-PDA, LC-MS/ESI | [54] |
Caffeoylmalic acid | 6124299 | 0.56 | HPLC-PDA | [55] |
β-Sitosterol | 222284 | 0.55 | HPLC-PDA, LC-MS/ESI | [54] |
Sitostanol | 241572 | 0.55 | HPLC-PDA, LC-MS/ESI | [54] |
Taraxerol | 92097 | 0.55 | HPTLC | [56] |
Target Gene | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|
SRC | 20 | 34.03333 | 1254.197 |
ESR1 | 13 | 31.16667 | 969.0654 |
PIK3R1 | 12 | 28.18333 | 213.9751 |
PTPN11 | 10 | 26.58333 | 95.60952 |
MAPK3 | 9 | 28.61667 | 540.8903 |
MAPK1 | 9 | 28.61667 | 540.8903 |
AKT1 | 9 | 27.95 | 343.9957 |
AKR1C3 | 9 | 22.15 | 179.1667 |
CYP19A1 | 8 | 25.6 | 1085.333 |
EGFR | 7 | 25.05 | 30.84127 |
Ligand | SRC (PDB ID 2H8H) | ESR1 (PDB ID 3ERT) | PIK3R1 (PDB ID 5XGJ) | |||
---|---|---|---|---|---|---|
Binding Energy (kcal/mol) | Residues Involved in H-Bonding | Binding Energy (kcal/mol) | Residues Involved in H-Bonding | Binding Energy (kcal/mol) | Residues Involved in H-Bonding | |
Flavylium | −9.1 | - | −7.2 | - | −7 | THR 679A |
Kaempferol | −8.8 | THR 338A | −8 | - | −8.1 | THR 679A |
Quercetin | −8.8 | THR 338A, ASP 404A | −7.8 | - | −8.2 | THR 679A |
Standard Elagolix | −8.6 | THR 247A, SER 248A, LYS 401A | −5.9 | ILE 326A, LYS 449A | −9.6 | LYS 548A, ASN 344B, ARG 373B |
Interpreted Value for Prediction | Flavylium | Kaempferol | Quercetin | |
---|---|---|---|---|
Absorption | ||||
Caco2 permeability (log Papp in 10−6 cm/s) | >0.90, permeable | 1.631 | 0.032 | −0.229 |
Human intestinal absorption (percentage) | <30%, poor absorption | 96.182 | 74.29 | 77.207 |
Skin Permeability (log Kp) | >−2.5, low skin permeability | −2.128 | −2.735 | −2.735 |
P-glycoprotein substrate | Prediction based on built model | − | + | + |
Distribution | ||||
BBB permeability (logBB) | >0.3, permeable | 0.454 | −0.939 | −1.098 |
VDss (human) Log L/kg | >0.45, high <−0.15, low | 0.24 | 1.274 | 1.559 |
Fraction unbound | Prediction based on built model | 0.147 | 0.178 | 0.206 |
Metabolism | ||||
CYP2D6 substrate | Prediction based on built model | − | − | − |
CYP3A4 substrate | + | − | − | |
CYP1A2 inhibitor | + | + | + | |
CYP2C19 inhibitor | + | − | − | |
CYP2C9 inhibitor | − | − | − | |
CYP2D6 inhibitor | − | − | − | |
CYP3A4 inhibitor | − | − | − | |
Excretion | ||||
Total clearance (log mL/min/kg) | Prediction based on built model | 0.716 | 0.477 | 0.407 |
Renal OCT2 substrate | − | − | − | |
Toxicity | ||||
AMES toxicity | Prediction based on built model | − | − | − |
Max. tolerated dose (MTD) (human) in log mg/kg/day | ≤0.477, low MTD >0.477, high MTD | 0.044 | 0.531 | 0.499 |
hERG I inhibitor | Prediction based on built model | − | − | − |
hERG II inhibitor | − | − | − | |
Oral Rat Acute Toxicity (LD50) in mol/kg | 1.848 | 2.449 | 2.471 | |
Oral Rat Chronic Toxicity (LOAEL) in log mg/kg_bw/day | 1.118 | 2.505 | 2.612 | |
Hepatotoxicity | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, N.; Tabassum, N.; Rashid, P.T.; Deea, B.J.; Richi, F.T.; Chandra, A.; Agarwal, S.; Mollick, S.; Dipto, K.Z.; Mim, S.A.; et al. Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies. Life 2024, 14, 1473. https://doi.org/10.3390/life14111473
Ahmed N, Tabassum N, Rashid PT, Deea BJ, Richi FT, Chandra A, Agarwal S, Mollick S, Dipto KZ, Mim SA, et al. Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies. Life. 2024; 14(11):1473. https://doi.org/10.3390/life14111473
Chicago/Turabian StyleAhmed, Najneen, Nazifa Tabassum, Parisa Tamannur Rashid, Basrat Jahan Deea, Fahmida Tasnim Richi, Anshuman Chandra, Shilpi Agarwal, Saima Mollick, Kaushik Zaman Dipto, Sadia Afrin Mim, and et al. 2024. "Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies" Life 14, no. 11: 1473. https://doi.org/10.3390/life14111473
APA StyleAhmed, N., Tabassum, N., Rashid, P. T., Deea, B. J., Richi, F. T., Chandra, A., Agarwal, S., Mollick, S., Dipto, K. Z., Mim, S. A., & Alam, S. (2024). Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies. Life, 14(11), 1473. https://doi.org/10.3390/life14111473