Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Essential Oils
2.3. Gas Chromatography–Mass Spectrometry (GC/MS) Analysis
2.4. Tested Organisms
2.5. Antibacterial Activity of Essential Oils
2.6. Mixture Design and Statistical Analysis
2.6.1. Chosen Design
2.6.2. Chosen Mathematical Model
- -
- Y represents the response expressed in mm for the diameter of inhibition (DI) and in µg/mL for IC50.
- -
- α1, α2, α3 are the coefficients of the linear terms.
- -
- α12, α23, α13 are the coefficients of the binary interaction terms.
- -
- α123: coefficient of the ternary interaction term.
- -
- ɛ: error term.
2.6.3. Statistical Analysis
3. Result and Discussion
3.1. Essential Oil Yields
3.2. Chemical Composition of Essential Oils
3.3. Simple Antibacterial Activity
3.4. Mixture Design Formulation: Antibacterial Activities
3.4.1. Experimental Design
3.4.2. Statistical Validation of the Postulated Model
3.4.3. Effects of Factors and Models
3.4.4. Optimization of Formulation: Inhibition Zone Response
Mixing Profile
Study of Desirability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Bag, A.; Chattopadhyay, R.R. Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS ONE 2015, 10, e0131321. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crops Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]
- El-Gebaly, A.S.; Sofy, A.R.; Hmed, A.A.; Youssef, A.M. Combination of nanoparticles (NPs) and essential oils (EOs) as promising alternatives to non-effective antibacterial, antifungal and antiviral agents: A review. Biocatal. Agric. Biotechnol. 2024, 57, 103067. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L.; Zou, Y.; Luo, S.; Wang, X.; Liang, Y.; Wei, Q. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiol. 2021, 66, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef]
- Bencheqroun, H.K.; Ghanmi, M.; Satrani, B.; Aafi, A.; Chaouch, A. Antimicrobial activity of the essential oil of an endemic plant in Morocco, Artemisia mesatlantica. Bull. Soc. R. Sci. Liège 2021, 81, 4–21. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Chraibi, M.; Fadil, M.; Farah, A.; Benkhaira, N.; Lebrazi, S.; Fikri-Benbrahim, K. Simplex-centroid design as innovative approach in the optimization of antimicrobial effect of Thymus satureioides, Myrtus communis and Artemisia herba alba essential oils against Escherichia coli, Staphylococcus aureus and Candida tropicalis. Exp. Parasitol. 2023, 247, 108472. [Google Scholar] [CrossRef]
- Jaouani, M.; Maouni, S.; Ettakifi, H.; Mars, N.; Taheri, F.Z.; El Abboudi, J.; Maouni, A. Molecular, biomedical and phytosanitary biodiversity of Lavandula stoechas: A vulnerable and underexploited medicinal plant in Morocco. Sci. Afr. 2024, 25, e02296. [Google Scholar] [CrossRef]
- Chograni, H.; Riahi, L.; Messaoud, C. Variability of qualitative and quantitative secondary metabolites traits among wild genetic resources of Lavandula stoechas L. Biochem. Syst. Ecol. 2021, 98, 104327. [Google Scholar] [CrossRef]
- Carrasco, A.; Ortiz-Ruiz, V.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula stoechas essential oil from Spain: Aromatic profile determined by gas chromatography–mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities. Ind. Crops Prod. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Özcan, M.M.; Starovic, M.; Aleksic, G.; Figueredo, G.; Juhaimi, F.A.; Chalchat, J.C. Chemical composition and antifungal activity of lavender (Lavandula stoechas) oil. Nat. Prod. Commun. 2018, 13, 895–898. [Google Scholar] [CrossRef]
- Giray, E.S.; Kırıcı, S.; Kaya, D.A.; Türk, M.; Sönmez, Ö.; Inan, M. Comparing the Effect of Sub-Critical Water Extraction with Conventional Extraction Methods on the Chemical Composition of Lavandula Stoechas. Talanta 2008, 74, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.A.; Khan, M.A.; Arshad, H.; Aslam, N.; Iqbal, A.A.; Ali, A.; Bukhari, M.H. Pharmacological Evaluation of Lavandula stoechas L. for Ethanol-Induced Gastric Mucosal Ulcer. RADS J. Pharm. Pharm. Sci. 2020, 8, 47–57. [Google Scholar] [CrossRef]
- Karan, T. Metabolic profile and biological activities of Lavandula stoechas L. Cell. Mol. Biol. 2018, 64, 1–7. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Abrini, J.; Talbaoui, A.; Fellah, H.; Bakri, Y.; Dakka, N. Lavandula stoechas essential oil from Morocco as novel source of antileishmanial, Journal Pre-proof 15 antibacterial and antioxidant activities. Biocatal. Agric. Biotechnol. 2017, 12, 179–184. [Google Scholar] [CrossRef]
- Benali, T.; Lemhadri, A.; Harboul, K.; Chtibi, H.; Khabbach, A.; Jadouali, S.M.; Quesada-Romero, L.; Louahlia, S.; Hammani, K.; Ghaleb, A. Chemical Profiling and Biological Properties of Essential Oils of Lavandula stoechas L. Collected from Three Moroccan Sites: In Vitro and In Silico Investigations. Plants 2023, 12, 1413. [Google Scholar] [CrossRef]
- Fennane, M.; Ibn Tattou, M.; Ouyahya, A.; El Oualidi, J. Flore Pratique du Maroc, 2. Trav. Inst. Sci., Sér. Bot 2007, 38, 636. [Google Scholar]
- Bouymajane, A.; Filali, F.R.; Ed-Dra, A.; Aazza, M.; Nalbone, L.; Giarratana, F.; Cacciola, F. Chemical profile, antibacterial, antioxidant, and anisakicidal activities of Thymus zygis subsp. gracilis essential oil and its effect against Listeria monocytogenes. Int. J. Food Microbiol. 2022, 383, 109960. [Google Scholar] [CrossRef]
- Silva, A.M.; Martins-Gomes, C.; Souto, E.B.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M. Thymus zygis subsp. zygis an endemic portuguese plant: Phytochemical profiling, antioxidant, anti-proliferative and anti-inflammatory activities. Antioxidants 2020, 9, 482. [Google Scholar] [CrossRef]
- Drioiche, A.; Radi, F.; Zair, T. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi. Saudi Pharm. J. 2022, 30, 1200–1214. [Google Scholar] [CrossRef]
- Coimbra, A.; Miguel, S.; Ribeiro, M.; Coutinho, P.; Silva, L.; Duarte, A.P.; Ferreira, S. Thymus zygis essential oil: Phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus. Antibiotics 2022, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Moukhles, A.; Ellaghdach, A.; Driss, A.B.; El Amrani, M.A.; Aghmiz, A.; Mansour, A.I. Chemical profile and in vitro antibacterial potential of essential oils and hydrolat extracts from aerial parts of three wild species of Moroccan Thymus. Sci. Afr. 2022, 18, e01434. [Google Scholar] [CrossRef]
- Chiasson, H.; Bostanian, N.J.; Vincent, C. Acaricidal properties of a Chenopodium-based botanical. J. Econ. Entomol. 2004, 97, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Hmiri, S.; Rahouti, M.; Habib, Z.; Satrani, B.; Ghanmi, M.; El Ajjouri, M. Évaluation du potentiel antifongique des huiles essentielles de Mentha pulegium et d’Eucalyptus Camaldulensis dans la lutte biologique contre les champignons responsables de la détérioration des pommes en conservation. Bull. De La Société R. Des Sci. De Liège 2011, 80, 824–836. [Google Scholar]
- Kumar, R.; Mishra, A.; Dubey, N.; Tripathi, Y. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 2007, 115, 159–164. [Google Scholar] [CrossRef]
- Ashraf, A.; Sarfraz, R.A.; Mahmood, A.; ud Din, M. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind. Crops Prod. 2015, 74, 241–248. [Google Scholar] [CrossRef]
- Ez-Zriouli, R.; ElYacoubi, H.; Imtara, H.; Mesfioui, A.; ElHessni, A.; Al Kamaly, O.; Rochdi, A. Chemical composition, antioxidant and antibacterial activities and acute toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis essential oils. Molecules 2023, 28, 2974. [Google Scholar] [CrossRef]
- Mehani, M.; Salhi, N.; Dahou, F.; Kasmi, S.; Mehani, I.; Segni, L.; Akram, M. Antifungal, Antibacterial and Phytotoxic Activity of Essential Oil from Leaves of Eucalyptus camaldulensis. Phytothérapie 2022, 20, 48–62. [Google Scholar] [CrossRef]
- Chahomchuen, T.; Insuan, O.; Insuan, W. Chemical profile of leaf essential oils from four Eucalyptus species from Thailand and their biological activities. Microchem. J. 2020, 158, 105248. [Google Scholar] [CrossRef]
- Dogan, G.; Kara, N.; Bagci, E.; Gur, S. Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis. Z. Für Naturforschung C 2017, 72, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, J.F. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 1928, 17, 346–351. [Google Scholar] [CrossRef]
- Marion, C.; Pelissier, Y.; Sabatier, R.; Andary, C.; Bessiere, J.M. Calculation of Essential Oil Yield without Prior Extraction—Application to the Genus Forsythia Vahl.(Oleaceae). J. Essent. Oil Res. 1994, 6, 379–387. [Google Scholar] [CrossRef]
- Jaber, H.; Oubihi, A.; Ouryemchi, I.; Boulamtat, R.; Oubayoucef, A.; Bourkhiss, B.; Ouhssine, M. Chemical composition and antibacterial activities of eight plant essential oils from Morocco against Escherichia coli strains isolated from different Turkey organs. Biochem. Res. Int. 2021, 2021, 6685800. [Google Scholar] [CrossRef] [PubMed]
- Goupy, J.; Creighton, L. Introduction Aux Plans D’exp’eriences; Dunod: Paris, France, 2006; Volume 2. [Google Scholar]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Analyse de Régression Appliquée; John Wiley et fils: Hoboken, NJ, USA, 1998; p. 326. [Google Scholar]
- Ebadollahi, A.; Setzer, W.N. Analysis of the Essential Oils of Eucalyptus camaldulensis Dehnh. and E. viminalisLabill. as a Contribution to Fortify Their Insecticidal Application. Nat. Prod. Commun. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Mubarak, E.E.; Ali, L.Z.; Ahmed, I.F.A.; Ahmed, A.B.A.; Taha, R.M. Essential oil compositions and cytotoxicity from various organs of Eucalyptus camaldulensis. Int. J. Agric. Biol. 2015, 17, 320–326. [Google Scholar]
- Yiğit Hanoğlu, D.; Hanoğlu, A.; Adediran, S.B.; Baser, K.H.C.; Özkum Yavuz, D. The essential oil compositions of two Eucalyptus sp.(E. camaldulensis D ehnh. and E. torquata L. uehm.) naturalized to Cyprus. J. Essent. Oil Res. 2023, 35, 136–142. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Al-Mijalli, S.H.; Mrabti, H.N.; Abdnim, R.; Abdallah, E.M.; Fikri-Benbrahim, K. Phytochemical analysis and evaluation of antimicrobial, antioxidant, and antidiabetic activities of essential oils from Moroccan medicinal plants: Mentha suaveolens, Lavandula stoechas, and Ammi visnaga. Biomed. Pharmacother. 2023, 164, 114937. [Google Scholar] [CrossRef] [PubMed]
- Souihi, M.; Bousnina, A.; Touati, B.; Hassen, I.; Rouissi, M.; Brahim, N.B. Caractérisation morphologique et chimique de deux espèces de Lavande: Lavandula stoechas L. et L. dentata L. en Tunisie. Annales de l’INRAT 2017, 389, 1–14. [Google Scholar]
- Sadani, S.; Shakeri, A. Antimicrobial activity of the essential oils of Lavandula stoechas flowers extracted by microwave. J. Med. Plants Stud. 2016, 4, 224–228. [Google Scholar]
- Zayyad, N.; Farah, A.; Bahhou, J. Chemical analysis and antibacterial activity of essential oils from three species of Thymus: Thymus zygis, T. algeriensis, and T. bleicherianus. Bull. De La Société R. Des Sci. De Liège 2014, 83, 118–132. [Google Scholar]
- Rodrigues, V.; Cabral, C.; Evora, L.; Ferreira, I.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Chemical composition, anti-inflammatory activity and cytotoxicity of Thymus zygis L. subsp. sylvestris (Hoffmanns. & Link) Cout. essential oil and its main compounds. Arab. J. Chem. 2019, 12, 3236–3243. [Google Scholar] [CrossRef]
- Noureddine, A.; Gherib, A.; Bakchiche, B.; Carbonell-Barrachina, Á.A.; Cano-Lamadrid, M. Noguera-Artiaga, Chemical composition, mineral content and antioxidant capacity of phenolic extracts and essential oils of Lavandula stoechas L. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food 2019, 20, 423–437. [Google Scholar]
- Ramzi, A.; Farah, A.; Ez Zoubi, Y.; Annemer, S.; El Ouali Lalami, A. Aroma profile and fumigant toxicity of two Moroccan Lavandula species essential oils against Culex pipiens (Diptera: Culicidae). Int. J. Trop. Insect Sci. 2022, 42, 2663–2672. [Google Scholar] [CrossRef]
- Gourich, A.A.; Bencheikh, N.; Bouhrim, M.; Regragui, M.; Rhafouri, R.; Drioiche, A.; Zair, T. Comparative analysis of the chemical composition and antimicrobial activity of four moroccan north middle atlas medicinal plants’ essential oils: Rosmarinus officinalis L., Mentha pulegium L., Salvia officinalis L., and Thymus zygis subsp. gracilis (Boiss.) R. Morales. Chemistry 2022, 4, 1775–1788. [Google Scholar] [CrossRef]
- Marinković, J.; Ćulafić, D.M.; Nikolić, B.; Đukanović, S.; Marković, T.; Tasić, G.; Marković, D. Antimicrobial potential of irrigants based on essential oils of Cymbopogon martinii and Thymus zygis towards in vitro multispecies biofilm cultured in ex vivo root canals. Arch. Oral Biol. 2020, 117, 104842. [Google Scholar] [CrossRef]
- Teixeira, M.A.; Rodrigues, A.E. Coupled extraction and dynamic headspace techniques for the characterization of essential oil and aroma fingerprint of Thymus species. Ind. Eng. Chem. Res. 2014, 53, 9875–9882. [Google Scholar] [CrossRef]
- Nebié, B.; Dabiré, C.M.; Bonzi, S.; Bationo, R.K.; Sosso, S.; Nebié, R.C.; Duez, P. Chemical composition and antifungal activity of the essential oil obtained by co-distillation of Cymbopogon citratus and Eucalyptus camaldulensis from Burkina Faso. J. Pharmacogn. Phytochem. 2023, 12, 43–48. [Google Scholar]
- Abbas, A.; Anwar, F.; Alqahtani, S.M.; Ahmad, N.; Al-Mijalli, S.H.; Shahid, M.; Iqbal, M. Hydro-distilled and supercritical fluid extraction of Eucalyptus camaldulensis essential oil: Characterization of bioactives along with antioxidant, antimicrobial and antibiofilm activities. Dose-Response 2022, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hamzavi, F.; Moharramipour, S. Chemical composition and antifeedant activity of essential oils from Eucalyptus camaldulensis and Callistemon viminalis on Tribolium confusum. Int. J. Agric. Technol. 2017, 13, 413–424. [Google Scholar]
- Aabouch, F.; Satrani, B.; Ameggouz, M.; Ettaleb, I.; Assouguem, A.; Kara, M.; Ullah, R.; Bari, A.; Kaur, S.; Ghanmi, M.; et al. Wild Thymus zygis L. ssp. gracilis and Eucalyptus camaldulensis Dehnh.: Chemical composition, antioxidant and antibacterial activities of essential oils. Open Chem. 2024, 22, 20240050. [Google Scholar] [CrossRef]
- Yakoubi, R.; Megateli, S.; Sadok, T.H.; Bensouici, C.; Bağci, E. A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. Biocatal. Agric. Biotechnol. 2021, 31, 101891. [Google Scholar] [CrossRef]
- Ghanimi, R.; Ouhammou, A.; El Atki, Y.; Cherkaoui, M. Antioxidant and antibacterial activities of essential oils from three Moroccan species (Lavandula mairei Humbert, Lavandula dentata L. and, Lavandula stoechas L.). Lazaroa 2021, 33, 64–71. [Google Scholar] [CrossRef]
- Ez Zoubi, Y.; El Ouali Lalami, A.; Bousta, D.; Polissiou, M.; Daferera, D.; Lachkar, M.; El Khanchoufi, A.; Farah, A. Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oil and its Fractions of Lavandula stoechas L. From Morocco. Int. J. Curr. Pharm. Rev. Res. 2017, 8, 60–67. [Google Scholar]
- Vukić, M.D.; Čmiková, N.; Hsouna, A.B.; Saad, R.B.; Garzoli, S.; Schwarzová, M.; Kačániová, M. Thymus zygis, Valuable Antimicrobial (In Vitro and In Situ) and Antibiofilm Agent with Potential Antiproliferative Effects. Plants 2023, 12, 3920. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.T.; Ayub, M.A.; Shahid, M.; Raza, M.H.; Hussain, A.; Javed, T. Comparison of Essential Oil Yield, Chemical Composition and Biological Activities of Eucalyptus camaldulensis Leaf: Conventional Distillation versus Emerging Superheated Steam Distillation. Iran. J. Pharm. Sci. 2023, 19, 139–155. [Google Scholar] [CrossRef]
- Chraibi, M.; Fadil, M.; Farah, A.; Lebrazi, S.; Fikri-Benbrahim, K. Antimicrobial combined action of Mentha pulegium, Ormenis mixta and Mentha piperita essential oils against S. aureus, E. coli and C. tropicalis: Application of mixture design methodology. Food Sci. Technol. 2021, 145, 111352. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Djebali, K.; Abid, S.; Saada, M.; Ksouri, R. Application of the mixture design for optimum antimicrobial activity: Combined treatment of Syzygium aromaticum, Cinnamomum zeylanicum, Myrtus communis, and Lavandula stoechas essential oils against Escherichia coli. J. Food Process. Preserv. 2019, 43, e14257. [Google Scholar] [CrossRef]
- Kachkoul, R.; Benjelloun Touimi, G.; Bennani, B.; El Habbani, R.; El Mouhri, G.; Mohim, M.; Lahrichi, A. The synergistic effect of three essential oils against bacteria responsible for the development of Lithiasis infection: An optimization by the mixture design. Evid. -Based Complement. Altern. Med. 2021, 1, 1305264. [Google Scholar] [CrossRef] [PubMed]
- Souiy, Z.; Elaissi, A.; Jlassi, I.; Sghair, W.; Allouch, N.; Mastouri, M.; Krifia, B. Application of simplex-centroid design methodologies to optimize the anti-bacterial and anti-candidal activity of the mixture of Menthapulegium, Pituranthos Chloranthus and Thymus Algeriensis essential oils. Med. Aromat. Plants 2021, 10, 365. [Google Scholar]
- Benkhaira, N.; Zouine, N.; Fadil, M.; Koraichi, S.I.; El Hachlafi, N.; Jeddi, M.; Fikri-Benbrahim, K. Application of mixture design for the optimum antibacterial action of chemically-analyzed essential oils and investigation of the antiadhesion ability of their optimal mixtures on 3D printing material. Bioprinting 2023, 34, e00299. [Google Scholar] [CrossRef]
- Jeddi, M.; El Hachlafi, N.; Fadil, M.; Benkhaira, N.; Jeddi, S.; Benziane Ouaritini, Z.; Fikri-Benbrahim, K. Combination of Chemically-Characterized Essential Oils from Eucalyptus polybractea, Ormenis mixta, and Lavandula burnatii: Optimization of a New Complete Antibacterial Formulation Using Simplex-Centroid Mixture Design. Adv. Pharmacol. Pharm. Sci. 2023, 2023, 5593350. [Google Scholar] [CrossRef] [PubMed]
- Tserennadmid, R.; Takó, M.; Galgóczy, L.; Papp, T.; Pesti, M.; Vágvölgyi, C.; Krisch, J. Anti yeast activities of some essential oils in growth medium, fruit juices and milk. Int. J. Food Microbiol. 2011, 144, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Vuuren, S.V.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1, 8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E. Antifungal activity of Tymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef]
- Karaca, N.; Demirci, B.; Demirci, F. Evaluation of Lavandula stoechas L. subsp. stoechas L., Mentha spicata L. subsp. spicata L. essential oils and their main components against sinusitis pathogens. Zeitschrift für Naturforschung C 2018, 73, 353–360. [Google Scholar]
- Li, L.; Li, Z.W.; Yin, Z.Q.; Wei, Q.; Jia, R.Y.; Zhou, L.J.; Yu, W. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar]
- Farhanghi, A.; Aliakbarlu, J.; Tajik, H.; Mortazavi, N.; Manafi, L.; Jalilzadeh-Amin, G. Antibacterial interactions of pulegone and 1,8-cineole with monolaurin ornisin against Staphylococcus aureus. Food Sci. Nutr. 2022, 10, 2659–2666. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- Kifer, D.; Mužinić, V.; Klarić, M.Š. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1, 8-cineole against Staphylococcus aureus planktonic and biofilm growth. J. Antibiot. 2016, 69, 689–696. [Google Scholar]
- Duda-Madej, A.; Viscardi, S.; Grabarczyk, M.; Topola, E.; Kozłowska, J.; Mączka, W.; Wińska, K. Is Camphor the Future in Supporting Therapy for Skin Infections? Pharmaceuticals 2024, 17, 715. [Google Scholar] [CrossRef]
Experiment Number | L. stoechas | E. camaldulensis | T. zygis |
---|---|---|---|
1 | 1 | 0 | 0 |
2 | 0 | 1 | 0 |
3 | 0 | 0 | 1 |
4 | 0.5 | 0.5 | 0 |
5 | 0.5 | 0 | 0.5 |
6 | 0 | 0.5 | 0.5 |
7 | 1/3 | 1/3 | 1/3 |
8 | 1/3 | 1/3 | 1/3 |
9 | 1/3 | 1/3 | 1/3 |
10 | 2/3 | 1/6 | 1/6 |
11 | 1/6 | 2/3 | 1/6 |
12 | 1/6 | 1/6 | 2/3 |
No | Compounds | RI | Ls | Tz | Ec | Ls/Tz (0.5:0.5) | Ls/Ec (0.5:0.5) | Tz/Ec (0.5:0.5) | Ls/Ec/Tz (1/3:1/3:1/3) | Ls/Ec/Tz (2/3:1/6:1/6) | Ls/Ec/Tz (1/6:2/3:1/6) | Ls/Ec/Tz (1/6:1/6:2/3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Heptanal | 901 | - | 0.14 | - | - | 0.07 | - | - | - | - | - |
2 | Santalina triene | 906 | 0.34 | - | - | - | 0.11 | - | - | 0.17 | 0.05 | 0.19 |
3 | Tricyclene | 921 | 1.45 | - | 0.17 | - | 0.18 | - | - | - | - | |
4 | α-Thujane | 924 | 4.33 | 0.05 | 3.49 | 2.31 | 4.45 | 2.59 | 3.35 | 3.79 | 2.73 | 2.45 |
5 | α-Pinene | 932 | 4.24 | 3.98 | 0.32 | 3.39 | 2.14 | 2.3 | 3.15 | 3.58 | 1.2 | 3.6 |
6 | Norbornen-2-ol | 941 | - | 0.11 | - | - | - | - | - | - | - | - |
7 | Fenchene | 946 | 0.21 | - | - | - | 0.09 | - | 0.1 | 0.14 | - | - |
8 | Verbinene | 961 | 0.12 | 1.65 | - | 0.86 | 0.09 | 1.51 | 1.27 | 0.81 | 1.21 | 1.23 |
9 | Sabinene | 969 | 0.28 | 0.13 | 0.25 | - | 1.02 | - | - | - | - | - |
10 | β-Pinene | 974 | 0.19 | 0.24 | 0.35 | 0.19 | 0.28 | 0.29 | 0.31 | 0.24 | 0.26 | 0.25 |
11 | cis Pinane | 982 | 0.14 | - | - | 0.17 | - | - | 0.12 | 0.12 | - | 0.14 |
12 | Myrcene | 988 | - | 0.07 | - | 0.09 | - | - | - | - | - | - |
13 | oxide linalool | 991 | 0.07 | - | - | - | - | - | - | - | - | - |
14 | 2-Octanol | 994 | - | - | 0.1 | - | 0.23 | 0.27 | 0.22 | 0.18 | 0.3 | - |
15 | δ-2-Carene | 1001 | 2.28 | 0.37 | 0.1 | 0.93 | 1.26 | 0.32 | 0.79 | 1.49 | 0.33 | 0.39 |
16 | δ-3-Carene | 1008 | - | 15.7 | 0.06 | 8.87 | - | 11.31 | 8.74 | 5.06 | 6.22 | 12.27 |
17 | α-Terpinene | 1014 | 1.05 | 0.42 | - | - | 0.08 | - | - | - | - | - |
18 | ρ-Cymene | 1020 | 1.26 | 2.44 | 4.93 | 0.79 | 4.74 | - | - | 1.46 | - | - |
19 | Limonene | 1024 | 0.89 | - | - | 1.2 | - | - | - | - | - | - |
20 | 1,8-cineol | 1026 | - | - | 43.61 | - | 24.53 | 21.93 | 14.32 | 8.39 | 28.77 | 9.76 |
21 | E,β-Ocymene | 1044 | 0.19 | 1.85 | - | 2.65 | 0.05 | - | - | - | - | - |
22 | γ-Terpinene | 1054 | - | 0.72 | 11.71 | 0.59 | 2.91 | 5.84 | 4.08 | 2.32 | 4.98 | 4.66 |
23 | cis hydrate Sabinene | 1065 | 0.4 | - | 0.13 | - | 0.18 | - | - | 0.19 | 0.1 | 0.05 |
24 | trans Oxide linalool | 1067 | - | 0.6 | - | 7.67 | - | - | - | - | - | - |
25 | Camphelilone | 1078 | - | 1.38 | 0.85 | 1.77 | - | 0.53 | 0.54 | - | - | - |
26 | Fenchone | 1084 | 16.57 | - | - | - | 8.16 | - | 5.52 | 9.78 | 3.09 | 3.02 |
27 | Terpinolene | 1086 | - | 0.48 | 2.3 | - | - | 1.59 | 1.28 | 1.66 | 1.57 | 1.39 |
28 | Linalool | 1095 | 2.86 | 0.16 | - | 0.29 | 0.1 | 1.6 | - | - | - | |
29 | Trans-Hydrate Sabinene | 1098 | - | - | 0.27 | - | - | - | - | - | - | - |
30 | α-Fenchocamphorone | 1104 | 0.28 | - | - | - | 0.34 | - | 0.22 | 0.38 | 0.23 | 0.14 |
31 | 6-Camphenol | 1111 | - | 0.23 | - | - | - | 0.23 | - | - | - | 0.26 |
32 | endo-Fenchol | 1114 | 1.34 | - | - | 0.36 | 0.42 | - | 0.33 | 0.4 | 0.34 | - |
33 | trans Hydrate Pinene | 1119 | - | - | 0.04 | - | - | - | - | - | - | - |
34 | dehydro Linalool | 1131 | - | 4.99 | - | - | - | - | - | - | - | - |
35 | trans-β-dihydro Terpineol | 1134 | - | - | 0.39 | - | - | - | - | - | - | - |
36 | cis hydrate Pinene | 1139 | - | - | 1.42 | - | 0.57 | - | - | - | - | - |
37 | Camphor | 1141 | 36.15 | - | - | 23.77 | 23.6 | - | 15.82 | 28.94 | 9.91 | 10.03 |
38 | β-Oxide-Pinene | 1154 | 3.21 | - | - | 0.4 | 1.81 | - | 0.3 | 0.15 | - | - |
39 | δ-Terpineol | 1162 | - | 27.64 | 1.16 | 16.8 | 2.39 | 16.15 | 11.29 | 7.12 | 7.05 | 19.48 |
40 | Thujanol | 1164 | - | 1.12 | - | - | - | - | - | - | - | - |
41 | cis Oxyde Linalool | 1170 | 2.05 | 0.93 | - | 1.68 | - | - | 0.86 | - | 3.02 | 0.86 |
42 | Terpinene-4-ol | 1174 | 1.36 | - | 3.91 | 1.06 | 2.55 | 2.45 | 2.12 | 1.75 | 3.32 | 1.88 |
43 | iso-Verbanol | 1176 | - | 0.31 | - | - | - | - | - | 0.8 | - | - |
44 | ρ-Cymen-8-ol | 1179 | 0.38 | - | - | 0.3 | - | - | 1.13 | 0.6 | - | - |
45 | neo-Verbanol | 1182 | - | 0.84 | - | 0.41 | - | - | - | - | - | - |
46 | α-Terpineol | 1186 | - | - | 10.58 | - | 2.82 | 5.47 | 1.98 | 1.18 | 4.63 | 1.78 |
47 | ϒ-Terpineol | 1199 | 0.6 | - | 0.22 | - | 0.39 | - | - | 0.38 | 0.52 | 0.39 |
48 | Verbenone | 1204 | 1.23 | 0.05 | 0.35 | 0.55 | - | 0.39 | 0.7 | 0.24 | 0.11 | |
49 | trans piperitol | 1207 | - | - | 0.11 | - | - | 0.06 | - | - | - | - |
50 | acetate Octenol | 1208 | 0.34 | - | - | - | 0.13 | - | - | - | - | - |
51 | acetate Octanol | 1211 | - | - | - | - | - | - | 0.15 | 0.22 | 0.06 | 0.22 |
52 | Formate Linalool | 1214 | 0.12 | - | - | - | 0.05 | - | - | 0.1 | - | - |
53 | trans Carveol | 1215 | - | 2.14 | - | 1 | - | 1.11 | 0.79 | 0.44 | 0.44 | - |
54 | acetate Endo-Fenchyl | 1218 | 0.11 | - | - | - | - | - | - | - | - | - |
55 | cis acetate hydrate Sabinene | 1219 | - | - | 0.37 | - | - | - | - | - | - | - |
56 | cis-Carveol | 1226 | - | 1.77 | - | 0.6 | - | 1.19 | 0.76 | 0.36 | - | 0.95 |
57 | Tetra hydro-acetate Linalool | 1231 | 0.22 | - | - | 0.25 | - | - | - | - | - | - |
58 | Pulegone | 1233 | - | - | 1.02 | - | 0.57 | - | - | 0.16 | 0.98 | - |
59 | Carvone | 1239 | 0.14 | - | 0.23 | - | 0.07 | 0.15 | 0.02 | 0.07 | 0.12 | - |
60 | trans acetate hydrate Sabinene | 1253 | - | - | 0.13 | - | 0.05 | - | 0.02 | - | 0.06 | - |
61 | Carvenone | 1255 | 0.05 | - | - | - | - | - | - | - | - | - |
62 | cis oxide Carvone | 1259 | 0.07 | - | - | - | 0.08 | - | - | - | - | - |
63 | iso-3-acetate Thujanol | 1267 | 0.12 | - | 0.33 | 0.07 | 0.44 | 0.42 | 0.32 | 0.14 | 0.62 | 0.16 |
64 | trans-Oxide Carvone | 1273 | 0.35 | 4.13 | 0.6 | 3.95 | - | 4 | 2.64 | 1.67 | 1.75 | 4.56 |
65 | neoiso-3-acetate Thujanol | 1281 | - | - | 0.2 | - | 0.23 | - | - | - | 0.35 | - |
67 | trans-acetate Oxide Linalool | 1287 | 0.05 | - | - | - | - | - | - | - | - | - |
68 | Thymol | 1289 | - | 14.17 | - | 5.91 | - | 6.81 | 4.43 | 2.28 | 2.8 | 7.84 |
69 | ρ-Cymen-7-ol | 1290 | - | - | 1.35 | - | 0.27 | - | - | - | - | - |
70 | trans acetate Verbenyl | 1291 | - | 0.06 | - | - | - | - | - | - | - | - |
71 | acetate dehydro Carveol | 1306 | 0.3 | - | - | 0.12 | 0.14 | - | 0.15 | 0.18 | - | - |
72 | Iso acetate Verbanol | 1308 | 0.26 | 0.31 | - | 0.18 | 0.08 | 0.16 | 0.14 | 0.1 | 0.05 | 0.21 |
73 | δ-Acetate Terpinyl | 1316 | - | - | 0.08 | - | - | - | - | - | - | - |
74 | neo-iso acetate Verbanol | 1328 | 0.02 | 0.02 | - | - | - | - | - | - | 0.16 | - |
75 | δ-Elemene | 1335 | - | - | 0.95 | - | 1.06 | 1.03 | 0.7 | 0.38 | 1.63 | 0.36 |
76 | acetate Verbanol | 1340 | 0.02 | 0.03 | - | 0.06 | - | - | - | - | - | - |
77 | α-acetate Terpinyl | 1346 | - | - | 0.51 | - | - | 0.03 | 0.03 | 0.07 | - | 0.04 |
78 | cis-acetate Carvyl | 1365 | - | - | 0.04 | - | - | 0.03 | 0.04 | - | - | |
79 | α-Copaene | 1374 | - | 0.08 | - | - | - | - | 0.04 | - | - | 0.04 |
80 | β-Elemen | 1389 | 0.15 | - | - | 0.05 | 0.05 | - | 0.05 | 0.07 | - | - |
81 | β-Longipinene | 1400 | - | 0.07 | - | - | - | - | 0.04 | - | - | - |
82 | Longifolene | 1407 | - | - | 0.05 | - | - | 0.05 | - | - | - | - |
83 | E-Caryophyllene | 1417 | - | 2.75 | 0.35 | 1.42 | - | 1.55 | 1.07 | 0.51 | 0.59 | 1.88 |
84 | Carvone hydrate | 1422 | - | - | 0.26 | - | - | - | - | - | - | - |
85 | 4,8-β-epoxy-Caryophyllane | 1423 | 0.1 | - | - | - | - | - | - | - | - | - |
86 | γ-Elemene | 1434 | - | 0.07 | - | - | - | - | - | - | - | - |
87 | Aromadendrene | 1439 | - | - | 0.24 | - | 0.06 | 0.05 | 0.07 | - | 0.09 | - |
88 | α-Humulene | 1452 | - | 0.12 | 0.23 | 0.05 | - | 0.1 | 0.07 | - | - | 0.08 |
89 | Sesquisabinene | 1457 | - | 0.17 | - | 0.14 | - | 0.12 | 0.13 | 0.12 | - | 0.13 |
90 | 9-epi-E-Caryophyllene | 1464 | 0.13 | - | 0.09 | - | 0.1 | - | - | - | 0.11 | - |
91 | 10-epi-β-Acoradiene | 1474 | 0.05 | - | - | - | - | - | - | - | - | - |
92 | β-Thujaplicin | 1475 | - | 0.16 | - | - | - | - | - | - | - | 0.09 |
93 | γ-Muurolene | 1478 | - | - | 0.25 | - | - | - | 0.1 | - | 0.09 | - |
94 | Germacrene D | 1484 | 0.4 | - | - | 0.1 | 0.12 | - | 0.16 | 0.17 | 0.16 | 0.07 |
95 | β-Selinene | 1489 | - | 0.39 | - | 0.11 | - | 0.09 | 0.13 | - | - | 0.1 |
96 | δ-Selinene | 1492 | 0.23 | - | 0.2 | - | - | - | - | 0.11 | 0.11 | - |
97 | α-Selinene | 1498 | 0.07 | - | - | - | - | - | - | - | - | - |
98 | α-Muurolene | 1500 | - | - | 0.38 | - | - | - | - | - | - | - |
99 | β-Bisaboline | 1505 | - | 0.13 | - | - | - | 0.04 | 0.04 | - | - | 0.05 |
100 | γ-Cadinene | 1513 | - | 0.27 | 0.07 | - | - | 0.09 | - | - | - | 0.19 |
101 | 7-epi-α-Selinene | 1520 | 0.68 | - | - | 0.41 | 0.25 | - | 0.25 | 0.45 | 0.13 | - |
102 | δ-Cadinene | 1522 | - | - | 0.09 | - | - | - | - | - | - | - |
103 | α-Cadinene | 1537 | 0.39 | 0.03 | - | - | 0.15 | 0.15 | - | 0.2 | 0.07 | 0.05 |
104 | α-Calacorene | 1544 | 1.18 | - | - | 0.51 | 0.52 | - | 0.35 | 0.78 | 0.2 | 0.16 |
105 | Elemol | 1548 | - | 0.03 | 2.11 | - | 0.41 | 0.38 | 0.23 | 0.68 | 0.11 | |
106 | β-Calacorene | 1564 | 0.42 | - | 0.22 | 0.08 | 0.2 | - | 0.1 | 0.14 | 0.17 | 0.05 |
107 | Davanone B | 1564 | - | - | - | - | - | 0.07 | - | - | - | - |
108 | Caryophyllenyl Alcohol | 1570 | - | 0.21 | - | 0.2 | - | - | - | - | - | - |
109 | Germacrene D-4-ol | 1574 | - | - | 0.07 | - | 0.05 | - | - | - | - | - |
110 | trans hydrate sesquisabinene | 1577 | 0.05 | 0.22 | - | - | - | - | 1.14 | 0.57 | - | 0.79 |
111 | Oxide Caryophellene | 1582 | - | 2.24 | 0.3 | 1.51 | 1.4 | 1.77 | 1.35 | 0.74 | 2.43 | 2.04 |
112 | Davanone | 1587 | - | - | 1.1 | - | 0.57 | 1.87 | - | - | 1.34 | - |
113 | cis-β-Elemenone | 1589 | - | 0.12 | - | - | - | - | - | - | - | - |
114 | Viridiflorol | 1592 | 0.22 | - | - | - | - | - | - | - | - | - |
115 | Widdrol | 1599 | - | - | 0.23 | - | 0.18 | 0.26 | 0.15 | - | 0.23 | 0.13 |
116 | trans-β-Elemenone | 1601 | - | 0.09 | - | - | - | - | - | - | - | - |
117 | trans Isolongifolanone | 1612 | - | - | 0.08 | - | - | 0.1 | - | - | - | - |
118 | Z-8-hydroxy Linalool | 1619 | 8.28 | - | - | 3.83 | 4.02 | - | 2.76 | 5.1 | 1.86 | 1.38 |
119 | trans Isolongifolanone | 1625 | - | - | 0.28 | - | 0.17 | - | 0.04 | - | 0.1 | 0.02 |
120 | E-Sesquilavandulol | 1631 | 0.21 | - | - | 0.15 | - | - | - | 0.23 | - | - |
121 | α-Acorenol | 1632 | - | - | 0.15 | - | - | - | - | - | - | - |
122 | cis-Cadin-4-en-7-ol | 1635 | - | 0.69 | - | 0.62 | - | 0.68 | 0.53 | 0.61 | 0.52 | 0.55 |
123 | epi-α-Cadinol | 1638 | 0.59 | - | - | - | 0.46 | - | - | - | - | - |
124 | epi-α-Muurolol | 1644 | - | - | 0.18 | - | - | - | - | - | - | - |
125 | β-Eudesmol | 1649 | - | 0.35 | - | - | - | - | - | 0.73 | - | 0.13 |
126 | α-Eudesmol | 1652 | - | 0.28 | - | - | - | 0.28 | - | - | - | - |
127 | 1,2-dihydro-8-hydroxy-2E-Linalool | 1654 | 0.63 | - | - | 0.33 | 0.53 | - | 0.55 | - | - | - |
128 | dehydro-Eudesmol | 1661 | - | - | 0.54 | - | - | 0.26 | - | - | 0.57 | - |
129 | 14-hydroxy-Z-Caryophyllene | 1666 | - | 0.39 | - | 0.36 | - | 0.29 | 0.31 | - | 0.28 | 0.31 |
130 | epi-β-Bisabolol | 1670 | 0.39 | - | - | - | 0.07 | - | - | 0.4 | - | - |
131 | acetate Davanol | 1689 | - | 0.09 | - | - | - | - | - | - | - | - |
132 | acetate caryophyllene | 1701 | 0.7 | - | - | 0.32 | 0.34 | - | 0.23 | 0.44 | 0.14 | 0.15 |
133 | 2E,6Z-Farnesol | 1714 | 0.23 | - | 0.1 | - | 0.8 | 0.06 | 0.05 | 0.1 | - | - |
134 | 2E,6Z Farnesol | 1715 | - | - | - | - | - | - | - | - | - | |
135 | Z-acetate Sesquilavandyl | 1732 | 0.06 | - | - | - | 0.06 | - | - | - | - | - |
136 | 2E,6E-Farnesol | 1742 | 0.02 | - | - | - | - | - | 0.05 | - | - | - |
137 | β-Acoradienol | 1762 | 0.08 | - | - | - | - | - | 0.03 | 0.05 | - | - |
138 | γ-acetate Eudesmol | 1783 | 0.04 | - | - | - | - | - | - | - | - | - |
Total | 99.49 | 99.63 | 99.68 | 99.4 | 99.51 | 96.31 | 100.04 | 99.36 | 98.96 | 94.34 | ||
Monoterpenes | 84.19 | 94.1 | 90.61 | 89.15 | 87.94 | 86.96 | 89.25 | 87.5 | 87.46 | 88.27 | ||
Sesquiterpenes | 15.3 | 5.53 | 9.07 | 10.25 | 11.57 | 9.35 | 10.79 | 11.86 | 11.5 | 6.07 | ||
Hydrocarbons | 23.68 | 36.59 | 29.29 | 27.67 | 24.08 | 31.26 | 29.84 | 25.75 | 24.91 | 30.24 | ||
Ketones | 54.84 | 5.77 | 4.42 | 29.84 | 34.11 | 6.72 | 25.19 | 41.7 | 17.76 | 17.88 | ||
Aldehydes | - | 0.14 | - | - | 0.07 | - | - | - | - | - | ||
Esters | 0.17 | 0.06 | 0.63 | - | 0.06 | 0.06 | 0.07 | 0.07 | - | 0.04 | ||
Ethers | - | - | 43.61 | - | 24.53 | 21.93 | 14.32 | 8.39 | 28.77 | 9.76 | ||
Alcohols | 20.8 | 37.45 | 21.62 | 33.97 | 16.66 | 26.94 | 24.64 | 19.57 | 24.28 | 27.28 | ||
Phenols | - | 19.73 | 0.11 | 7.92 | - | 9.4 | 5.98 | 3.88 | 3.24 | 9.14 |
Microorganisms | DI (mm) | |||
---|---|---|---|---|
Plants | Escherichia coli (ATCC 8739) | Bacillus subtilis (ATCC 6633) | Staphylococcus aureus (ATCC 6538) | |
T. zygis (5 µL/disk) | 16.11 ± 0.96 | 17.11 ± 0.30 | 18.33 ± 0.89 | |
E. camaldulensis (5 µL/disk) | 19.11 ± 0.30 | 22.56 ± 0.59 | 25.00 ± 0.22 | |
L. stoechas (5 µL/disk) | 15.78 ± 0.59 | 20.33 ± 0.44 | 20.78 ± 0.74 | |
Tetracycline | 24 ± 0.33 | 21.67 ± 0.44 | 25.5 ± 0.33 |
Experiment Number | L. stoechas | E. camaldulensis | T. zygis | DI S. aureus (mm) | DI E. coli (mm) | DI B. subtilis (mm) |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 11.00 ± 0.74 | 10.44 ± 0.37 | 11.45 ± 0.59 |
2 | 0 | 1 | 0 | 10.39 ± 0.67 | 9.00 ± 0.74 | 9.22 ± 0.59 |
3 | 0 | 0 | 1 | 12.11 ± 0.19 | 11.22 ± 0.44 | 11.75 ± 0.81 |
4 | 0.5 | 0.5 | 0 | 11.64 ± 0.44 | 9.33 ± 0.22 | 11.67 ± 0.81 |
5 | 0.5 | 0 | 0.5 | 11.62 ± 0.37 | 11.33 ± 0.44 | 11.56 ± 0.44 |
6 | 0 | 0.5 | 0.5 | 13.30 ± 0.89 | 11.23 ± 0.59 | 11.89 ± 0.96 |
7 | 1/3 | 1/3 | 1/3 | 11.44 ± 0.59 | 10.67 ± 0.89 | 10.50 ± 0.44 |
8 | 1/3 | 1/3 | 1/3 | 11.33 ± 0.22 | 10.46 ± 0.52 | 10.30 ± 0.59 |
9 | 1/3 | 1/3 | 1/3 | 11.42 ± 0.15 | 10.56 ± 0.15 | 10.12 ± 0.30 |
10 | 2/3 | 1/6 | 1/6 | 10.89 ± 0.81 | 10.18 ± 0.37 | 11.34 ± 0.15 |
11 | 1/6 | 2/3 | 1/6 | 11.46 ± 0.22 | 9.98 ± 0.30 | 10.46 ± 0.96 |
12 | 1/6 | 1/6 | 2/3 | 11.97 ± 0.81 | 11.40 ± 0.44 | 11.95 ± 0.52 |
Source | Degrees of Freedom | Sum of Squares | Squares Medium | F Report | p-Value | |
---|---|---|---|---|---|---|
DI S. aureus | Regression | 6 | 5.64 | 0.9394 | 47.86 | 0.0003 |
Residual | 5 | 0.0981 | 0.0196 | |||
Total | 11 | 5.73 | ||||
Lack of fit | 3 | 0.0913 | 0.0304 | 8.86 | 0.1031 | |
Pure error | 2 | 0.0069 | 0.0034 | |||
R2 | 0.9829 | |||||
Radj2 | 0.9624 | |||||
DI E. coli | Regression | 6 | 6.50 | 1.08 | 69.30 | 0.0001 |
Residual | 5 | 0.0781 | 0.0156 | |||
Total | 11 | 6.58 | ||||
Lack of fit | 3 | 0.0561 | 0.0187 | 1.69 | 0.3921 | |
Pure error | 2 | 0.0221 | 0.0110 | |||
R2 | 0.9881 | |||||
Radj2 | 0.9739 | |||||
DI B. subtilis | Regression | 6 | 7.70 | 1.28 | 10.72 | 0.0099 |
Residual | 5 | 0.5984 | 0.1197 | |||
Total | 11 | 8.29 | ||||
Lack of fit | 3 | 0.5261 | 0.1754 | 4.85 | 0.1756 | |
Pure error | 2 | 0.0723 | 0.0361 | |||
R2 | 0.9278 | |||||
Radj2 | 0.8413 |
Terme | Coefficient | Estimation | Std Error | t-Student | p-Value | |
---|---|---|---|---|---|---|
DI S. aureus | L. stoechas | b1 | 10.94 | 0.1353 | 80.88 | <0.0001 * |
E. camaldulensis | b2 | 10.39 | 0.1353 | 76.81 | <0.0001 * | |
T. zygis | b3 | 12.10 | 0.1353 | 89.40 | <0.0001 * | |
L. stoechas * E. camaldulensis | b12 | 3.67 | 0.6813 | 5.39 | 0.0030 * | |
L. stoechas * T. zygis | b13 | 0.1237 | 0.6813 | 0.18 | 0.8631 | |
E. camaldulensis * T. zygis | b23 | 8.18 | 0.6813 | 12.01 | <0.0001 * | |
L. stoechas *E. camaldulensis * T. zygis | b123 | −30.90 | 3.71 | −8.34 | 0.0004 * | |
DI E. coli | L. stoechas | b1 | 10.38 | 0.1207 | 85.98 | <0.0001 * |
E. camaldulensis | b2 | 9.03 | 0.1207 | 74.76 | <0.0001 * | |
T. zygis | b3 | 11.25 | 0.1207 | 93.18 | <0.0001 * | |
L. stoechas * E. camaldulensis | b12 | −1.63 | 0.6080 | −2.67 | 0.0441 * | |
L. stoechas * T. zygis | b13 | 1.94 | 0.6080 | 3.19 | 0.0242 * | |
E. camaldulensis * T. zygis | b23 | 4.59 | 0.6080 | 7.55 | 0.0006 * | |
L. stoechas * E. camaldulensis * T. zygis | b123 | −5.51 | 3.31 | −1.67 | 0.1567 | |
DI B. subtilis | L. stoechas | b1 | 11.47 | 0.3341 | 34.33 | <0.0001 * |
E. camaldulensis | b2 | 9.18 | 0.3341 | 27.49 | <0.0001 * | |
T. zygis | b3 | 11.90 | 0.3341 | 35.62 | <0.0001 * | |
L. stoechas * E. camaldulensis | b12 | 5.34 | 1.68 | 3.18 | 0.0247 * | |
L. stoechas * T. zygis | b13 | 0.2153 | 1.68 | 0.13 | 0.9031 | |
E. camaldulensis * T. zygis | b23 | 5.84 | 1.68 | 3.47 | 0.0178 * | |
L. stoechas * E. camaldulensis * T. zygis | b123 | −45.09 | 9.15 | −4.93 | 0.0044 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aabouch, F.; Annemer, S.; Satrani, B.; Ettaleb, I.; Kara, M.; Ghanmi, M.; Shahat, A.A.; Choudhary, R.; Farah, A.; Ouajdi, M.; et al. Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils. Life 2024, 14, 1424. https://doi.org/10.3390/life14111424
Aabouch F, Annemer S, Satrani B, Ettaleb I, Kara M, Ghanmi M, Shahat AA, Choudhary R, Farah A, Ouajdi M, et al. Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils. Life. 2024; 14(11):1424. https://doi.org/10.3390/life14111424
Chicago/Turabian StyleAabouch, Farah, Saoussan Annemer, Badr Satrani, Ismail Ettaleb, Mohammed Kara, Mohamed Ghanmi, Abdelaaty Abdelaziz Shahat, Ravish Choudhary, Abdellah Farah, Mohamed Ouajdi, and et al. 2024. "Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils" Life 14, no. 11: 1424. https://doi.org/10.3390/life14111424
APA StyleAabouch, F., Annemer, S., Satrani, B., Ettaleb, I., Kara, M., Ghanmi, M., Shahat, A. A., Choudhary, R., Farah, A., Ouajdi, M., & Dahmani, J. (2024). Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils. Life, 14(11), 1424. https://doi.org/10.3390/life14111424