Extremophiles and Extremophilic Behaviour—New Insights and Perspectives
Abstract
:1. Extremophiles and Extremophilic Behaviour
2. Survival Strategies Under Extreme Conditions
2.1. Survival Under Extreme High Temperatures
2.2. Survival Under Extreme Low Temperatures
2.3. Adaptations to Extreme High Acidity
2.4. Adaptations to Extreme High Alkalinity
2.5. Adaptations to Extreme High Pressures
2.6. Adaptations to Ionising and UV Radiation
2.7. Adaptations Related to Industrial Settings
3. Extremophiles in Astrobiological Applications
3.1. Applications in Space Missions
3.2. Extremophiles: Unravelling Habitability Beyond Earth
3.3. Harnessing Extremophiles: Strategies for Planetary Terraforming
3.4. Extremophiles: Unveiling Insights into Life’s Origins
3.4.1. Extremophiles and the Theory of Panspermia
3.4.2. Could Extremophiles Be Irrelevant to the Origin of Life?
3.4.3. Did Extremophilic Life Emerge near Hydrothermal Vents?
4. Extremophiles as De Facto Organisms or as Response of Common Organisms to Extreme Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macelroy, R.D. Some comments on the evolution of extremophiles. BioSystems 1974, 6, 74–75. [Google Scholar] [CrossRef]
- Berlemont, R.; Gerday, C. Extremophiles. In Comprehensive Biotechnology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 229–242. [Google Scholar] [CrossRef]
- van Noort, V.; Bradatsch, B.; Arumugam, M.; Amlacher, S.; Bange, G.; Creevey, C.; Falk, S.; Mende, D.R.; Sinning, I.; Hurt, E.; et al. Consistent mutational paths predict eukaryotic thermostability. BMC Evol. Biol. 2013, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Singer, G.A.C.; Hickey, D.A. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition, and nucleotide content. Gene 2003, 317, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Krysenko, S.; Wohlleben, W. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Med. Sci. 2022, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.M.; Swadling, J.B.; Hocher, A.; Bang, C.; Gribaldo, S.; Schmitz, R.A.; Warnecke, T. Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proc. Natl. Acad. Sci. USA 2020, 117, 33384–33395. [Google Scholar] [CrossRef]
- Timasheff, S.N. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 67–97. [Google Scholar] [CrossRef]
- Lee, J.C.; Timasheff, S.N. The stabilization of proteins by sucrose. J. Biol. Chem. 1981, 256, 7193–7201. [Google Scholar] [CrossRef]
- Winzor, D.J.; Wills, P.R. Effects of thermodynamic nonideality on protein interactions. Biophys. Chem. 1986, 25, 243–251. [Google Scholar] [CrossRef]
- Gekko, K.; Morikawa, T. Thermodynamics of polyol-induced thermal stabilization of chymotrypsinogen. J. Biochem. 1981, 90, 51–60. [Google Scholar] [CrossRef]
- Argos, P.; Rossmann, M.G.; Grau, U.M.; Zuber, H.; Frank, G.; Tratschin, J.D. Thermal stability and protein structure. Biochemistry 1979, 18, 5698–5703. [Google Scholar] [CrossRef]
- Scandurra, R.; Consalvi, V.; Chiaraluce, R.; Politi, L.; Engel, P.C. Protein thermostability in extremophiles. Biochimie 1998, 80, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Laksanalamai, P.; Robb, F.T. Small heat shock proteins from extremophiles: A review. Extremophiles 2004, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- De Maio, A.; Hightower, L.E. Heat shock proteins and the biogenesis of cellular membranes. Cell Stress Chaperones 2021, 26, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Latif, H.; Sahin, M.; Tarasova, J.; Tarasova, Y.; Portnoy, V.A.; Nogales, J.; Zengler, K. Adaptive evolution of Thermotoga maritima reveals plasticity of the ABC transporter network. Appl. Environ. Microbiol. 2015, 81, 5477–5485. [Google Scholar] [CrossRef] [PubMed]
- Morita, R.Y. Psychrophilic bacteria. Bacteriol. Rev. 1975, 39, 144–167. [Google Scholar] [CrossRef]
- De Maayer, P.; Anderson, D.; Cary, C.; Cowan, D.A. Some like it cold: Understanding the survival strategies of psychrophiles. EMBO Rep. 2014, 15, 508–517. [Google Scholar] [CrossRef]
- D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. EMBO Rep. 2006, 7, 385–389. [Google Scholar] [CrossRef]
- Siddiqui, K.S.; Cavicchioli, R. Cold-adapted enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef]
- Russell, N.J. Psychrophilic bacteria—Molecular adaptations of membrane lipids. Comp. Biochem. Physiol. A 1997, 118, 489–493. [Google Scholar] [CrossRef]
- Šajbidor, J. Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotechnol. 1997, 17, 87–103. [Google Scholar] [CrossRef]
- Fong, N.J.C.; Burgess, M.L.; Barrow, K.D.; Glenn, D.R. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol. 2001, 56, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 2003, 1, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Saunders, N.F.; Thomas, T.; Curmi, P.M.; Mattick, J.S.; Kuczek, E.; Slade, R.; Davis, J.; Franzmann, P.D.; Boone, D.; Rusterholtz, K.; et al. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 2003, 13, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Thomas, T.; Cavicchioli, R. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J. Mol. Biol. 2000, 297, 553–567. [Google Scholar] [CrossRef]
- Shen, L.; Liu, Y.; Allen, M.A.; Xu, B.; Wang, N.; Williams, T.J.; Wang, F.; Zhou, Y.; Liu, Q.; Cavicchioli, R. Linking genomic and physiological characteristics of psychrophilic Arthrobacter to metagenomic data to explain global environmental distribution. Microbiome 2021, 9, 136. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Y.; Tang, Y.; Wang, X.; Chen, Y.; Shen, W.; Zhan, Y.; Gao, J.; Wu, B.; He, M.; et al. Development and characterization of acidic-pH-tolerant mutants of Zymomonas mobilis through adaptation and next-generation sequencing-based genome resequencing and RNA-Seq. Biotechnol. Biofuels 2020, 13, 144. [Google Scholar] [CrossRef]
- Beard, S.; Ossandon, F.J.; Rawlings, D.E.; Quatrini, R. The flexible genome of acidophilic prokaryotes. Curr. Issues Mol. Biol. 2021, 40, 231–266. [Google Scholar] [CrossRef]
- Ito, M.; Takahashi, Y. Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species. Extremophiles 2016, 21, 3–14. [Google Scholar] [CrossRef]
- Naganawa, S.; Ito, M. MotP subunit is critical for ion selectivity and evolution of a K+-coupled flagellar motor. Biomolecules 2020, 10, 691. [Google Scholar] [CrossRef]
- Matsuno, T.; Yumoto, I. Bioenergetics and the role of soluble cytochromes c for alkaline adaptation in gram-negative alkaliphilic Pseudomonas. BioMed Res. Int. 2015, 2015, 847945. [Google Scholar] [CrossRef]
- Gilmour, R.; Messner, P.; Guffanti, A.A.; Kent, R.; Scheberl, A.; Kendrick, N.; Krulwich, T.A. Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J. Bacteriol. 2000, 182, 5969–5981. [Google Scholar] [CrossRef] [PubMed]
- Abuyen, K.; El-Naggar, M.Y. Soluble iron enhances extracellular electron uptake by Shewanella oneidensis MR-1. ChemElectroChem 2023, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; McMillan, D.; Renz, M.; Schmidt, M.; Burke, I.; Stewart, D. Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles. Appl. Environ. Microbiol. 2013, 80, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Van Cappellen, P.; Pi, K.; Yuan, S. Oxidation of Fe(II) by flavins under anoxic conditions. Environ. Sci. Technol. 2020, 54, 11622–11630. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hicks, D.B.; Guffanti, A.A.; Baldwin, K.; Krulwich, T.A. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J. Biol. Chem. 2004, 279, 26546–26554. [Google Scholar] [CrossRef]
- Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N.A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 1994, 370, 379–382. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Ito, M.; Guffanti, A.A. The Na+-dependence of alkaliphily in Bacillus. Biochim. Biophys. Acta 2001, 1505, 158–168. [Google Scholar] [CrossRef]
- Scheffer, G.; Gieg, L. The mystery of piezophiles: Understudied microorganisms from the deep, dark subsurface. Microorganisms 2023, 11, 1629. [Google Scholar] [CrossRef]
- Yayanos, A. Piezophiles. eLS 2020, 1–10. [Google Scholar] [CrossRef]
- Smeller, L. Biomolecules under pressure: Phase diagrams, volume changes, and high-pressure spectroscopic techniques. Int. J. Mol. Sci. 2022, 23, 5761. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Bartlett, D.H.; Xiao, X. Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles. Curr. Opin. Biotechnol. 2015, 33, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Butts, C.T.; Martin, R.W. Bayesian estimation of the hydroxyl radical diffusion coefficient at low temperature and high pressure from atomistic molecular dynamics. J. Chem. Phys. 2021, 155, 194504. [Google Scholar] [CrossRef] [PubMed]
- Penhallurick, R.W.; Ichiye, T. Pressure adaptations in deep-sea Moritella dihydrofolate reductases: Compressibility versus stability. Biology 2021, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.L.; Weber, G. Pressure stability of proteins. Annu. Rev. Phys. Chem. 1993, 44, 89–113. [Google Scholar] [CrossRef]
- Roche, J.; Caro, J.A.; Norberto, D.R.; Barthe, P.; Roumestand, C.; Schlessman, J.L.; Garcia, A.E.; García-Moreno, E.B.; Royer, C.A. Cavities determine the pressure unfolding of proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 6945–6950. [Google Scholar] [CrossRef]
- Nath, A.; Subbiah, K. Insights into the molecular basis of piezophilic adaptation: Extraction of piezophilic signatures. J. Theor. Biol. 2016, 390, 117–126. [Google Scholar] [CrossRef]
- Yancey, P.H.; Siebenaller, J.F. Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 2015, 218, 1880–1896. [Google Scholar] [CrossRef]
- Huang, Q.; Rodgers, J.; Hemley, R.J.; Ichiye, T. Effects of pressure and temperature on the atomic fluctuations of dihydrofolate reductase from a psychropiezophile and a mesophile. Int. J. Mol. Sci. 2019, 20, 1452. [Google Scholar] [CrossRef]
- Horneck, G.; Rettberg, P.; Reitz, G.; Wehner, J.; Eschweiler, U.; Strauch, K.; Panitz, C.; Starke, V.; Baumstark-Khan, C. Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig. Life Evol. Biosph. 2001, 31, 527–547. [Google Scholar] [CrossRef]
- Ott, E.; Kawaguchi, Y.; Kölbl, D.; Chaturvedi, P.; Nakagawa, K.; Yamagishi, A.; Weckwerth, W.; Milojevic, T. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission. PLoS ONE 2017, 12, e0189381. [Google Scholar] [CrossRef]
- Ott, E.; Kawaguchi, Y.; Kölbl, D.; Rabbow, E.; Rettberg, P.; Mora, M.; Moissl-Eichinger, C.; Weckwerth, W.; Yamagishi, A.; Milojevic, T. Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome 2020, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Meng, N.; Fu, J.; Chen, X.; Xu, X.; Feng, Q.; Jiang, H.; Dai, J.; Yuan, X.; Lu, Y.; et al. Genome-wide transcriptome and antioxidant analyses on gamma-irradiated phases of Deinococcus radiodurans R1. PLoS ONE 2014, 9, e0130823. [Google Scholar] [CrossRef] [PubMed]
- Diaz, B.; Schulze-Makuch, D. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible Martian life. Astrobiology 2006, 6, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Marasini, S.; Leanse, L.G.; Dai, T. Can microorganisms develop resistance against light-based anti-infective agents? Adv. Drug Deliv. Rev. 2021, 175, 113822. [Google Scholar] [CrossRef]
- Parisi, A.; Antoine, A. Increased radiation resistance of vegetative Bacillus pumilus. Appl. Microbiol. 1974, 28, 41–46. [Google Scholar] [CrossRef]
- Arjomandi, Z.; Salehzadeh, A.; Mirzaie, A. Isolation and characterization of two novel radiation-resistant bacteria from a radioactive site in Iran. Iran. J. Sci. Technol. Trans. A Sci. 2017, 42, 1007–1013. [Google Scholar] [CrossRef]
- Muñoz-Villagrán, C.; Grossolli-Gálvez, J.; Acevedo-Arbunic, J.; Valenzuela, X.; Ferrer, A.; Díez, B.; Levicán, G. Characterization and genomic analysis of two novel psychrotolerant Acidithiobacillus ferrooxidans strains from polar and subpolar environments. Front Microbiol. 2022, 13, 960324. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Y.; Wu, F.; Ouyang, P.; Chen, J.; Jiang, X.; Ye, J.; Chen, G.Q. Engineering Halomonas bluephagenesis for L-Threonine production. Metab. Eng. 2020, 60, 119–127. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, T.; Feng, Y.; Wang, X.; Zhang, L.; Hu, Q.; Chen, J.; Wu, F.; Chen, G.Q. Engineered Halomonas spp. for production of l-Lysine and cadaverine. Bioresour. Technol. 2022, 349, 126865. [Google Scholar] [CrossRef]
- Bhandiwad, A.; Shaw, A.J.; Guss, A.; Guseva, A.; Bahl, H.; Lynd, L.R. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab. Eng. 2014, 21, 17–25. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, J.; Shi, T.; Wang, Y.; Ding, Q.; Ye, C. Application of extremophile cell factories in industrial biotechnology. Enzym. Microb. Technol. 2024, 175, 110407. [Google Scholar] [CrossRef]
- Wohlgemuth, R.; Littlechild, J.; Monti, D.; Schnorr, K.; van Rossum, T.; Siebers, B.; Menzel, P.; Kublanov, I.V.; Rike, A.G.; Skretas, G.; et al. Discovering novel hydrolases from hot environments. Biotechnol. Adv. 2018, 36, 2077–2100. [Google Scholar] [CrossRef]
- Khodadad, C.L.M.; Oubre, C.M.; Castro, V.A.; Flint, S.M.; Roman, M.C.; Ott, C.M.; Spern, C.J.; Hummerick, M.E.; Maldonado Vazquez, G.J.; Birmele, M.N.; et al. A microbial monitoring system demonstrated on the International Space Station provides a successful platform for detection of targeted microorganisms. Life 2021, 11, 492. [Google Scholar] [CrossRef]
- Ichijo, T.; Shimazu, T.; Nasu, M. Microbial monitoring in the International Space Station and its application on Earth. J. Pharm. Soc. Jpn. 2020, 43, 254–257. [Google Scholar] [CrossRef]
- Checinska Sielaff, A.; Urbaniak, C.; Mohan, G.B.M.; Stepanov, V.G.; Tran, Q.; Wood, J.M.; Minich, J.; McDonald, D.; Mayer, T.; Knight, R.; et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 2019, 7, 66. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Roberts, M.; Castro, S.; Oubre, C.; Makimura, K.; Leys, N.; Grohmann, E.; Sugita, T.; Ichijo, T.; Nasu, M. Microbial monitoring of crewed habitats in space—Current status and future perspectives. Microbes Environ. 2014, 29, 250–260. [Google Scholar] [CrossRef]
- Mora, M.; Perras, A.; Alekhova, T.A.; Wink, L.; Krause, R.; Aleksandrova, A.; Novozhilova, T.; Moissl-Eichinger, C. Resilient microorganisms in dust samples of the International Space Station—Survival of the adaptation specialists. Microbiome 2016, 4, 65. [Google Scholar] [CrossRef]
- Singh, N.K.; Wood, J.M.; Karouia, F.; Venkateswaran, K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 2018, 6, 204. [Google Scholar] [CrossRef]
- Fujiwara, D.; Kawaguchi, Y.; Kinoshita, I.; Yatabe, J.; Narumi, I.; Hashimoto, H.; Yokobori, S.I.; Yamagishi, A. Mutation analysis of the rpoB gene in the radiation-resistant bacterium Deinococcus radiodurans R1 exposed to space during the Tanpopo experiment at the International Space Station. Astrobiology 2021, 21, 1494–1504. [Google Scholar] [CrossRef]
- Checinska Sielaff, A.; Kumar, R.M.; Pal, D.; Mayilraj, S.; Venkateswaran, K. Solibacillus kalamii sp. nov., isolated from a high-efficiency particulate arrestance filter system used in the International Space Station. Int. J. Syst. Evol. Microbiol. 2017, 67, 896–901. [Google Scholar] [CrossRef]
- Ghosh, S.; Osman, S.; Vaishampayan, P.; Venkateswaran, K. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled. Astrobiology 2010, 10, 325–335. [Google Scholar] [CrossRef]
- La Duc, M.T.; Dekas, A.; Osman, S.; Moissl, C.; Newcombe, D.; Venkateswaran, K. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 2007, 73, 2600–2611. [Google Scholar] [CrossRef]
- Cardenas, R.; Perez, N.; Martinez-Frias, J.; Martin, O. On the Habitability of Aquaplanets. Challenges 2014, 5, 284–293. [Google Scholar] [CrossRef]
- Hoehler, T.M. An energy balance concept for habitability. Astrobiology 2007, 7, 824–838. [Google Scholar] [CrossRef]
- Cockell, C.S.; Bush, T.; Bryce, C.; Direito, S.; Fox-Powell, M.; Harrison, J.P.; Lammer, H.; Landenmark, H.; Martin-Torres, J.; Nicholson, N.; et al. Habitability: A Review. Astrobiology 2016, 16, 89–117. [Google Scholar] [CrossRef]
- Méndez, A.; Rivera-Valentín, E.G.; Schulze-Makuch, D.; Filiberto, J.; Ramírez, R.M.; Wood, T.E.; Dávila, A.; McKay, C.; Ceballos, K.N.O.; Jusino-Maldonado, M.; et al. Habitability Models for Astrobiology. Astrobiology 2021, 21, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.J.; Filiberto, J.; Crandall, J.R.; Potter-McIntyre, S.L.; Schwenzer, S.P.; Miller, M.A.; Hummer, D.R.; Olsson-Francis, K.; Perl, S. Habitability of Hydrothermal Systems at Jezero and Gusev Craters as Constrained by Hydrothermal Alteration of a Terrestrial Mafic Dike. Geochemistry 2020, 80, 125613. [Google Scholar] [CrossRef]
- Adcock, C.T.; Hausrath, E.M. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. Astrobiology 2015, 15, 1060–1075. [Google Scholar] [CrossRef]
- Warner, N.H.; Farmer, J.D. Subglacial Hydrothermal Alteration Minerals in Jökulhlaup Deposits of Southern Iceland, with Implications for Detecting Past or Present Habitable Environments on Mars. Astrobiology 2010, 10, 523–547. [Google Scholar] [CrossRef]
- Nealson, K.H. The Limits of Life on Earth and Searching for Life on Mars. J. Geophys. Res. 1997, 102, 23675–23686. [Google Scholar] [CrossRef]
- Price, A.; Pearson, V.K.; Schwenzer, S.P.; Miot, J.; Olsson-Francis, K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front. Microbiol. 2018, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Cortesão, M.; Siems, K.; Koch, S.; Beblo-Vranesevic, K.; Rabbow, E.; Berger, T.; Lane, M.; James, L.; Johnson, P.; Waters, S.M.; et al. MARSBOx: Fungal and Bacterial Endurance From a Balloon-Flown Analog Mission in the Stratosphere. Front. Microbiol. 2021, 12, 601713. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.T.; Corey, K.A.; Paul, A.L.; Ferl, R.J.; Wheeler, R.M.; Schuerger, A.C. Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars. Astrobiology 2006, 6, 851–866. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, E.I.; Ocampo-Friedmann, R. A Primitive Cyanobacterium as Pioneer Microorganism for Terraforming Mars. Adv. Space Res. 1995, 15, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Jia, L.; Yuan, B.; Yang, S.; Li, H.; Meng, J.; Zeng, Y.; Feng, F. Aerobic Anoxygenic Phototrophic Bacteria Promote the Development of Biological Soil Crusts. Front. Microbiol. 2018, 9, 2715. [Google Scholar] [CrossRef] [PubMed]
- de la Torre Noetzel, R.; Miller, A.Z.; de la Rosa, J.M.; Pacelli, C.; Onofri, S.; García Sancho, L.; Cubero, B.; Lorek, A.; Wolter, D.; de Vera, J.P. Cellular Responses of the Lichen Circinaria gyrosa in Mars-Like Conditions. Front. Microbiol. 2018, 9, 308. [Google Scholar] [CrossRef]
- Parasyri, A.; Papazi, A.; Stamatis, N.; Zerveas, S.; Avramidou, E.V.; Doulis, A.G.; Pirintsos, S.; Kotzabasis, K. Lichen as Micro-Ecosystem: Extremophilic Behavior With Astrobiotechnological Applications. Astrobiology 2018, 18, 1528–1542. [Google Scholar] [CrossRef]
- Kyriatzi, A.; Tzivras, G.; Pirintsos, S.; Kotzabasis, K. Biotechnology Under Extreme Conditions: Lichens After Extreme UVB Radiation and Extreme Temperatures Produce Large Amounts of Hydrogen. J. Biotechnol. 2021, 342, 128–138. [Google Scholar] [CrossRef]
- Horneck, G.; Klaus, D.M.; Mancinelli, R.L. Space Microbiology. Microbiol. Mol. Biol. Rev. 2010, 74, 121–156. [Google Scholar] [CrossRef]
- Berger, T.; Hajek, M.; Bilski, P.; Körner, C.; Vanhavere, F.; Reitz, G. Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission. Astrobiology 2012, 12, 387–392. [Google Scholar] [CrossRef]
- Onofri, S.; de la Torre, R.; de Vera, J.P.; Ott, S.; Zucconi, L.; Selbmann, L.; Scalzi, G.; Venkateswaran, K.J.; Rabbow, E.; Sánchez Iñigo, F.J.; et al. Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space. Astrobiology 2012, 12, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Secker, J.; Wesson, P.S.; Lepock, J.R. Astrophysical and Biological Constraints on Radiopanspermia. J. R. Astron. Soc. Can. 1996, 90, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Grishin, E.; Perets, H. Catalyzed Lithopanspermia Through Disk Capture of Biologically Active Interstellar Material. In Astrobiology and Physical Cosmology: From the Early Universe to Intelligent Life in the Cosmos; Bhardwaj, A., Barenghi, C.F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 123–134. [Google Scholar] [CrossRef]
- von Hegner, I. Evolutionary Processes Transpiring in the Stages of Lithopanspermia. Acta Biotheor. 2021, 69, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R. Extremophiles and the Search for Extraterrestrial Life. Astrobiology 2002, 2, 281–292. [Google Scholar] [CrossRef]
- Cunningham, K.; Northup, D.; Pollastro, R.; Wright, W.; LaRock, E. Bacteria, Fungi and Biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol. 1995, 25, 2–8. [Google Scholar] [CrossRef]
- Breus, T.K.; Krymskii, A.M.; Luhmann, J.G. Solar Wind Mass-Loading at Comet Halley: A Lesson From Venus? Geophys. Res. Lett. 1987, 14, 499–502. [Google Scholar] [CrossRef]
- Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H.U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; et al. Coma Morphology of Comet 67P Controlled by Insolation Over Irregular Nucleus. Nat. Astron. 2018, 2, 562–567. [Google Scholar] [CrossRef]
- Clark, B.C. Planetary Interchange of Bioactive Material: Probability Factors and Implications. Orig. Life Evol. Biosph. 2001, 31, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G.; Mileikowsky, C.; Melosh, H.J.; Wilson, J.W.; Cucinotta, F.A.; Gladman, B. Viable Transfer of Microorganisms in the Solar System and Beyond. In Astrobiology, The Quest for the Conditions of Life; Horneck, G., Baumstark-Khan, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 57–76. [Google Scholar] [CrossRef]
- Cleaves, H.J., II; Chalmers, J.H. Extremophiles May Be Irrelevant to the Origin of Life. Astrobiology 2004, 4, 1–9. [Google Scholar] [CrossRef]
- Veras, D.; Armstrong, D.J.; Blake, J.A.; Gutiérrez-Marcos, J.F.; Jackson, A.P.; Schäfer, H. Dynamical and Biological Panspermia Constraints Within Multi-Planet Exosystems. Astrobiology 2018, 18, 1106–1122. [Google Scholar] [CrossRef]
- Horneck, G.; Moeller, R.; Cadet, J.; Douki, T.; Mancinelli, R.L.; Nicholson, W.L.; Panitz, C.; Rabbow, E.; Rettberg, P.; Spry, A.; et al. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission. Astrobiology 2012, 12, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L. Ancient Micronauts: Interplanetary Transport of Microbes by Cosmic Impacts. Trends Microbiol. 2009, 17, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Burchell, M.J.; Galloway, J.A.; Bunch, A.W.; Brandão, P.F. Survivability of Bacteria Ejected From Icy Surfaces After Hypervelocity Impact. Orig. Life Evol. Biosph. 2003, 33, 53–74. [Google Scholar] [CrossRef] [PubMed]
- Burchell, M.J.; Shrine, N.R.; Mann, J.; Bunch, A.W.; Brandao, P.; Zarnecki, J.C.; Galloway, J.A. Laboratory Investigations of the Survivability of Bacteria in Hypervelocity Impacts. Adv. Space Res. 2001, 28, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, M.S.; de Souza Mendonça, M., Jr. Post-Dispersal Astrobiological Events: Modelling Macroevolutionary Dynamics for Lithopanspermia. Extremophiles 2023, 27, 3. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhang, Y. Life in Extreme Environments: Approaches to Study Life-Environment Co-Evolutionary Strategies. Sci. China Earth Sci. 2014, 57, 869–877. [Google Scholar] [CrossRef]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780. [Google Scholar] [CrossRef]
- Lahav, N.; Nir, S.; Elitzur, A. The Emergence of Life on Earth. Prog. Biophys. Mol. Biol. 2001, 75, 75–120. [Google Scholar] [CrossRef]
- Kitadai, N.; Maruyama, S. Origins of Building Blocks of Life: A Review. Geosci. Front. 2018, 9, 1117–1153. [Google Scholar] [CrossRef]
- Deamer, D.; Weber, A. Bioenergetics and Life’s Origins. Cold Spring Harb. Perspect. Biol. 2010, 2, a004929. [Google Scholar] [CrossRef]
- Oró, J.; Miller, S.; Lazcano, A. The Origin and Early Evolution of Life on Earth. Annu. Rev. Earth Planet. Sci. 1990, 18, 317–356. [Google Scholar] [CrossRef] [PubMed]
- Dodd, M.; Papineau, D.; Greene, T.; Slack, J.F.; Rittner, M.; Pirajno, F.; O’Neil, J.; Little, C. Evidence for Early Life in Earth’s Oldest Hydrothermal Vent Precipitates. Nature 2017, 543, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal Vents and the Origin of Life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Proskurowski, G.; Lilley, M.D.; Seewald, J.S.; Früh-Green, G.L.; Olson, E.J.; Lupton, J.E.; Sylva, S.P.; Kelley, D.S. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field. Science 2008, 319, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a Source of Energy at the Origin of Life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef]
- Nitschke, W.; Russell, M.J. Hydrothermal Focusing of Chemical and Chemiosmotic Energy, Supported by Delivery of Catalytic Fe, Ni, Mo/W, Co, S and Se, Forced Life to Emerge. J. Mol. Evol. 2009, 69, 481–496. [Google Scholar] [CrossRef]
- Jackson, J.B. The “Origin-of-Life Reactor” and Reduction of CO2 by H2 in Inorganic Precipitates. J. Mol. Evol. 2017, 85, 1–7. [Google Scholar] [CrossRef]
- Rothschild, L.J.; Mancinelli, R.L. Life in Extreme Environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef]
- Gritsi, C.S.; Sarmas, E.; Daskalakis, V.; Kotzabasis, K. Acclimation Mechanism of Microalgal Photosynthetic Apparatus Under Low Atmospheric Pressures—New Astrobiological Perspectives in a Mars-Like Atmosphere. Funct. Plant Biol. 2024, 51, FP24058. [Google Scholar] [CrossRef]
- Rolshausen, G.; Dal Grande, F.; Sadowska-Deś, A.D.; Otte, J.; Schmitt, I. Quantifying the Climatic Niche of Symbiont Partners in a Lichen Symbiosis Indicates Mutualist-Mediated Niche Expansions. Ecography 2018, 41, 1380–1392. [Google Scholar] [CrossRef]
- Soberón, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef]
- Bariotakis, M.; Pirintsos, S.A. Mapping Absences Within the BAM Concept: Towards a New Generation of Ecological and Environmental Indicators. Ecol. Indic. 2018, 90, 564–568. [Google Scholar] [CrossRef]
- Zerveas, S.; Kydonakis, E.; Mente, M.S.; Daskalakis, V.; Kotzabasis, K. Hydrogen Gas as a Central On-Off Functional Switch of Reversible Metabolic Arrest—New Perspectives for Biotechnological Applications. J. Biotechnol. 2021, 335, 9–18. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelakis, G.N.; Psarologaki, C.; Pirintsos, S.; Kotzabasis, K. Extremophiles and Extremophilic Behaviour—New Insights and Perspectives. Life 2024, 14, 1425. https://doi.org/10.3390/life14111425
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour—New Insights and Perspectives. Life. 2024; 14(11):1425. https://doi.org/10.3390/life14111425
Chicago/Turabian StyleAngelakis, George N., Chrysianna Psarologaki, Stergios Pirintsos, and Kiriakos Kotzabasis. 2024. "Extremophiles and Extremophilic Behaviour—New Insights and Perspectives" Life 14, no. 11: 1425. https://doi.org/10.3390/life14111425
APA StyleAngelakis, G. N., Psarologaki, C., Pirintsos, S., & Kotzabasis, K. (2024). Extremophiles and Extremophilic Behaviour—New Insights and Perspectives. Life, 14(11), 1425. https://doi.org/10.3390/life14111425