Comparative Performance of Ionic and Agro-Physiological Traits for Detecting Salt Tolerance in Wheat Genotypes Grown in Real Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Conditions
2.2. Experimental Design, Salinity Treatments, and Agronomic Practices
2.3. Measurements
2.3.1. Ion Content
2.3.2. Chlorophyll Content, Leaf Chlorophyll Fluorescence, and Relative Water Content
2.3.3. Growth and Yield
2.4. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Genotypic Performance Under Control and Salinity Conditions Based on Ionic Traits
3.3. Genotypic Performance Under Control and Salinity Conditions, Based on Physiological Traits
3.4. Genotypic Performance Under Control and Salinity Conditions, Based on Growth and Yield Traits
3.5. Correlation Matrix Between All Traits Under Control and Salinity Stress Conditions
3.6. Comprehensive Evaluation of Salt Tolerance in Genotypes Through Multivariate Analysis
3.6.1. Principal Component Analysis
3.6.2. Heatmap Cluster Analysis
4. Discussion
4.1. Ionic Traits as Screening Criteria
4.2. Physiological Traits as Screening Criteria
4.3. Growth and Yield Traits as Screening Criteria
4.4. Multivariate Analysis for Comprehensive Evaluation of Salt Tolerance in Genotypes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotula, L.; Zahra, N.; Farooq, M.; Shabala, S.; Siddique, K.H. Making wheat salt tolerant: What is missing? Crop J. 2024, 12, 1299–1308. [Google Scholar] [CrossRef]
- Chaurasia, S.; Kumar, A.; Singh, A.K. Comprehensive evaluation of morpho-physiological and ionic traits in wheat (Triticum aestivum L.) genotypes under salinity stress. Agriculture 2022, 12, 1765. [Google Scholar] [CrossRef]
- Shokat, S.; Großkinsky, D.K. Tackling salinity in sustainable agriculture-what developing countries may learn from approaches of the developed world. Sustainability 2019, 11, 4558. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Dadshani, S.; Sharma, R.C.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Multi-dimensional evaluation of response to salt stress in wheat. PLoS ONE 2019, 14, e0222659. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Al-Suhaibani, N.; Mubushar, M.; Tahir, M.U.; Marey, S.; Refay, Y.; Tola, E. Combining hyperspectral reflectance and multivariate regression models to estimate plant biomass of advanced spring wheat lines in diverse phenological stages under salinity conditions. Appl. Sci. 2022, 12, 1983. [Google Scholar] [CrossRef]
- Marone, D.; Russo, M.A.; Mores, A.; Ficco, D.B.M.; Laidò, G.; Mastrangelo, A.M.; Borrelli, G.M. Importance of landraces in cereal breeding for stress tolerance. Plants 2021, 10, 1267. [Google Scholar] [CrossRef]
- Oyiga, B.C.; Sharma, R.C.; Shen, J.; Baum, M.; Ogbonnaya, F.C.; Leon, J.; Ballvora, A. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Quan, X.; Liang, X.; Li, H.; Xie, C.; He, W.; Qin, Y. Identification and characterization of wheat germplasm for salt tolerance. Plants 2021, 10, 268. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High concentrations of Na+ and Cl-ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci. 2017, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Füzy, A.; Kovács, R.; Cseresnyés, I.; Parádi, I.; Szili-Kovács, T.; Kelemen, B.; Rajkai, K.; Takács, T. Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiol. Plant. 2019, 41, 56. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Alderfasi, A.; El-Hendawy, S.E.; Al-Suhaibani, N.; El-Kafafi, S.; Seleiman, M.F. Detecting salt tolerance in doubled haploid wheat Lines. Agronomy 2019, 9, 211. [Google Scholar] [CrossRef]
- Mubushar, M.; El-Hendawy, S.; Tahir, M.U.; Alotaibi, M.; Mohammed, N.; Refay, Y.; Tola, E. Assessing the suitability of multivariate analysis for stress tolerance indices, biomass, and grain yield for detecting salt tolerance in advanced spring wheat lines irrigated with saline water under field conditions. Agronomy 2022, 12, 3084. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Bio/Technol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Pongprayoon, W.; Tisarum, R.; Theerawittaya, C.; Cha-Um, S. Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiol. Mol. Biol. Plants 2019, 25, 473–483. [Google Scholar] [CrossRef]
- Tao, R.; Ding, J.; Li, C.; Zhu, X.; Guo, W.; Zhu, M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front. Plant Sci. 2021, 12, 646175. [Google Scholar] [CrossRef]
- Matković Stojšin, M.; Petrović, S.; Banjac, B.; Zečević, V.; Roljević Nikolić, S.; Majstorović, H.; Đorđević, R.; Knežević, D. Assessment of genotype stress tolerance as an effective way to sustain wheat production under salinity stress conditions. Sustainability 2022, 14, 6973. [Google Scholar] [CrossRef]
- Kaya, Y. Phenotyping winter wheat for early ground cover. Czech J. Genet. Plant Breed. 2022, 58, 189–200. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, G.; Zhao, G. Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in arabidopsis. Plant Cell Physiol. 2014, 55, 1802–1812. [Google Scholar] [CrossRef]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Vyhnánek, T.; Zargar, S.M.; Kahraman, A.; Topal, A.; Gezgin, S. Exploring strigolactones for inducing abiotic stress tolerance in plants. Czech J. Genet. Plant Breed. 2024, 60, 55–69. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Z.; Sato, K.; Ma, J.F. Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. 2015, 208, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Ouhaddach, M.; ElYacoubi, H.; Douaik, A.; Rochdi, A. Morpho-physiological and biochemical responses to salt stress in wheat (Triticum aestivum L.) at the heading stage. J. Mater. Environ. Sci. 2018, 9, 1899–1907. [Google Scholar]
- El-Hendawy, S.; Al-Suhaibani, N.; Dewir, Y.H.; Elsayed, S.; Alotaibi, M.; Hassan, W.; Refay, Y.; Tahir, M.U. Ability of modified spectral reflectance indices for estimating growth and photosynthetic efficiency of wheat under saline field conditions. Agronomy 2019, 9, 35. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Pushnik, J.C.; Dobrowski, S.; Ustin, S.L. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651. [Google Scholar] [CrossRef]
- Orzechowska, A.; Trtílek, M.; Tokarz, K.M.; Szymańska, R.; Niewiadomska, E.; Rozpądek, P.; Wątor, K. Thermal analysis of stomatal response under salinity and high light. Int. J. Mol. Sci. 2021, 22, 4663. [Google Scholar] [CrossRef]
- Sirault, X.R.R.; James, R.A.; Furbank, R.T.; Sirault, X.R.R.; James, R.A.; Furbank, R.T. A New screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct. Plant Biol. 2009, 36, 970–977. [Google Scholar] [CrossRef]
- Radi, A.A.; Farghaly, F.A.; Hamada, A.M. Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean genotypes to salinity. J. Biol. Earth Sci. 2013, 2, 72–88. [Google Scholar]
- Genc, Y.; Taylor, J.; Lyons, G.; Li, Y.; Cheong, J.; Appelbee, A.; Oldach, K.; Sutton, T. Bread wheat with high salinity and sodicity tolerance. Front. Plant Sci. 2019, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Rahman, M.; Hasan, M.; Amin, M.F.; Matin, M.Q.I.; Faruq, G.; Alkeridis, L.A.; Gaber, A.; Hossain, A. Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon 2024, 10, e29042. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Thiel, V.; Hügler, M.; Blümel, M.; Baumann, H.I.; Gärtner, A.; Schmaljohann, R.; Strauss, H.; Garbe-Schönberg, D.; Petersen, S.; Cowart, D.A.; et al. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: Lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea. Front. Microbiol. 2012, 3, 423. [Google Scholar] [CrossRef]
- Basu, S.; Giri, R.K.; Benazir, I.; Kumar, S.; Rajwanshi, R.; Dwivedi, S.K.; Kumar, G. Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress. Physiol. Mol. Biol. Plants 2017, 23, 837–850. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, A.; Benazir, I.; Kumar, G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiol. Plant 2021, 171, 502–519. [Google Scholar] [CrossRef]
- Du, Y.D.; Zhang, Q.; Cui, B.J.; Sun, J.; Wang, Z.; Ma, L.H.; Niu, W.Q. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate. Agric. Water Manag. 2020, 235, 106152. [Google Scholar] [CrossRef]
- Liu, X.; Chang, X.; Wang, Y.; Wang, D.; Wang, X.; Meng, Q.; Wang, P. Adaptation to priming drought at six-leaf stage relieves maize yield loss to individual and combined drought and heat stressors around flowering. Environ. Exp. Bot. 2024, 224, 105799. [Google Scholar] [CrossRef]
- Grzesiak, S.; Hordy´nska, N.; Szczyrek, P.; Grzesiak, M.T.; Noga, A.; Szechy’nska-Hebda, M. Variation among wheat (Triticum easativum L.) genotypes in response to the drought stress: I-Selection approaches. J. Plant Interact. 2019, 14, 30–44. [Google Scholar] [CrossRef]
- Mohi-Ud-Din, M.; Hossain, M.A.; Rohman, M.M.; Uddin, M.N.; Haque, M.S.; Ahmed, J.U.; Hossain, A.; Hassan, M.M.; Mostofa, M.G. Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 2021, 10, 879. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.E.; Hu, Y.; Yakout, G.M.; Awad, A.M.; Hafiz, S.E.; Schmidhalter, U. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur. J. Agron. 2005, 22, 243–253. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Ruan, Y.; Hu, Y.; Schmidhalter, U. A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. J. Agron. Crop Sci. 2009, 195, 356–367. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; p. 204. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls A and B of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 603, 591–592. [Google Scholar] [CrossRef]
- Saddiq, M.S.; Iqbal, S.; Hafeez, M.B.; Ibrahim, A.M.; Raza, A.; Fatima, E.M.; Baloch, H.; Woodrow, P.; Ciarmiello, L.F. Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 2021, 11, 1193. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Hafeez, A.; Rasheed, R.; Hussain, I.; Farooq, U.; Rizwan, M.; Ali, S. Evaluation of physio-morphological and biochemical responses for salt tolerance in wheat (Triticum aestivum L.) cultivars. J. Plant Growth Regul. 2023, 42, 4402–4422. [Google Scholar] [CrossRef]
- Toka, H.; Mouad, B.; Kebaili, F.F.; Maroua, H.; Awatef, G.; Hamdi, B. Assessment of salt tolerance in Algerian oasis wheat landraces: An examination of biochemical, physiological, and agronomical traits. Emir. J. Food Agric. 2024, 36, 1–14. [Google Scholar] [CrossRef]
- Xu, Y.; Bu, W.; Xu, Y.; Fei, H.; Zhu, Y.; Ahmad, I.; Nimir, N.E.A.; Zhou, G.; Zhu, G. Effects of salt stress on physiological and agronomic traits of rice genotypes with contrasting salt tolerance. Plants 2024, 13, 1157. [Google Scholar] [CrossRef]
- Anschütz, U.; Becker, D.; Shabala, S. Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J. Plant Physiol. 2014, 171, 670–687. [Google Scholar] [CrossRef]
- Cherel, I.; Lefoulon, C.; Boeglin, M.; Sentenac, H. Molecular mechanisms involved in plant adaptation to low K+ availability. J. Exp. Bot. 2014, 65, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Shabala, S.; Shabala, L.; Fan, Y.; Zhou, M.X. Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J. Agron. Crop Sci. 2016, 202, 115–124. [Google Scholar] [CrossRef]
- Nedjimi, B.; Daoud, Y. Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 2009, 249, 163–166. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Mehrvar, M.R.; Sanjani, S.; Amini, A.; Nikkhah-Chamanabad, H.; Asadi, A. Effects of salinity stress on seedling biomass, physiochemical properties, and grain yield in different breeding wheat genotypes. Acta Physiol. Plant. 2021, 43, 98. [Google Scholar] [CrossRef]
- Boopal, J.; Sathee, L.; Ramasamy, R.; Pandey, R.; Chinnusamy, V. Influence of incremental short-term salt stress at the seedling stage on root plasticity, shoot thermal profile and ion homeostasis in contrasting wheat genotypes. Agriculture 2023, 13, 1946. [Google Scholar] [CrossRef]
- Ibrahimova, U.; Kumari, P.; Yadav, S.; Rastogi, A.; Antala, M.; Suleymanova, Z.; Zivcak, M.; Arif, T.-U.; Hussain, S.; Abdelhamid, M.; et al. Progress in understanding salt stress response in plants using biotechnological tools. J. Biotechnol. 2021, 329, 180–191. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Chen, B.; Bian, X.; Tu, M.; Yu, T.; Jiang, L.; Lu, Y.; Chen, X. Moderate salinity stress increases the seedling biomass in oilseed rape (Brassica napus L.). Plants 2023, 12, 1650. [Google Scholar] [CrossRef]
- Amirjani, M.R. Effect of salinity stress on growth; sugar content; pigments and enzyme activity of rice. Int. J. Bot. Stud. 2011, 7, 73–81. [Google Scholar] [CrossRef]
- Wang, X.; Hou, L.; Lu, Y.; Wu, B.; Gong, X.; Liu, M.; Wang, J.; Sun, Q.; Vierling, E.; Xu, S. Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J. Exp. Bot. 2018, 69, 5531–5545. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, T.Y.; El-Hendawy, S.; Yousef, M.S.; Emam, M.A.; Okasha, S.A. Application of infrared thermal imagery for monitoring salt tolerant of wheat genotypes. J. Am. Sci. 2014, 10, 227–234. [Google Scholar]
- Hairmansis, A.; Berger, B.; Tester, M.; Roy, S.J. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 2014, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Bashir, S.; Anwar, S.; Bibi, S.; Bangash, A.; Ullah, F.; Shikrha, E. Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pak. J. Bot. 2012, 44, 7–13. [Google Scholar]
- Azizpour, K.; Shakiba, M.R.; Sima, N.A.K.K.; Alyari, H.; Mogaddam, M.; Esfandiari, E.; Pessarakli, M. Physiological response of spring durum wheat genotypes to salinity. J. Plant Nutr. 2010, 33, 859–873. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Emam, Y.; Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 2015, 39, 625–634. [Google Scholar] [CrossRef]
- Ahmad, Z.; Waraich, E.A.; Akhtar, S.; Anjum, S.; Ahmad, T.; Mahboob, W.; Hafeez, O.B.A.; Tapera, T.; Labuschagne, M.; Rizwan, M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol. Plant. 2018, 40, 80. [Google Scholar] [CrossRef]
- Irshad, A.; Ahmed, R.I.; Ur Rehman, S.; Sun, G.; Ahmad, F.; Sher, M.A.; Aslam, M.Z.; Hassan, M.M.; Qari, S.H.; Aziz, M.K.; et al. Characterization of salt tolerant wheat genotypes by using morpho-physiological, biochemical, and molecular analysis. Front. Plant Sci. 2022, 13, 956298. [Google Scholar]
- Aslam, M.; Ahmad, K.; Akhtar, M.A.; Maqbool, M.A. Salinity Stress in Crop Plants: Effects of stress, tolerance mechanisms and breeding strategies for improvement. J. Agric. Basic Sci. 2017, 2, 70–85. [Google Scholar]
- Alam, M.M.; Khan, M.A.R.; Salehin, Z.U.; Uddin, M.; Soheli, S.J.; Khan, T.Z. Combined PCA-Daugman method: An efficient technique for face and iris recognition. J. Adv. Math. Comput. Sci. 2020, 23, 34–44. [Google Scholar] [CrossRef]
- Pastuszak, J.; Dziurka, M.; Hornyák, M.; Szczerba, A.; Kopec, P.; Płazek, A. Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes. Int. J. Mol. Sci. 2022, 23, 8397. [Google Scholar] [CrossRef] [PubMed]
SOV | First Year (2019–2020) | Second Year (2020–2021) | Combined Two Years | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST | G | G × ST | ST | G | G × ST | Y | ST | G | G × Y | G × ST | ST × Y | G × ST × Y | |
Df | 1 | 21 | 21 | 1 | 21 | 21 | 1 | 1 | 21 | 1 | 21 | 21 | 21 |
Na+ | 3553.26 *** | 4.76 ** | 4.26 *** | 4516 *** | 6.88 *** | 6.19 *** | 1.49 ns | 7989.04 *** | 9.42 *** | 2.38 ** | 8.31 *** | 3.03 ns | 2.26 ** |
K+ | 8.05 ns | 10.51 *** | 17.82 *** | 6.58 * | 7.34 *** | 27.21 *** | 21.29 * | 0.05 ns | 14.24 *** | 3.27 *** | 41.51 *** | 14.28 * | 4.53 *** |
Ca2+ | 212.58 ** | 15.37 *** | 10.69 *** | 648.55 ** | 6.24 *** | 20.74 *** | 0.02 ns | 859.91 *** | 15.09 *** | 6.78 *** | 16.14 *** | 193.02 *** | 15.00 *** |
K+/Na+ | 455.25 ** | 25.33 *** | 26.75 *** | 1201.27 *** | 62.39 *** | 60.61 *** | 2.28 ns | 1364.18 *** | 70.91 *** | 3.31 *** | 72.51 *** | 1.87 ns | 2.52 *** |
Ca2+/Na+ | 19,552.76 *** | 15.15 *** | 14.19 *** | 770.30 ** | 16.37 *** | 13.88 *** | 1.15 ns | 3085.47 *** | 28.33 *** | 2.96 *** | 24.90 *** | 1.42 *** | 3.22 *** |
RWC | 6640.32 *** | 2.24 ** | 1.92 ** | 485.20 ** | 1.43 ns | 0.96 ns | 1.09 ns | 2419.10 *** | 2.67 *** | 1.02 ns | 2.24 ** | 62.77 ** | 0.66 ns |
CT | 6448.15 *** | 11.48 *** | 14.35 *** | 4530.65 *** | 12.73 *** | 9.59 *** | 703 ** | 10,899.67 *** | 20.17 *** | 3.97 *** | 20.68 *** | 89.78 *** | 3.49 *** |
FV/FM | 625 ** | 4.17 *** | 3.29 *** | 1980.25 *** | 6.09 *** | 4.37 *** | 22.94 * | 2298.4 *** | 5.74 *** | 5.34 *** | 5.34 *** | 99.58 *** | 2.78 *** |
Chla/Chlb | 8.97 ns | 3.437 *** | 17.29 *** | 40.60 * | 4.73 *** | 19.21 *** | 26.96 * | 49.28 ** | 5.58 *** | 3.06 *** | 31.11 *** | 23.95 ** | 6.08 *** |
Chlt | 677.14 ** | 12.23 *** | 4.06 *** | 1195.12 *** | 18.16 *** | 1.33 ns | 503.58 ** | 1870.02 *** | 27.32 *** | 5.07 *** | 2.996 *** | 110.75 *** | 1.46 ns |
PDW | 793.99 ** | 8.20 *** | 9.24 *** | 68.60 * | 6.35 *** | 4.76 *** | 23.44 * | 314.28 *** | 11.88 *** | 2.41 *** | 12.06 **** | 5.01 ns | 1.32 ns |
GLA | 981.56 *** | 7.91 *** | 6.38 *** | 9785.80 *** | 28.23 *** | 27.88 *** | 0.53 ns | 3695.37 *** | 24.16 *** | 5.06 *** | 211.63 *** | 1.68 ns | 5.31 *** |
GNPS | 513.82 ** | 3.76 *** | 1.63 ns | 5494.42 *** | 6.34 *** | 2.17 ** | 32.16 * | 2046.01 *** | 8.31 *** | 1.06 ns | 3.12 *** | 5.24 ns | 0.54 ns |
GY | 1379.46 *** | 9.79 *** | 8.99 *** | 2615.50 *** | 5.19 *** | 3.17 *** | 11.09 ns | 3663.93 *** | 11.83 *** | 1.47 ns | 9.44 *** | 2.03 ns | 0.57 ns |
BY | 304.55 ** | 5.20 *** | 5.08 *** | 65.80 * | 6.16 *** | 7.42 *** | 41.40 * | 225.56 *** | 10.90 *** | 0.46 ns | 11.83 *** | 0.29 ns | 0.67 ns |
HI | 82.70 * | 3.15 *** | 2.53 ** | 12.50 ns | 2.99 *** | 1.90 * | 1.01 ns | 34.18 ** | 5.22 *** | 0.93 ns | 3.67 *** | 0.93 ns | 0.79 ns |
Varieties/RILs | Na+ (mmol kg−1 DW−1) | K+ (mmol kg−1 DW) | Ca2+ (mmol kg−1 DW−1) | K+/Na+ | Ca2+/Na+ | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | S | C | S | C | S | C | S | C | S | |
Sakha 93 | 103.0 a | 1737.2 c–f | 1163.7 a–d | 969.1 def | 448.1 bcd | 520.9 cde | 11.3 efg | 0.55 ab | 4.36 hij | 0.30 a |
Sids 1 | 87.8 a | 2026.5 abc | 1034.5 de | 904.8 ef | 461.3 bc | 476.7 ef | 11.8 de | 0.45 ab | 5.25 cde | 0.24 a |
Sakha 61 | 95.9 a | 2279.9 a | 1236.9 ab | 744.9 gh | 457.7 bc | 450.4 f | 12.9 bc | 0.32 b | 4.77 fgh | 0.20 a |
Kawz | 88.4 a | 1404.6 f | 1058.4 d | 1076.3 d | 430.4 cd | 539.9 cd | 12.0 de | 0.75 ab | 4.88 e–h | 0.38 a |
RIL1-1 | 91.1 a | 2059.1 abc | 1002.8 de | 719.5 h | 422.5 d | 448.6 f | 11.0 fg | 0.35 b | 4.65 gh | 0.22 a |
RIL1-2 | 96.4 a | 1853.0 cd | 1198.9 ab | 845.9 fg | 476.4 b | 509.4 e | 12.4 cd | 0.47 ab | 4.95 efg | 0.28 a |
RIL1-3 | 141.5 a | 2199.4 a | 1245.6 a | 846.5 fg | 488.6 ab | 480.7 e | 8.8 j | 0.38 b | 3.46 k | 0.22 a |
RIL1-4 | 91.1 a | 2115.5 a | 1169.3 abc | 890.6 f | 481.9 ab | 490.0 e | 12.9 bc | 0.42 b | 5.30 cd | 0.23 a |
RIL1-5 | 106.4 a | 2104.3 a | 1155.3 bcd | 737.9 h | 455.2 bc | 446.0 f | 10.9 g | 0.35 b | 4.28 ij | 0.21 a |
RIL1-6 | 108.9 a | 1713.8 def | 1195.8 ab | 1221.9 bc | 458.2 bc | 557.1 c | 11.0 fg | 0.72 ab | 4.22 ij | 0.32 a |
RIL1-7 | 83.9 a | 1580.6 f | 1101.9 cd | 1109.3 d | 438.0 cd | 513.1 e | 13.2 b | 0.75 ab | 5.21 cde | 0.34 a |
RIL2-1 | 132.2 a | 2073.5 ab | 1019.6 de | 997.9 de | 448.3 bc | 493.6 e | 7.7 l | 0.48 ab | 3.38 k | 0.24 a |
RIL2-2 | 82.7 a | 1967.0 bc | 924.1 ef | 954.7 ef | 419.2 d | 487.2 e | 11.4 ef | 0.49 ab | 5.04 ef | 0.25 a |
RIL2-3 | 68.8 a | 1776.9 cde | 639.5 i | 1069.7 d | 405.6 de | 516.8 de | 9.3 i | 0.60 ab | 5.87 b | 0.29 a |
RIL2-4 | 90.8 a | 1608.4 f | 747.8 gh | 1218.8 bc | 400.6 e | 536.3 cd | 8.3 k | 0.76 ab | 4.41 hi | 0.33 a |
RIL2-5 | 105.5 a | 1702.3 ef | 725.6 gh | 1222.9 bc | 426.5 d | 532.5 cd | 6.9 n | 0.71 ab | 4.02 j | 0.31 a |
RIL2-6 | 68.7 a | 1480.4 f | 902.3 f | 1020.5 de | 434.8 cd | 507.8 e | 13.2 b | 0.72 ab | 6.33 a | 0.35 a |
RIL2-7 | 87.5 a | 1486.2 f | 1231.5 ab | 1113.5 d | 467.6 b | 552.7 c | 14.1 a | 0.76 ab | 5.35 c | 0.37 a |
RIL2-8 | 96.2 a | 1509.1 f | 1038.2 d | 1175.4 c | 497.4 a | 558.7 c | 10.8 g | 0.78 ab | 5.17 de | 0.37 a |
RIL2-9 | 105.3 a | 1932.2 c | 769.2 g | 1016.6 de | 419.1 d | 504.8 e | 7.3 m | 0.53 ab | 3.98 j | 0.26 a |
RIL2-10 | 105.5 a | 1599.4 f | 933.7 ef | 1287.3 a | 453.5 bc | 588.8 a | 8.9 j | 0.80 ab | 4.30 ij | 0.38 a |
RIL2-11 | 71.3 a | 1461.1 f | 708.2 h | 1244.8 ab | 423.6 d | 573.6 b | 9.9 h | 0.85 ab | 5.93 b | 0.39 a |
Average | 95.85 | 1803.20 | 1009.2 | 1017.7 | 446.1 | 512.98 | 10.7 | 0.59 | 4.78 | 0.30 |
Varieties/RILs | RWC | CT (°C) | Fv/Fm | Chla/Chlb | Chlt | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | S | C | S | C | S | C | S | C | S | |
Sakha 93 | 79.78 a | 69.00 cd | 27.67 f | 36.48 ae | 0.81 abc | 0.83 ab | 2.13 fgh | 2.79 abc | 4.18 cde | 3.26 abc |
Sids 1 | 76.28 abc | 66.58 d | 27.73 f | 36.51 a–e | 0.81 abc | 0.79 a–f | 2.27 fgh | 2.04 c–h | 3.92 def | 2.67 cde |
Sakha 61 | 79.17 a | 62.12 d | 28.01 f | 39.06 a | 0.80 a–d | 0.72 f | 4.73 a | 1.31 h | 3.59 f | 2.13 f |
Kawz | 81.68 a | 65.52 d | 27.76 f | 35.79 a–e | 0.81 a–d | 0.78 a–f | 2.51 fg | 2.08 c–g | 4.87 ab | 3.34 ab |
RIL1-1 | 79.47 a | 62.57 d | 26.00 f | 38.74 a | 0.81 a–d | 0.74 def | 3.84 bc | 1.83 e–h | 3.57 f | 2.59 de |
RIL1-2 | 83.39 a | 63.98 d | 27.11 f | 37.36 abc | 0.83 a | 0.78 a–f | 3.31 de | 1.64 gh | 4.03 de | 2.71 cde |
RIL1-3 | 81.56 a | 65.18 d | 26.24 f | 38.16 ab | 0.82 abc | 0.78 a–f | 4.15 b | 1.78 fgh | 3.96 de | 2.71 cde |
RIL1-4 | 80.81 a | 64.83 d | 25.83 f | 38.08 ab | 0.81 a–d | 0.78 a–f | 3.49 cd | 1.52 h | 4.16 de | 2.54 e |
RIL1-5 | 81.14 a | 65.33 d | 26.38 f | 38.06 ab | 0.82 abc | 0.77 a–f | 2.97 ef | 1.92 d–h | 3.75 ef | 2.62 de |
RIL1-6 | 83.98 a | 69.68 bcd | 26.31 f | 33.79 de | 0.82 abc | 0.84 a–f | 1.98 h | 2.82 ab | 4.45 c | 3.68 a |
RIL1-7 | 83.84 a | 66.64 d | 25.76 f | 35.74 a–e | 0.81 a–d | 0.81 a–f | 2.35 fg | 2.25 cde | 4.89 a | 3.71 a |
RIL2-1 | 78.89 a | 65.06 d | 28.01 f | 37.44 abc | 0.82 abc | 0.75 a | 2.24 fgh | 2.27 cd | 3.83 ef | 2.76 cde |
RIL2-2 | 79.65 a | 65.92 d | 27.91 f | 38.24 ab | 0.80 a–e | 0.73 a–d | 2.72 f | 2.22 cde | 3.85 ef | 2.94 c |
RIL2-3 | 78.95 a | 66.17 d | 26.76 f | 36.96 a–d | 0.79 a–f | 0.78 c–f | 2.38 fg | 2.30 c | 4.18 de | 2.84 cd |
RIL2-4 | 81.80 a | 67.23 d | 28.37 f | 35.14 b–e | 0.79 a–f | 0.79 ef | 1.67 h | 2.63 bc | 4.11 de | 3.09 bc |
RIL2-5 | 80.41 a | 67.84 d | 27.59 f | 35.04 b–e | 0.82 abc | 0.77 a–f | 1.72 h | 2.66 bc | 4.42 c | 3.22 bc |
RIL2-6 | 81.29 a | 65.17 d | 26.21 f | 36.18 a–e | 0.79 a–f | 0.79 a–f | 2.39 fg | 2.11 c–f | 4.66 bc | 2.88 c |
RIL2-7 | 77.48 ab | 66.64 d | 27.98 f | 35.89 a–e | 0.82 abc | 0.77 a–f | 1.93 h | 2.98 a | 4.17 de | 3.33 ab |
RIL2-8 | 78.26 a | 69.69 bcd | 27.44 f | 34.58 cde | 0.79 a–f | 0.77 a–f | 1.77 h | 2.84 ab | 4.20 cd | 3.29 ab |
RIL2-9 | 80.73 a | 64.15 d | 27.24 f | 37.59 abc | 0.83 ab | 0.75 b–f | 2.47 fg | 2.24 cde | 4.14 de | 2.96 c |
RIL2-10 | 81.30 a | 69.33 cd | 26.41 f | 33.39 e | 0.80 a–e | 0.79 a–f | 2.58 f | 2.32 c | 4.86 ab | 3.73 a |
RIL2-11 | 82.00 a | 67.78 d | 26.88 f | 34.34 cde | 0.83 ab | 0.80 a–e | 2.11 gh | 2.38 c | 4.57 c | 3.43 a |
Average | 80.54 | 66.20 | 27.07 | 36.48 | 0.81 | 0.78 | 2.62 | 2.22 | 4.20 | 3.02 |
Varieties/RILs | PDW | GLA | GNPS | GY | BY | HI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | S | C | S | C | S | C | S | C | S | C | S | |
Sakha93 | 5.44 e–k | 4.43 j–r | 192.5 f–k | 132.7 j–n | 48.95 b–f | 40.40 h–m | 0.54 d–h | 0.39 o–s | 1.8 b–i | 1.2 o–s | 30.5 a–k | 33.1 a–j |
Sids 1 | 5.58 d–i | 4.46 j–r | 185.93 f–l | 132.13 j–n | 49.11 a–f | 38.28 i–n | 0.54 e–i | 0.37 o–s | 1.7 c–l | 1.5 i–p | 32.7 a–j | 25.8 ijk |
Sakha61 | 5.74 c–g | 3.36 r | 218.62 d–h | 106.47 n | 49.48 a–e | 33.34 n | 0.58 b–g | 0.30 s | 1.6 f–n | 1 qrs | 37.4 a | 29.6 a–k |
RIL1-1 | 6.92 ab | 4.53 h–q | 305.41 ab | 156.37 h–n | 55.78 a | 40.90 h–l | 0.68 a | 0.41 m–r | 2.0 abc | 1.5 i–p | 34 a–g | 27.6 d–k |
RIL1-2 | 6.62 a–d | 3.51 pqr | 235.99 c–f | 119.71 mn | 51.56 abc | 34.86 lmn | 0.60 a–f | 0.33 rs | 1.9 a–d | 0.9 s | 31 a–k | 35.7 abc |
RIL1-3 | 6.76 abc | 4.38 k–r | 323.69 a | 130.99 j–n | 53.06 ab | 40.10 h–m | 0.67 ab | 0.36 o–s | 2.1 a | 1.3 l–r | 31.5 a–k | 28 c–k |
RIL1-4 | 6.99 a | 4.11 n–r | 272.97 a–d | 129.67 k–n | 52.74 ab | 37.18 j–n | 0.63 a–d | 0.34 qrs | 2.2 a | 1.5 i–p | 29.4 b–k | 24.1 k |
RIL1-5 | 6.44 a–e | 3.64 o–r | 313.39 ab | 125.50 lmn | 52.23 abc | 36.79 k–n | 0.65 abc | 0.35 p–s | 2.03 ab | 1.0 rs | 31.9 a–k | 37.0 ab |
RIL1-6 | 5.23 f–m | 3.51 qr | 198.44 e–i | 126.72 lmn | 49.23 a–f | 38.44 i–n | 0.55 d–h | 0.36 p–s | 1.9 a–g | 1.4 j–q | 29.5 a–k | 26.4 f–k |
RIL1-7 | 5.37 e–k | 4.75 f–n | 290.64 ab | 150.54 i–n | 53.57 ab | 44.36 d–i | 0.66 a–e | 0.44 i–p | 1.9 a–e | 1.5 i–p | 32.5 a–j | 29.5 a–k |
RIL2-1 | 6.90 ab | 4.75 f–n | 304.81 ab | 145.32 i–n | 53.78 ab | 42.36 f–k | 0.68 a | 0.42 k–r | 2.0 ab | 1.6 e–n | 33.6 a–i | 26.7 f–k |
RIL2-2 | 5.25 f–l | 4.18 l–r | 172.00 g–m | 144.41 i–n | 45.90 c–h | 33.95 mn | 0.51 g–l | 0.36 p–s | 1.5 h–p | 1.3 k–q | 34.0 a–g | 27.2 e–k |
RIL2-3 | 5.23 f–m | 4.13 m–r | 160.44 h–n | 137.63 i–n | 50.67 a–d | 36.17 k–n | 0.53 f–j | 0.36 p–s | 1.5 g–o | 1.2 p–s | 34.3 a–f | 31.1 a–k |
RIL2-4 | 5.15 f–n | 4.44 j–r | 142.74 i–n | 134.32 i–n | 48.57 b–g | 38.86 i–n | 0.50 g–m | 0.39 o–s | 1.5 g–o | 1.5 i–p | 32.9 a–j | 27.1 e–k |
RIL2-5 | 5.03 f–n | 4.61 h–p | 161.68 g–n | 142.80 i–n | 47.96 b–g | 39.58 h–n | 0.50 g–n | 0.41 l–r | 1.6 d–n | 1.6 d–m | 30.9 a–k | 25.5 jk |
RIL2-6 | 5.85 b–f | 4.54 h–q | 252.19 b–e | 157.87 h–n | 49.04 a–f | 38.52 i–n | 0.53 e–i | 0.41 m–r | 1.7 b–j | 1.6 e–n | 31.8 a–k | 26 h–k |
RIL2-7 | 5.62 d–h | 4.64 g–o | 194.10 f–j | 149.01 i–n | 53.26 ab | 40.83 h–l | 0.58 b–g | 0.39 o–s | 1.9 a–f | 1.5 g–p | 31 a–k | 25.6 jk |
RIL2-8 | 5.73 c–g | 4.69 g–o | 253.22 b–e | 144.94 i–n | 48.09 b–g | 40.36 h–m | 0.52 f–j | 0.40 n–r | 1.5 g–p | 1.4 j–p | 34.9 a–e | 28.5 c–k |
RIL2-9 | 5.02 f–n | 4.70 g–o | 186.93 f–l | 151.74 i–n | 49.69 a–e | 41.79 g–k | 0.52 f–k | 0.41 m–r | 1.5 f–o | 1.4 j–q | 33.8 a–h | 29.8 a–k |
RIL2-10 | 6.44 a–e | 4.06 n–r | 223.33 d–g | 146.73 i–n | 48.80 b–f | 36.31 k–n | 0.54 d–h | 0.37 o–s | 1.6 d–n | 1.4 j–p | 34.1 a–g | 26.3 g–k |
RIL2-11 | 6.73 abc | 5.40 e–k | 281.23 a–d | 156.24 h–n | 52.65 ab | 43.67 e–j | 0.65 abc | 0.46 h–o | 1.9 a–h | 1.3 n–s | 35.3 a–d | 36.9 ab |
Average | 5.89 | 4.33 | 232.36 | 139.55 | 50.68 | 38.99 | 0.58 | 0.38 | 1.78 | 1.35 | 32.79 | 29.09 |
Traits | Control | Salinity Stress | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | |
Na+ | 0.18 | 0.90 | −0.25 | 0.12 | −0.12 | −0.89 | 0.00 |
K+ | 0.54 | 0.46 | 0.60 | 0.07 | −0.26 | 0.93 | 0.01 |
Ca2+ | 0.42 | 0.43 | 0.52 | 0.10 | −0.43 | 0.93 | 0.20 |
K+/Na+ | 0.37 | −0.35 | 0.79 | −0.02 | −0.16 | 0.95 | 0.01 |
Ca2+/Na+ | −0.05 | −0.84 | 0.43 | −0.15 | −0.02 | 0.92 | 0.09 |
RWC | 0.66 | −0.19 | −0.50 | −0.04 | −0.07 | 0.85 | 0.14 |
CT | −0.67 | 0.18 | 0.11 | 0.45 | −0.02 | −0.96 | −0.08 |
Fv/Fm | 0.31 | 0.45 | −0.19 | 0.23 | −0.04 | 0.66 | 0.00 |
Chl a/b | 0.45 | 0.37 | 0.41 | −0.23 | 0.63 | 0.79 | −0.07 |
Chlt | 0.35 | −0.64 | −0.39 | 0.36 | −0.31 | 0.93 | 0.12 |
DW | 0.81 | 0.05 | −0.11 | 0.18 | 0.36 | 0.92 | −0.06 |
GLA | 0.90 | −0.01 | −0.05 | 0.33 | −0.04 | 0.87 | −0.16 |
GNPS | 0.85 | −0.38 | −0.02 | 0.00 | 0.03 | 0.88 | 0.07 |
GY | 0.97 | −0.13 | −0.01 | 0.12 | 0.11 | 0.97 | 0.09 |
BY | 0.93 | 0.04 | −0.12 | −0.28 | −0.06 | 0.61 | −0.78 |
HI | −0.21 | −0.22 | 0.30 | 0.79 | 0.33 | −0.02 | 0.99 |
Eigenvalue | 5.97 | 3.07 | 2.25 | 1.36 | 1.05 | 11.56 | 1.73 |
Variability (%) | 37.32 | 19.16 | 14.07 | 8.49 | 6.56 | 72.25 | 10.78 |
Cumulative % | 37.32 | 56.48 | 70.55 | 79.03 | 85.59 | 72.25 | 83.03 |
Control | Salinity | |||||
---|---|---|---|---|---|---|
Group | Group 1 | Group 2 | Group 3 | Group 1 | Group 2 | Group 3 |
Gen. No. | 7 | 6 | 9 | 11 | 8 | 3 |
Na+ | 102.24 | 97.55 | 89.76 | 1571.18 | 1991.63 | 2151.46 |
K+ | 1129.09 | 804.30 | 1052.59 | 1150.89 | 921.75 | 785.01 |
Ca2+ | 461.02 | 419.87 | 452.02 | 543.77 | 489.40 | 462.97 |
K+/Na+ | 11.30 | 8.48 | 11.78 | 0.74 | 0.47 | 0.36 |
Ca2+/Na+ | 4.62 | 4.45 | 5.12 | 0.35 | 0.25 | 0.22 |
RWC | 82.37 | 80.07 | 79.43 | 67.68 | 65.30 | 63.17 |
CT | 26.49 | 27.65 | 27.14 | 35.12 | 37.54 | 38.63 |
Fv/Fm | 0.81 | 0.81 | 0.81 | 0.79 | 0.77 | 0.74 |
Chla/Chlb | 2.91 | 2.20 | 2.68 | 2.53 | 2.05 | 1.55 |
Chlt | 4.46 | 4.09 | 4.07 | 3.36 | 2.78 | 2.42 |
PDW | 6.59 | 5.49 | 5.61 | 4.69 | 4.16 | 3.51 |
GLA | 298.88 | 185.40 | 211.94 | 148.71 | 135.33 | 117.23 |
GNPS | 53.40 | 48.49 | 50.03 | 41.23 | 37.41 | 35.00 |
GY | 654.53 | 518.49 | 556.23 | 414.47 | 362.30 | 330.18 |
BY | 2021.48 | 1577.80 | 1715.70 | 1438.09 | 1367.26 | 979.76 |
HI | 32.62 | 33.01 | 32.78 | 29.25 | 26.98 | 34.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.U.; El-Hendawy, S.; Al-Suhaibani, N. Comparative Performance of Ionic and Agro-Physiological Traits for Detecting Salt Tolerance in Wheat Genotypes Grown in Real Field Conditions. Life 2024, 14, 1487. https://doi.org/10.3390/life14111487
Tahir MU, El-Hendawy S, Al-Suhaibani N. Comparative Performance of Ionic and Agro-Physiological Traits for Detecting Salt Tolerance in Wheat Genotypes Grown in Real Field Conditions. Life. 2024; 14(11):1487. https://doi.org/10.3390/life14111487
Chicago/Turabian StyleTahir, Muhammad Usman, Salah El-Hendawy, and Nasser Al-Suhaibani. 2024. "Comparative Performance of Ionic and Agro-Physiological Traits for Detecting Salt Tolerance in Wheat Genotypes Grown in Real Field Conditions" Life 14, no. 11: 1487. https://doi.org/10.3390/life14111487
APA StyleTahir, M. U., El-Hendawy, S., & Al-Suhaibani, N. (2024). Comparative Performance of Ionic and Agro-Physiological Traits for Detecting Salt Tolerance in Wheat Genotypes Grown in Real Field Conditions. Life, 14(11), 1487. https://doi.org/10.3390/life14111487