Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pharmaceutical Drugs
3.1.1. Antiepileptics
3.1.2. Antidepressants
3.1.3. NMDAR (N-Methyl-D-Aspartate Receptor) Antagonists
3.1.4. Metabolic Agents
3.1.5. Enzyme Inhibitors
3.1.6. Alpha-2 Adrenergic Agonists
3.1.7. Histamine Receptor Antagonists and Mast Cell Stabilizer
3.1.8. Antiemetics
3.1.9. Antipsychotics
3.1.10. Wakefulness-Promoting Agents
3.1.11. Analgesics
3.1.12. IL-1 (Interleukin-1) Receptor Antagonists
3.1.13. Antibiotics
3.1.14. Selective Estrogen Receptor Modulators (SERMs)
3.1.15. Antimigraine
3.1.16. Vasoprotective Agents
3.1.17. Gastrin Receptor Antagonists
3.1.18. Hormones
3.2. Natural Extracts and Compounds
3.2.1. Antinociceptive Compounds
3.2.2. Antioxidant Compounds
3.2.3. Multi-Target Compounds
3.3. Antioxidants and Vitamins
4. Discussion
4.1. Mechanistic Insights into VIPN
4.2. Risk Factors for VIPN
4.3. Pharmacological Interventions for VIPN
4.4. Natural Remedies in VIPN
4.5. Role of Antioxidants and Vitamins in VIPN
4.6. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Cao, B.; Varghese, C.; Mikkelsen, B.; Weiderpass, E.; Soerjomataram, I. Comparing Cancer and Cardiovascular Disease Trends in 20 Middle- or High-Income Countries 2000–19: A Pointer to National Trajectories towards Achieving Sustainable Development Goal Target 3.4. Cancer Treat. Rev. 2021, 100, 102290. [Google Scholar] [CrossRef] [PubMed]
- Global Cancer Burden Growing, Amidst Mounting Need for Services. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 25 September 2024).
- Drummond, I.S.A.; de Oliveira, J.N.S.; Niella, R.V.; Silva, Á.J.C.; de Oliveira, I.S.; de Souza, S.S.; da Costa Marques, C.S.; Corrêa, J.M.X.; Silva, J.F.; de Lavor, M.S.L. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals 2024, 14, 1941. [Google Scholar] [CrossRef] [PubMed]
- Colvin, L.A. Chemotherapy-Induced Peripheral Neuropathy: Where Are We Now? Pain 2019, 160 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Sisignano, M.; Baron, R.; Scholich, K.; Geisslinger, G. Mechanism-Based Treatment for Chemotherapy-Induced Peripheral Neuropathic Pain. Nat. Rev. Neurol. 2014, 10, 694–707. [Google Scholar] [CrossRef]
- Blebea, N.M.; Hancu, G.; Vlad, R.A.; Pricopie, A. Applications of Capillary Electrophoresis for the Determination of Cannabinoids in Different Matrices. Molecules 2023, 28, 638. [Google Scholar] [CrossRef]
- Cavaletti, G.; Alberti, P.; Argyriou, A.A.; Lustberg, M.; Staff, N.P.; Tamburin, S. Chemotherapy-induced Peripheral Neurotoxicity: A Multifaceted, Still Unsolved Issue. J. Peripher. Nerv. Syst. 2019, 24, S6–S12. [Google Scholar] [CrossRef]
- Miltenburg, N.C.; Boogerd, W. Chemotherapy-Induced Neuropathy: A Comprehensive Survey. Cancer Treat. Rev. 2014, 40, 872–882. [Google Scholar] [CrossRef]
- Winters-Stone, K.M.; Horak, F.; Jacobs, P.G.; Trubowitz, P.; Dieckmann, N.F.; Stoyles, S.; Faithfull, S. Falls, Functioning, and Disability Among Women with Persistent Symptoms of Chemotherapy-Induced Peripheral Neuropathy. J. Clin. Oncol. 2017, 35, 2604–2612. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Smith, E.M.L.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; et al. Effect of Duloxetine on Pain, Function, and Quality of Life Among Patients with Chemotherapy-Induced Painful Peripheral Neuropathy: A randomized clinical trial. JAMA 2013, 309, 1359–1367. [Google Scholar] [CrossRef]
- Hirayama, Y.; Ishitani, K.; Sato, Y.; Iyama, S.; Takada, K.; Murase, K.; Kuroda, H.; Nagamachi, Y.; Konuma, Y.; Fujimi, A.; et al. Effect of Duloxetine in Japanese Patients with Chemotherapy-Induced Peripheral Neuropathy: A Pilot Randomized Trial. Int. J. Clin. Oncol. 2015, 20, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Salehifar, E.; Janbabaei, G.; Hendouei, N.; Alipour, A.; Tabrizi, N.; Avan, R. Comparison of the Efficacy and Safety of Pregabalin and Duloxetine in Taxane-Induced Sensory Neuropathy: A Randomized Controlled Trial. Clin. Drug Investig. 2020, 40, 249–257. [Google Scholar] [CrossRef]
- Hammack, J.E.; Michalak, J.C.; Loprinzi, C.L.; Sloan, J.A.; Novotny, P.J.; Soori, G.S.; Tirona, M.T.; Rowland, K.M.; Stella, P.J.; Johnson, J.A. Phase III Evaluation of Nortriptyline for Alleviation of Symptoms of Cis-Platinum-Induced Peripheral Neuropathy. Pain 2002, 98, 195–203. [Google Scholar] [CrossRef]
- Kautio, A.-L.; Haanpää, M.; Saarto, T.; Kalso, E. Amitriptyline in the Treatment of Chemotherapy-Induced Neuropathic Symptoms. J. Pain Symptom Manag. 2008, 35, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.D.; Flynn, P.J.; Sloan, J.A.; Wong, G.Y.; Novotny, P.; Johnson, D.B.; Gross, H.M.; Renno, S.I.; Nashawaty, M.; Loprinzi, C.L. Efficacy of Lamotrigine in the Management of Chemotherapy-induced Peripheral Neuropathy. Cancer 2008, 112, 2802–2808. [Google Scholar] [CrossRef]
- Wasilewski, A.; Mohile, N. Meet the Expert: How I Treat Chemotherapy-Induced Peripheral Neuropathy. J. Geriatr. Oncol. 2021, 12, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fallon, M.T.; Storey, D.J.; Krishan, A.; Weir, C.J.; Mitchell, R.; Fleetwood-Walker, S.M.; Scott, A.C.; Colvin, L.A. Cancer Treatment-Related Neuropathic Pain: Proof of Concept Study with Menthol—A TRPM8 Agonist. Support. Care Cancer 2015, 23, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.O.; Guo, Z.; Hayes, M.E.; Marks, J.D.; Park, J.W.; Benz, C.C.; Kirpotin, D.B.; Drummond, D.C. Characterization of Highly Stable Liposomal and Immunoliposomal Formulations of Vincristine and Vinblastine. Cancer Chemother. Pharmacol. 2009, 64, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.M.; Jimenez-Andrade, J.M.; Jonas, B.M.; Sevcik, M.A.; Koewler, N.J.; Ghilardi, J.R.; Wong, G.Y.; Mantyh, P.W. Intravenous Paclitaxel Administration in the Rat Induces a Peripheral Sensory Neuropathy Characterized by Macrophage Infiltration and Injury to Sensory Neurons and Their Supporting Cells. Exp. Neurol. 2007, 203, 42–54. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Soriano, D.; Santos Chocler, G.; Varela, M.A.; Coronel, M.F. Chemotherapy-Induced Neuropathy and Pain in Pediatric Oncology Patients: Impact of Combination Therapies. Eur. J. Pediatr. 2024, 183, 3749–3756. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Trinh, T.; Bosco, A.; Kiernan, M.C.; Goldstein, D.; Park, S.B. Characterising Vincristine-Induced Peripheral Neuropathy in Adults: Symptom Development and Long-Term Persistent Outcomes. Support. Care Cancer 2024, 32, 278. [Google Scholar] [CrossRef] [PubMed]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, Prevalence, and Predictors of Chemotherapy-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef]
- Flatters, S.J.; Bennett, G.J. Ethosuximide Reverses Paclitaxel- and Vincristine-Induced Painful Peripheral Neuropathy. Pain 2004, 109, 150–161. [Google Scholar] [CrossRef]
- Ali, H.; Khan, N.A.; Beg, M.M.A.; Sarwar, M.Z.; Kemelbek Kyzy, N.; Muktarovna, T.U.; Osmonaliev, K.; Khan, F.I.; Ay, M.B. Mechanism of Action of Antiepileptic Drugs. In How Synthetic Drugs Work; Elsevier: Amsterdam, The Netherlands, 2023; pp. 177–193. [Google Scholar]
- Matthews, E.A.; Dickenson, A.H. Effects of Ethosuximide, a T-Type Ca2+ Channel Blocker, on Dorsal Horn Neuronal Responses in Rats. Eur. J. Pharmacol. 2001, 415, 141–149. [Google Scholar] [CrossRef]
- Beyreuther, B.K.; Callizot, N.; Brot, M.D.; Feldman, R.; Bain, S.C.; Stöhr, T. Antinociceptive Efficacy of Lacosamide in Rat Models for Tumor- and Chemotherapy-Induced Cancer Pain. Eur. J. Pharmacol. 2007, 565, 98–104. [Google Scholar] [CrossRef]
- Carmland, M.E.; Kreutzfeldt, M.D.; Holbech, J.V.; Brask-Thomsen, P.K.; Krøigård, T.; Hansen, P.N.; Tankisi, H.; Jensen, T.S.; Bach, F.W.; Sindrup, S.H.; et al. The Effect of Lacosamide in Peripheral Neuropathic Pain: A Randomized, Double-blind, Placebo-controlled, Phenotype-stratified Trial. Eur. J. Pain 2024, 28, 105–119. [Google Scholar] [CrossRef]
- Wang, Y.; Brittain, J.M.; Jarecki, B.W.; Park, K.D.; Wilson, S.M.; Wang, B.; Hale, R.; Meroueh, S.O.; Cummins, T.R.; Khanna, R. In Silico Docking and Electrophysiological Characterization of Lacosamide Binding Sites on Collapsin Response Mediator Protein-2 Identifies a Pocket Important in Modulating Sodium Channel Slow Inactivation. J. Biol. Chem. 2010, 285, 25296–25307. [Google Scholar] [CrossRef]
- Jakhar, P.; Chouhan, O.; Gehlot, A.; Rathore, R.K.; Choudhary, R. A Comparative Study of the Effect of Gabapentin, Topiramate, Levetiracetam and Zonisamide for Neuropathic Pain Induced by Anticancer Drug (Vincristine) in Rats. J. Pharm. Res. Clin. Pract. 2014, 4, 1–6. [Google Scholar]
- Parveen, A.; Siddiqui, N.; Yar, M.S.; Siddiqui, S.; Kumar, V.; Nazar, S. Emerging Computational and Pharmacological Study of Topiramate: A Brief Review. World J. Adv. Res. Rev. 2024, 21, 624–633. [Google Scholar] [CrossRef]
- Rusciano, D. Molecular Mechanisms and Therapeutic Potential of Gabapentin with a Focus on Topical Formulations to Treat Ocular Surface Diseases. Pharmaceuticals 2024, 17, 623. [Google Scholar] [CrossRef] [PubMed]
- Back, S.K.; Won, S.Y.; Hong, S.K.; Na, H.S. Gabapentin Relieves Mechanical, Warm and Cold Allodynia in a Rat Model of Peripheral Neuropathy. Neurosci. Lett. 2004, 368, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Zbârcea, C.E. Gabapentin, alone and associated with tramadol reduces peripheral paclitaxel-induced neuropathy in rats. Farmacia 2011, 59, 414–423. [Google Scholar]
- Pușcașu, C.; Negreș, S.; Zbârcea, C.E.; Ungurianu, A.; Ștefănescu, E.; Blebea, N.M.; Chiriță, C. Evaluating the Antihyperalgesic Potential of Sildenafil–Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats. Pharmaceuticals 2024, 17, 783. [Google Scholar] [CrossRef] [PubMed]
- Gidal, B.E.; Resnick, T.; Smith, M.C.; Wheless, J.W. Zonisamide. Neurol. Clin. Pract. 2024, 14, e200210. [Google Scholar] [CrossRef] [PubMed]
- Leppik, I.E. Zonisamide: Chemistry, Mechanism of Action, and Pharmacokinetics. Seizure 2004, 13, S5–S9. [Google Scholar] [CrossRef]
- Soliman, A.; Wahid, A.; Wahby, M.M.; Bassiouny, A. Study of the Possible Synergistic Protective Effects of Melatonin and Pregabalin in Vincristine Induced Peripheral Neuropathy Wistar Albino Rats. Life Sci. 2020, 244, 117095. [Google Scholar] [CrossRef]
- Rani, S.; Bhatia, M.S. Pregabalin Dependence—A Rising Concern. Ind. Psychiatry J. 2024, 33, S299–S300. [Google Scholar] [CrossRef]
- Cho, S.J.; Lee, J.Y.; Jeong, Y.; Cho, S.Y.; Lee, D.-G.; Choi, J.Y.; Park, H.J. Milnacipran Has an Antihyperalgesic Effect on Cisplatin-Induced Neuropathy. Pharmaceutics 2023, 15, 2218. [Google Scholar] [CrossRef]
- Katsuyama, S.; Aso, H.; Otowa, A.; Yagi, T.; Kishikawa, Y.; Komatsu, T.; Sakurada, T.; Nakamura, H. Antinociceptive Effects of the Serotonin and Noradrenaline Reuptake Inhibitors Milnacipran and Duloxetine on Vincristine-Induced Neuropathic Pain Model in Mice. ISRN Pain 2014, 2014, 915464. [Google Scholar] [CrossRef]
- Greish, S.; Abogresha, N.; Zaitone, S. Duloxetine Modulates Vincristine-Induced Painful Neuropathy in Rats. J. Physiol. Pharmacol. Adv. 2014, 4, 420–430. [Google Scholar] [CrossRef]
- Mata-Bermudez, A.; Ríos, C.; Burelo, M.; Pérez-González, C.; García-Martínez, B.A.; Jardon-Guadarrama, G.; Calderón-Estrella, F.; Manning-Balpuesta, N.; Diaz-Ruiz, A. Amantadine Prevented Hypersensitivity and Decreased Oxidative Stress by NMDA Receptor Antagonism after Spinal Cord Injury in Rats. Eur. J. Pain 2021, 25, 1839–1851. [Google Scholar] [CrossRef] [PubMed]
- Dogan, G.; Onur, K. N-Methyl-d-Aspartate Receptor Antagonists May Ameliorate Spinal Cord Injury by Inhibiting Oxidative Stress: An Experimental Study in Rats. Turk. Neurosurg. 2020, 30, 60–68. [Google Scholar] [CrossRef]
- Park, B.Y.; Park, S.H.; Kim, W.M.; Yoon, M.H.; Lee, H.G. Antinociceptive Effect of Memantine and Morphine on Vincristine-Induced Peripheral Neuropathy in Rats. Korean J. Pain 2010, 23, 179–185. [Google Scholar] [CrossRef]
- Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J.; Memantine Study Group. Memantine in Moderate-to-Severe Alzheimer’s Disease. N. Engl. J. Med. 2003, 348, 1333–1341. [Google Scholar] [CrossRef]
- Tariot, P.N.; Farlow, M.R.; Grossberg, G.T.; Graham, S.M.; McDonald, S.; Gergel, I.; Memantine Study Group. Memantine Treatment in Patients with Moderate to Severe Alzheimer Disease Already Receiving Donepezil: A Randomized Controlled Trial. JAMA 2004, 291, 317–324. [Google Scholar] [CrossRef]
- Bhalla, S.; Singh, N.; Jaggi, A.S. Dose-Related Neuropathic and Anti-Neuropathic Effects of Simvastatin in Vincristine-Induced Neuropathic Pain in Rats. Food Chem. Toxicol. 2015, 80, 32–40. [Google Scholar] [CrossRef]
- Lee, G.H.; Kim, S.S. Therapeutic Strategies for Neuropathic Pain: Potential Application of Pharmacosynthetics and Optogenetics. Mediat. Inflamm. 2016, 2016, 5808215. [Google Scholar] [CrossRef]
- Shi, X.Q.; Lim, T.K.Y.; Lee, S.; Zhao, Y.Q.; Zhang, J. Statins Alleviate Experimental Nerve Injury-Induced Neuropathic Pain. Pain 2011, 152, 1033–1043. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, W.Y.; Wang, Z.Y.; Liu, F.; Wei, M.; Ma, C.; Huang, Y.G. Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway. Neurochem. Res. 2016, 41, 2457–2469. [Google Scholar] [CrossRef]
- Erdoğan, M.A.; Taşkıran, E.; Yiğittürk, G.; Erbaş, O.; Taşkıran, D. The Investigation of Therapeutic Potential of Oxytocin and Liraglutide on Vincristine-induced Neuropathy in Rats. J. Biochem. Mol. Toxicol. 2020, 34, e22415. [Google Scholar] [CrossRef] [PubMed]
- Iwai, T.; Ito, S.; Tanimitsu, K.; Udagawa, S.; Oka, J.-I. Glucagon-like Peptide-1 Inhibits LPS-Induced IL-1β Production in Cultured Rat Astrocytes. Neurosci. Res. 2006, 55, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bader, M.; Tamargo, I.; Rubovitch, V.; Tweedie, D.; Pick, C.G.; Greig, N.H. Liraglutide Is Neurotrophic and Neuroprotective in Neuronal Cultures and Mitigates Mild Traumatic Brain Injury in Mice. J. Neurochem. 2015, 135, 1203–1217. [Google Scholar] [CrossRef]
- Liu, W.J.; Jin, H.Y.; Lee, K.A.; Xie, S.H.; Baek, H.S.; Park, T.S. Neuroprotective Effect of the Glucagon-like Peptide-1 Receptor Agonist, Synthetic Exendin-4, in Streptozotocin-Induced Diabetic Rats. Br. J. Pharmacol. 2011, 164, 1410–1420. [Google Scholar] [CrossRef]
- Chen, S.; Liu, A.; An, F.; Yao, W.; Gao, X. Amelioration of Neurodegenerative Changes in Cellular and Rat Models of Diabetes-Related Alzheimer’s Disease by Exendin-4. Age 2012, 34, 1211–1224. [Google Scholar] [CrossRef]
- Cheng, K.-I.; Wang, H.-C.; Tseng, K.-Y.; Wang, Y.-H.; Chang, C.-Y.; Chen, Y.-J.; Lai, C.-S.; Chen, D.-R.; Chang, L.-L. Cilostazol Ameliorates Peripheral Neuropathic Pain in Streptozotocin-Induced Type I Diabetic Rats. Front. Pharmacol. 2022, 12, 771271. [Google Scholar] [CrossRef]
- Thacheril Mohanan, A.; Venkatesan, S.; Sermugapandian, N.; Al-Safhi, M.; Khan, G. Attenuating Effect of Cilostazol against Vincristine—Induced Neuropathic Pain in Mice. J. Pharm. Res. 2013, 6, 579–582. [Google Scholar] [CrossRef]
- Koyanagi, M.; Imai, S.; Iwamitsu, Y.; Matsumoto, M.; Saigo, M.; Moriya, A.; Ogihara, T.; Nakazato, Y.; Yonezawa, A.; Nakagawa, S.; et al. Cilostazol Is an Effective Causal Therapy for Preventing Paclitaxel-Induced Peripheral Neuropathy by Suppression of Schwann Cell Dedifferentiation. Neuropharmacology 2021, 188, 108514. [Google Scholar] [CrossRef]
- Sweitzer, S.M.; Pahl, J.L.; DeLeo, J.A. Propentofylline Attenuates Vincristine-Induced Peripheral Neuropathy in the Rat. Neurosci. Lett. 2006, 400, 258–261. [Google Scholar] [CrossRef]
- Xiang, Y.; Naik, S.; Zhao, L.; Shi, J.; Ke, H. Emerging Phosphodiesterase Inhibitors for Treatment of Neurodegenerative Diseases. Med. Res. Rev. 2024, 44, 1404–1445. [Google Scholar] [CrossRef]
- Sweitzer, S.M.; Schubert, P.; DeLeo, J.A. Propentofylline, a Glial Modulating Agent, Exhibits Antiallodynic Properties in a Rat Model of Neuropathic Pain. J. Pharmacol. Exp. Ther. 2001, 297, 1210–1217. [Google Scholar] [PubMed]
- Nie, B.; Zhang, S.; Huang, Z.; Huang, J.; Chen, X.; Zheng, Y.; Bai, X.; Zeng, W.; Ouyang, H. Synergistic Interaction Between Dexmedetomidine and Ulinastatin Against Vincristine-Induced Neuropathic Pain in Rats. J. Pain 2017, 18, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y. Protective effect of dexmedetomidine combined with ulinastatin on myocardium in patients undergoing valve replacement. Farmacia 2019, 67, 437–441. [Google Scholar] [CrossRef]
- Wang, K.; Yang, Q.; Tang, P.; Li, H.; Zhao, H.; Ren, X. Effects of Ulinastatin on Early Postoperative Cognitive Function after One-Lung Ventilation Surgery in Elderly Patients Receiving Neoadjuvant Chemotherapy. Metab. Brain Dis. 2017, 32, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Nie, B.; Wang, P.; Li, Q.; Huang, W.; Xin, W.; Zeng, W.; Liu, X. Ulinastatin Attenuates Neuropathic Pain Induced by L5-VRT via the Calcineurin/IL-10 Pathway. Mol. Pain 2016, 12, 174480691664678. [Google Scholar] [CrossRef]
- Jung, K.T.; Lee, H.Y.; Yoon, M.H.; Lim, K.J. The Effect of Urinary Trypsin Inhibitor Against Neuropathic Pain in Rat Models. Korean J. Pain 2013, 26, 356–360. [Google Scholar] [CrossRef]
- Oh, S.H.; So, H.J.; Lee, H.Y.; Lim, K.J.; Yoon, M.H.; Jung, K.T. Urinary Trypsin Inhibitor Attenuates the Development of Neuropathic Pain Following Spinal Nerve Ligation. Neurosci. Lett. 2015, 590, 150–155. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Ji, R.-R. Chemokines, Neuronal–Glial Interactions, and Central Processing of Neuropathic Pain. Pharmacol. Ther. 2010, 126, 56–68. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Yu, C.; Yao, Y.; Wu, Y.; Qian, L.; Cheung, C.W. Dexmedetomidine Analgesia Effects in Patients Undergoing Dental Implant Surgery and Its Impact on Postoperative Inflammatory and Oxidative Stress. Oxid. Med. Cell. Longev. 2015, 2015, 186736. [Google Scholar] [CrossRef]
- Maes, M.; Van Gastel, A.; Delmeire, L.; Kenis, G.; Bosmans, E.; Song, C. Platelet α2-Adrenoceptor Density in Humans: Relationships to Stress-Induced Anxiety, Psychasthenic Constitution, Gender and Stress-Induced Changes in the Inflammatory Response System. Psychol. Med. 2002, 32, 919–928. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, Y.H.; Koh, H.J.; Park, C.-S.; Kang, S.; Choi, J.-H.; Moon, D.E. Analgesic Effects of Dexmedetomidine in Vincristine-Evoked Painful Neuropathic Rats. J. Korean Med. Sci. 2012, 27, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; He, J.; Yu, N.; Jia, C.; Wang, S. Mechanisms of Dexmedetomidine in Neuropathic Pain. Front. Neurosci. 2020, 14, 330. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Vogel, T.; Gao, X.; Lin, B.; Kulwin, C.; Chen, J. Neuroprotective Effect of Dexmedetomidine in a Murine Model of Traumatic Brain Injury. Sci. Rep. 2018, 8, 4935. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.S.; Hallgren, J. Mast Cell Progenitors: Origin, Development and Migration to Tissues. Mol. Immunol. 2015, 63, 9–17. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Valent, P.; Akin, C. Mast Cells, Mastocytosis, and Related Disorders. N. Engl. J. Med. 2015, 373, 163–172. [Google Scholar] [CrossRef]
- Chatterjea, D.; Martinov, T. Mast Cells: Versatile Gatekeepers of Pain. Mol. Immunol. 2015, 63, 38–44. [Google Scholar] [CrossRef]
- Aich, A.; Afrin, L.; Gupta, K. Mast Cell-Mediated Mechanisms of Nociception. Int. J. Mol. Sci. 2015, 16, 29069–29092. [Google Scholar] [CrossRef]
- Chatterjea, D.; Wetzel, A.; Mack, M.; Engblom, C.; Allen, J.; Mora-Solano, C.; Paredes, L.; Balsells, E.; Martinov, T. Mast Cell Degranulation Mediates Compound 48/80-Induced Hyperalgesia in Mice. Biochem. Biophys. Res. Commun. 2012, 425, 237–243. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Drewes, C.C.; Silva, C.R.; Trevisan, G.; Boschen, S.L.; Moreira, C.G.; de Almeida Cabrini, D.; Da Cunha, C.; Ferreira, J. Involvement of Mast Cells in a Mouse Model of Postoperative Pain. Eur. J. Pharmacol. 2011, 672, 88–95. [Google Scholar] [CrossRef]
- Done, J.D.; Rudick, C.N.; Quick, M.L.; Schaeffer, A.J.; Thumbikat, P. Role of Mast Cells in Male Chronic Pelvic Pain. J. Urol. 2012, 187, 1473–1482. [Google Scholar] [CrossRef]
- Ezzat, B.A.; Abbass, M.M.S. The Ability of H1 or H2 Receptor Antagonists or Their Combination in Counteracting the Glucocorticoid-induced Alveolar Bone Loss in Rats. J. Oral Pathol. Med. 2014, 43, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Dux, M.; Schwenger, N.; Messlinger, K. Possible Role of Histamine (H1− and H2−) Receptors in the Regulation of Meningeal Blood Flow. Br. J. Pharmacol. 2002, 137, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, A.S.; Kaur, G.; Bali, A.; Singh, N. Pharmacological Investigations on Mast Cell Stabilizer and Histamine Receptor Antagonists in Vincristine-Induced Neuropathic Pain. Naunyn. Schmiedebergs. Arch. Pharmacol. 2017, 390, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Barzegar-Fallah, A.; Alimoradi, H.; Mehrzadi, S.; Barzegar-Fallah, N.; Zendedel, A.; Abbasi, A.; Dehpour, A.R. The Neuroprotective Effect of Tropisetron on Vincristine-Induced Neurotoxicity. Neurotoxicology 2014, 41, 1–8. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, X.; Wang, N.; Wang, T.; Zhou, L.; Xu, Z.; Chen, G.; Cao, W.; Hao, H. Hydration Mechanism and Its Effect on the Solubility of Aripiprazole. Pharm. Res. 2024, 41, 113–127. [Google Scholar] [CrossRef]
- Almeida-Santos, A.F.; Ferreira, R.C.M.; Duarte, I.D.; Aguiar, D.C.; Romero, T.R.L.; Moreira, F.A. The Antipsychotic Aripiprazole Induces Antinociceptive Effects: Possible Role of Peripheral Dopamine D2 and Serotonin 5-HT1A Receptors. Eur. J. Pharmacol. 2015, 765, 300–306. [Google Scholar] [CrossRef]
- Khalilzadeh, M.; Hassanzadeh, F.; Aghamiri, H.; Dehpour, A.R.; Shafaroodi, H. Aripiprazole Prevents from Development of Vincristine-Induced Neuropathic Nociception by Limiting Neural NOS Overexpression and NF-KB Hyperactivation. Cancer Chemother. Pharmacol. 2020, 86, 393–404. [Google Scholar] [CrossRef]
- Amirkhanloo, F.; Karimi, G.; Yousefi-Manesh, H.; Abdollahi, A.; Roohbakhsh, A.; Dehpour, A.R. The Protective Effect of Modafinil on Vincristine-Induced Peripheral Neuropathy in Rats: A Possible Role for TRPA1 Receptors. Basic Clin. Pharmacol. Toxicol. 2020, 127, 405–418. [Google Scholar] [CrossRef]
- Jung, J.-C.; Lee, Y.; Son, J.-Y.; Lim, E.; Jung, M.; Oh, S. Simple Synthesis of Modafinil Derivatives and Their Anti-Inflammatory Activity. Molecules 2012, 17, 10446–10458. [Google Scholar] [CrossRef]
- Koh, W.U.; Shin, J.W.; Bang, J.-Y.; Kim, S.G.; Song, J.-G. The Antiallodynic Effects of Nefopam Are Mediated by the Adenosine Triphosphate–Sensitive Potassium Channel in a Neuropathic Pain Model. Anesth. Analg. 2016, 123, 762–770. [Google Scholar] [CrossRef]
- Nam, J.S.; Cheong, Y.S.; Karm, M.H.; Ahn, H.S.; Sim, J.H.; Kim, J.S.; Choi, S.S.; Leem, J.G. Effects of Nefopam on Streptozotocin-Induced Diabetic Neuropathic Pain in Rats. Korean J. Pain 2014, 27, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Byeon, G.-J.; Kim, H.-Y.; Baek, S.-H.; Shin, S.-W.; Koo, S.-T. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J. Korean Med. Sci. 2015, 30, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Sim, W.S.; Cho, N.R.; Kim, B.W.; Moon, J.Y.; Park, H.J. The Antiallodynic Effect of Nefopam on Vincristine-Induced Neuropathy in Mice. J. Pain Res. 2020, 13, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Khani, E.; Shahrabi, M.; Rezaei, H.; Pourkarim, F.; Afsharirad, H.; Solduzian, M. Current Evidence on the Use of Anakinra in COVID-19. Int. Immunopharmacol. 2022, 111, 109075. [Google Scholar] [CrossRef]
- Starobova, H.; Monteleone, M.; Adolphe, C.; Batoon, L.; Sandrock, C.J.; Tay, B.; Deuis, J.R.; Smith, A.V.; Mueller, A.; Nadar, E.I.; et al. Vincristine-Induced Peripheral Neuropathy Is Driven by Canonical NLRP3 Activation and IL-1β Release. J. Exp. Med. 2021, 218, e20201452. [Google Scholar] [CrossRef]
- Panizzutti, B.; Skvarc, D.; Lin, S.; Croce, S.; Meehan, A.; Bortolasci, C.C.; Marx, W.; Walker, A.J.; Hasebe, K.; Kavanagh, B.E.; et al. Minocycline as Treatment for Psychiatric and Neurological Conditions: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 5250. [Google Scholar] [CrossRef]
- Verma, D.K.; Singh, D.K.; Gupta, S.; Gupta, P.; Singh, A.; Biswas, J.; Singh, S. Minocycline Diminishes the Rotenone Induced Neurotoxicity and Glial Activation via Suppression of Apoptosis, Nitrite Levels and Oxidative Stress. Neurotoxicology 2018, 65, 9–21. [Google Scholar] [CrossRef]
- Sun, J.-S.; Yang, Y.-J.; Zhang, Y.-Z.; Huang, W.; Li, Z.-S.; Zhang, Y. Minocycline Attenuates Pain by Inhibiting Spinal Microglia Activation in Diabetic Rats. Mol. Med. Rep. 2015, 12, 2677–2682. [Google Scholar] [CrossRef]
- Starobova, H.; Mueller, A.; Allavena, R.; Lohman, R.J.; Sweet, M.J.; Vetter, I. Minocycline Prevents the Development of Mechanical Allodynia in Mouse Models of Vincristine-Induced Peripheral Neuropathy. Front. Neurosci. 2019, 13, 653. [Google Scholar] [CrossRef]
- Sanchez-Spitman, A.B.; Swen, J.J.; Dezentje, V.O.; Moes, D.J.A.R.; Gelderblom, H.; Guchelaar, H.J. Clinical Pharmacokinetics and Pharmacogenetics of Tamoxifen and Endoxifen. Expert Rev. Clin. Pharmacol. 2019, 12, 523–536. [Google Scholar] [CrossRef]
- El-Masry, T.A.; El Sayaad, M.E.; Fouda, W.M. Potential Role of Tamoxifen as a Secondary Analgesic for Chemotherapy Induced Neuropathic Pain. J. Appl. Pharm. Sci. 2012, 2, 021–025. [Google Scholar] [CrossRef]
- Tsubaki, M.; Takeda, T.; Matsumoto, M.; Kato, N.; Yasuhara, S.; Koumoto, Y.; Imano, M.; Satou, T.; Nishida, S. Tamoxifen Suppresses Paclitaxel-, Vincristine-, and Bortezomib-Induced Neuropathy via Inhibition of the Protein Kinase C/Extracellular Signal-Regulated Kinase Pathway. Tumor Biol. 2018, 40, 101042831880867. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, M.; Takeda, T.; Tani, T.; Shimaoka, H.; Suzuyama, N.; Sakamoto, K.; Fujita, A.; Ogawa, N.; Itoh, T.; Imano, M.; et al. PKC/MEK Inhibitors Suppress Oxaliplatin-induced Neuropathy and Potentiate the Antitumor Effects. Int. J. Cancer 2015, 137, 243–250. [Google Scholar] [CrossRef]
- Peng, G.; Han, M.; Du, Y.; Lin, A.; Yu, L.; Zhang, Y.; Jing, N. SIP30 Is Regulated by ERK in Peripheral Nerve Injury-Induced Neuropathic Pain. J. Biol. Chem. 2009, 284, 30138–30147. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Wang, Z.J. Proteinase-Activated Receptor 2 Sensitizes Transient Receptor Potential Vanilloid 1, Transient Receptor Potential Vanilloid 4, and Transient Receptor Potential Ankyrin 1 in Paclitaxel-Induced Neuropathic Pain. Neuroscience 2011, 193, 440–451. [Google Scholar] [CrossRef]
- Rossignol, J.; Ouimet, T.; Poras, H.; Dallel, R.; Luccarini, P. Synergistic Effect of Combining Dual Enkephalinase Inhibitor PL37 and Sumatriptan in a Preclinical Model of Migraine. Headache J. Head Face Pain 2024, 64, 243–252. [Google Scholar] [CrossRef]
- Vause, C.V.; Durham, P.L. Identification of Cytokines and Signaling Proteins Differentially Regulated by Sumatriptan/Naproxen. Headache J. Head Face Pain 2012, 52, 80–89. [Google Scholar] [CrossRef]
- Khalilzadeh, M.; Panahi, G.; Rashidian, A.; Hadian, M.R.; Abdollahi, A.; Afshari, K.; Shakiba, S.; Norouzi-Javidan, A.; Rahimi, N.; Momeny, M.; et al. The Protective Effects of Sumatriptan on Vincristine—Induced Peripheral Neuropathy in a Rat Model. Neurotoxicology 2018, 67, 279–286. [Google Scholar] [CrossRef]
- Bang, S.; Kim, Y.S.; Jeong, S.R. Anti-Allodynic Effect of Theoesberiven F in a Vincristine-Induced Neuropathy Model. Exp. Ther. Med. 2016, 12, 799–803. [Google Scholar] [CrossRef]
- Nishikawa, M.; Yamashita, A.; Ando, K.; Mitsuhiro, S. The Suppressive Effect of Melilotus Extract on the Thermal Edema of Rats. Nihon Yakurigaku Zasshi. 1983, 81, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Boyce, M.; Moore, A.R.; Sagatun, L.; Parsons, B.N.; Varro, A.; Campbell, F.; Fossmark, R.; Waldum, H.L.; Pritchard, D.M. Netazepide, a Gastrin/Cholecystokinin-2 Receptor Antagonist, Can Eradicate Gastric Neuroendocrine Tumours in Patients with Autoimmune Chronic Atrophic Gastritis. Br. J. Clin. Pharmacol. 2017, 83, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Dockray, G.J.; Moore, A.; Varro, A.; Pritchard, D.M. Gastrin Receptor Pharmacology. Curr. Gastroenterol. Rep. 2012, 14, 453–459. [Google Scholar] [CrossRef]
- Brifault, C.; Romero, H.; Van-Enoo, A.; Pizzo, D.; Azmoon, P.; Kwon, H.; Nasamran, C.; Gonias, S.L.; Campana, W.M. Deletion of the Gene Encoding the NMDA Receptor GluN1 Subunit in Schwann Cells Causes Ultrastructural Changes in Remak Bundles and Hypersensitivity in Pain Processing. J. Neurosci. 2020, 40, 9121–9136. [Google Scholar] [CrossRef]
- Yin, K.; Deuis, J.R.; Lewis, R.J.; Vetter, I. Transcriptomic and Behavioural Characterisation of a Mouse Model of Burn Pain Identify the Cholecystokinin 2 Receptor as an Analgesic Target. Mol. Pain 2016, 12, 174480691666536. [Google Scholar] [CrossRef]
- Xu, X.-J.; Puke, M.J.C.; Verge, V.M.K.; Wiesenfeld-Hallin, Z.; Hughes, J.; Hökfelt, T. Up-Regulation of Cholecystokinin in Primary Sensory Neurons Is Associated with Morphine Insensitivity in Experimental Neuropathic Pain in the Rat. Neurosci. Lett. 1993, 152, 129–132. [Google Scholar] [CrossRef]
- McCleane, G.J. The Cholecystokinin Antagonist Proglumide Enhances the Analgesic Efficacy of Morphine in Humans with Chronic Benign Pain. Anesth. Analg. 1998, 87, 1117–1120. [Google Scholar] [CrossRef]
- Bernard, A.; Mroué, M.; Bourthoumieu, S.; Boyce, M.; Richard, L.; Sturtz, F.; Demiot, C.; Danigo, A. Netazepide, an Antagonist of Cholecystokinin Type 2 Receptor, Prevents Vincristine-Induced Sensory Neuropathy in Mice. Pharmaceuticals 2024, 17, 144. [Google Scholar] [CrossRef]
- Lee, H.-J.; Macbeth, A.H.; Pagani, J.; Young, W.S. Oxytocin: The Great Facilitator of Life. Prog. Neurobiol. 2009, 88, 127–151. [Google Scholar] [CrossRef]
- Akdemir, A.; Erbas, O.; Gode, F.; Ergenoglu, M.; Yeniel, O.; Oltulu, F.; Yavasoglu, A.; Taskiran, D. Protective Effect of Oxytocin on Ovarian Ischemia-Reperfusion Injury in Rats. Peptides 2014, 55, 126–130. [Google Scholar] [CrossRef]
- Ergenoglu, M.; Erbaş, O.; Akdemir, A.; Yeniel, A.Ö.; Yildirim, N.; Oltulu, F.; Aktuğ, H.; Taskiran, D. Attenuation of Ischemia/Reperfusion-Induced Ovarian Damage in Rats: Does Edaravone Offer Protection? Eur. Surg. Res. 2013, 51, 21–32. [Google Scholar] [CrossRef]
- Favero, G.; Moretti, E.; Bonomini, F.; Reiter, R.J.; Rodella, L.F.; Rezzani, R. Promising Antineoplastic Actions of Melatonin. Front. Pharmacol. 2018, 9, 1086. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R. Antioxidative Protection by Melatonin: Multiplicity of Mechanisms from Radical Detoxification to Radical Avoidance. Endocrine 2005, 27, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Abad, A.N.A.; Nouri, M.H.K.; Tavakkoli, F. Effect of Salvia Officinalis Hydroalcoholic Extract on Vincristine-Induced Neuropathy in Mice. Chin. J. Nat. Med. 2011, 9, 354–358. [Google Scholar]
- Nouri, K. Antinociceptive Effect of Matricaria Chamomilla on Vincristine-Induced Peripheral Neuropathy in Mice. Afr. J. Pharm. Pharmacol. 2012, 6, 24–29. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, H.G.; Kim, Y.S.; Lee, J.Y.; Jeon, J.P.; Park, C.; Moon, D.E. Ginkgo Biloba Extract Attenuates Hyperalgesia in a Rat Model of Vincristine-Induced Peripheral Neuropathy. Anesth. Analg. 2012, 115, 1228–1233. [Google Scholar] [CrossRef]
- Woode, E.; Abotsi, W.; Adosraku, R.; Ameyaw, E.; Boakye-Gyasi, E.; Kyekyeku, J. Anti-Allodynic and Anti-Hyperalgesic Effects of an Ethanolic Extract and Xylopic Acid from the Fruits of Xylopia Aethiopica in Murine Models of Neuropathic Pain. Pharmacogn. Res. 2014, 6, 172–179. [Google Scholar] [CrossRef]
- Boakye-Gyasi, E.; Kasanga, E.A.; Biney, R.P.; Abotsi WK, M.; Mensah, K.B.; Woode, E. Ameliorative Effects of Ethanolic Leaf Extract of Palisota Hirsuta K. Schum (Commelinaceae) on Vincristine-Induced Neuropathic Pain in Rats. J. Appl. Pharm. Sci. 2014, 4, 035–041. [Google Scholar] [CrossRef]
- Amoateng, P.; Adjei, S.; Osei-Safo, D.; Ameyaw, E.O.; Ahedor, B.; N’guessan, B.B.; Nyarko, A.K. A Hydro-Ethanolic Extract of Synedrella nodiflora (L.) Gaertn Ameliorates Hyperalgesia and Allodynia in Vincristine-Induced Neuropathic Pain in Rats. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 383–394. [Google Scholar] [CrossRef]
- Nawaz, N.U.A.; Saeed, M.; Rauf, K.; Usman, M.; Arif, M.; Ullah, Z.; Raziq, N. Antinociceptive Effectiveness of Tithonia Tubaeformis in a Vincristine Model of Chemotherapy-Induced Painful Neuropathy in Mice. Biomed. Pharmacother. 2018, 103, 1043–1051. [Google Scholar] [CrossRef]
- Muthuraman, A.; Singh, N. Attenuating Effect of Hydroalcoholic Extract of Acorus Calamus in Vincristine-Induced Painful Neuropathy in Rats. J. Nat. Med. 2011, 65, 480–487. [Google Scholar] [CrossRef]
- Thiagarajan, V.R.K.; Shanmugam, P.; Krishnan, U.M.; Muthuraman, A.; Singh, N. Antinociceptive Effect of Butea Monosperma on Vincristine-Induced Neuropathic Pain Model in Rats. Toxicol. Ind. Health 2013, 29, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, V.R.K.; Shanmugam, P.; Krishnan, U.M.; Muthuraman, A. Ameliorative Effect of Vernonia Cinerea in Vincristine-Induced Painful Neuropathy in Rats. Toxicol. Ind. Health 2014, 30, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Jaggi, A.; Singh, N. Exploring the Potential Effect of Ocimum Sanctum in Vincristine-Induced Neuropathic Pain in Rats. J. Brachial Plex. Peripher. Nerve Inj. 2014, 05, e3–e11. [Google Scholar] [CrossRef]
- Babu, A.; Prasanth, K.G.; Balaji, B. Effect of Curcumin in Mice Model of Vincristine-Induced Neuropathy. Pharm. Biol. 2015, 53, 838–848. [Google Scholar] [CrossRef]
- Gautam, M.; Ramanathan, M. Saponins of Tribulus Terrestris Attenuated Neuropathic Pain Induced with Vincristine through Central and Peripheral Mechanism. Inflammopharmacology 2019, 27, 761–772. [Google Scholar] [CrossRef]
- Xiao, M.-M.; Zhang, Y.-Q.; Wang, W.-T.; Han, W.-J.; Lin, Z.; Xie, R.-G.; Cao, Z.; Lu, N.; Hu, S.-J.; Wu, S.-X.; et al. Gastrodin Protects against Chronic Inflammatory Pain by Inhibiting Spinal Synaptic Potentiation. Sci. Rep. 2016, 6, 37251. [Google Scholar] [CrossRef]
- Guo, Z.; Jia, X.; Su, X.; Li, P.; Hao, J. Gastrodin Attenuates Vincristine-Induced Mechanical Hyperalgesia through Serotonin 5-HT1A Receptors. Bangladesh J. Pharmacol. 2013, 8, 414–419. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Li, X.; Liu, X.; Wang, S.; Xie, Y.; Pi, J.; Yang, Z.; Li, J.; Jia, Q.; et al. Mechanisms Underlying Gastrodin Alleviating Vincristine-Induced Peripheral Neuropathic Pain. Front. Pharmacol. 2021, 12, 744663. [Google Scholar] [CrossRef]
- Qin, B.; Luo, N.; Li, Y.; Gong, D.; Zheng, J.; Tan, X.; Zheng, W. Protective Effect of Gastrodin on Peripheral Neuropathy Induced by Anti-Tumor Treatment with Vincristine in Rat Models. Drug Chem. Toxicol. 2021, 44, 84–91. [Google Scholar] [CrossRef]
- Nakamura, R.; Nishimura, T.; Ochiai, T.; Nakada, S.; Nagatani, M.; Ogasawara, H. Availability of a Microglia and Macrophage Marker, Iba-1, for Differential Diagnosis of Spontaneous Malignant Reticuloses from Astrocytomas in Rats. J. Toxicol. Pathol. 2013, 26, 55–60. [Google Scholar] [CrossRef]
- Clark, A.K.; Malcangio, M. Microglial Signalling Mechanisms: Cathepsin S and Fractalkine. Exp. Neurol. 2012, 234, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Linglu, D.; Yuxiang, L.; Yaqiong, X.; Ru, Z.; Lin, M.; Shaoju, J.; Juan, D.; Tao, S.; Jianqiang, Y. Antinociceptive Effect of Matrine on Vincristine-Induced Neuropathic Pain Model in Mice. Neurol. Sci. 2014, 35, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.-S.; Li, Y.-X.; Zhang, M.-T.; Du, J.; Ma, P.-S.; Yao, W.-X.; Zhou, R.; Niu, Y.; Sun, T.; Yu, J.-Q. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain. Neurochem. Res. 2016, 41, 3147–3159. [Google Scholar] [CrossRef] [PubMed]
- Greeshma, N.; Prasanth, K.G.; Balaji, B. Tetrahydrocurcumin Exerts Protective Effect on Vincristine Induced Neuropathy: Behavioral, Biochemical, Neurophysiological and Histological Evidence. Chem. Biol. Interact. 2015, 238, 118–128. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Song, H.; Li, P. Potential Antioxidant and Anticoagulant Capacity of Low Molecular Weight Fucoidan Fractions Extracted from Laminaria Japonica. Int. J. Biol. Macromol. 2010, 46, 6–12. [Google Scholar] [CrossRef]
- Aisa, Y.; Miyakawa, Y.; Nakazato, T.; Shibata, H.; Saito, K.; Ikeda, Y.; Kizaki, M. Fucoidan Induces Apoptosis of Human HS-Sultan Cells Accompanied by Activation of Caspase-3 and down-Regulation of ERK Pathways. Am. J. Hematol. 2005, 78, 7–14. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, Y.-T.; Zhang, G.; Xu, M.-F. Antinociceptive Effects of Fucoidan in Rat Models of Vincristine-Induced Neuropathic Pain. Mol. Med. Rep. 2017, 15, 975–980. [Google Scholar] [CrossRef]
- Jiang, K.; Shi, J.; Shi, J. Morin Alleviates Vincristine-Induced Neuropathic Pain via Nerve Protective Effect and Inhibition of NF-ΚB Pathway in Rats. Cell. Mol. Neurobiol. 2019, 39, 799–808. [Google Scholar] [CrossRef]
- Singh, G.; Singh, A.; Singh, P.; Bhatti, R. Bergapten Ameliorates Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling. ACS Chem. Neurosci. 2019, 10, 3008–3017. [Google Scholar] [CrossRef]
- Usman, M.; Malik, H.; Tokhi, A.; Arif, M.; Huma, Z.; Rauf, K.; Sewell, R.D.E. 5,7-Dimethoxycoumarin Ameliorates Vincristine Induced Neuropathic Pain: Potential Role of 5HT3 Receptors and Monoamines. Front. Pharmacol. 2023, 14, 1213763. [Google Scholar] [CrossRef]
- Zhou, L.; Ao, L.; Yan, Y.; Li, C.; Li, W.; Ye, A.; Liu, J.; Hu, Y.; Fang, W.; Li, Y. Levo-Corydalmine Attenuates Vincristine-Induced Neuropathic Pain in Mice by Upregulating the Nrf2/HO-1/CO Pathway to Inhibit Connexin 43 Expression. Neurotherapeutics 2020, 17, 340–355. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, Z.; Shen, B.; Zhang, Q.; Feng, H. Protective Effects of Morin on Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury by Inhibiting TLR4/NF-ΚB and Activating Nrf2/HO-1 Signaling Pathways. Int. Immunopharmacol. 2017, 45, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Negi, G.; Kumar, A.; Sharma, S.S. Nrf2 and NF-κB Modulation by Sulforaphane Counteracts Multiple Manifestations of Diabetic Neuropathy in Rats and High Glucose-Induced Changes. Curr. Neurovasc. Res. 2011, 8, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Ganesh Yerra, V.; Negi, G.; Sharma, S.S.; Kumar, A. Potential Therapeutic Effects of the Simultaneous Targeting of the Nrf2 and NF-ΚB Pathways in Diabetic Neuropathy. Redox Biol. 2013, 1, 394–397. [Google Scholar] [CrossRef]
- Castany, S.; Carcolé, M.; Leánez, S.; Pol, O. The Role of Carbon Monoxide on the Anti-Nociceptive Effects and Expression of Cannabinoid 2 Receptors during Painful Diabetic Neuropathy in Mice. Psychopharmacology 2016, 233, 2209–2219. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Xie, K.; Liu, L.; Li, Y.; Yu, Y.; Wang, G. H2Treatment Attenuated Pain Behavior and Cytokine Release Through the HO-1/CO Pathway in a Rat Model of Neuropathic Pain. Inflammation 2015, 38, 1835–1846. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Y.; Du, K.; Wu, W.; Feng, X. Puerarin Alleviates Vincristine-Induced Neuropathic Pain and Neuroinflammation via Inhibition of Nuclear Factor-ΚB and Activation of the TGF-β/Smad Pathway in Rats. Int. Immunopharmacol. 2020, 89, 107060. [Google Scholar] [CrossRef]
- Massague, J. NEW EMBO MEMBERS REVIEW: Transcriptional Control by the TGF-Beta/Smad Signaling System. EMBO J. 2000, 19, 1745–1754. [Google Scholar] [CrossRef]
- Parikh, P.; Hao, Y.; Hosseinkhani, M.; Patil, S.B.; Huntley, G.W.; Tessier-Lavigne, M.; Zou, H. Regeneration of Axons in Injured Spinal Cord by Activation of Bone Morphogenetic Protein/Smad1 Signaling Pathway in Adult Neurons. Proc. Natl. Acad. Sci. USA 2011, 108, E99–E107. [Google Scholar] [CrossRef]
- Khan, A.; Shal, B.; Khan, A.U.; Ullah, R.; Baig, M.W.; ul Haq, I.; Seo, E.K.; Khan, S. Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. Int. J. Mol. Sci. 2021, 22, 6084. [Google Scholar] [CrossRef]
- Julius, D. TRP Channels and Pain. Annu. Rev. Cell Dev. Biol. 2013, 29, 355–384. [Google Scholar] [CrossRef] [PubMed]
- Nazıroğlu, M.; Braidy, N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front. Physiol. 2017, 8, 1040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, G. P2Y Receptors in Neuropathic Pain. Pharmacol. Biochem. Behav. 2019, 186, 172788. [Google Scholar] [CrossRef]
- Obata, K.; Noguchi, K. MAPK Activation in Nociceptive Neurons and Pain Hypersensitivity. Life Sci. 2004, 74, 2643–2653. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, S.Y.; Jung, H.S.; Park, Y.J.; Kim, Y.S.; In, J.H.; Choi, J.W.; Kim, J.A.; Joo, J.D. Amitriptyline Inhibits the MAPK/ERK and CREB Pathways and Proinflammatory Cytokines through A3AR Activation in Rat Neuropathic Pain Models. Korean J. Anesthesiol. 2019, 72, 60–67. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yamanaka, H.; Yanamoto, F.; Okubo, M.; Noguchi, K. Multiple P2Y Subtypes in Spinal Microglia Are Involved in Neuropathic Pain after Peripheral Nerve Injury. Glia 2012, 60, 1529–1539. [Google Scholar] [CrossRef]
- Chen, Y.; Willcockson, H.H.; Valtschanoff, J.G. Vanilloid Receptor TRPV1-Mediated Phosphorylation of ERK in Murine Adjuvant Arthritis. Osteoarthr. Cartil. 2009, 17, 244–251. [Google Scholar] [CrossRef]
- Dhanasekaran, D.N.; Reddy, E.P. JNK Signaling in Apoptosis. Oncogene 2008, 27, 6245–6251. [Google Scholar] [CrossRef]
- Yardim, A.; Kandemir, F.M.; Ozdemir, S.; Kucukler, S.; Comakli, S.; Gur, C.; Celik, H. Quercetin Provides Protection against the Peripheral Nerve Damage Caused by Vincristine in Rats by Suppressing Caspase 3, NF-ΚB, ATF-6 Pathways and Activating Nrf2, Akt Pathways. Neurotoxicology 2020, 81, 137–146. [Google Scholar] [CrossRef]
- Alenezi, S.K. The Ameliorative Effect of Thymoquinone on Vincristine-Induced Peripheral Neuropathy in Mice by Modulating Cellular Oxidative Stress and Cytokine. Life 2022, 13, 101. [Google Scholar] [CrossRef]
- Yang, C.-C.; Wang, M.-H.; Soung, H.-S.; Tseng, H.-C.; Lin, F.-H.; Chang, K.-C.; Tsai, C.-C. Through Its Powerful Antioxidative Properties, L-Theanine Ameliorates Vincristine-Induced Neuropathy in Rats. Antioxidants 2023, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Kahng, J.; Kim, T.K.; Chung, E.Y.; Kim, Y.S.; Moon, J.Y. The Effect of Thioctic Acid on Allodynia in a Rat Vincristine-Induced Neuropathy Model. J. Int. Med. Res. 2015, 43, 350–355. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, L.B.; Goldbeck, R.; dos Santos, W.D.; Squina, F.M. Ferulic Acid and Derivatives: Molecules with Potential Application in the Pharmaceutical Field. Braz. J. Pharm. Sci. 2013, 49, 395–411. [Google Scholar] [CrossRef]
- Vashistha, B.; Sharma, A.; Jain, V. Ameliorative Potential of Ferulic Acid in Vincristine-Induced Painful Neuropathy in Rats: An Evidence of Behavioral and Biochemical Examination. Nutr. Neurosci. 2017, 20, 60–70. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Su, S.-Y.; Tang, N.-Y.; Ho, T.-Y.; Chiang, S.-Y.; Hsieh, C.-L. Ferulic Acid Provides Neuroprotection against Oxidative Stress-Related Apoptosis after Cerebral Ischemia/Reperfusion Injury by Inhibiting ICAM-1 MRNA Expression in Rats. Brain Res. 2008, 1209, 136–150. [Google Scholar] [CrossRef]
- Zhang, A.X.; Xu, C.S.; Liang, S.D.; Gao, Y.; Wang, Y.X.; Wan, F. Effect of Ferulic Acid on Primary Sensory Afferent of Neuropathic Pain Mediated by P2X3 Receptor. Cell Biol. Int. 2008, 32, S58–S59. [Google Scholar] [CrossRef]
- Jhun, J.; Lee, S.; Kim, S.-Y.; Na, H.S.; Kim, E.-K.; Kim, J.-K.; Jeong, J.-H.; Park, S.H.; Cho, M.-L. Combination Therapy with Metformin and Coenzyme Q10 in Murine Experimental Autoimmune Arthritis. Immunopharmacol. Immunotoxicol. 2016, 38, 103–112. [Google Scholar] [CrossRef]
- Elshamy, A.M.; Salem, O.M.; Safa, M.A.E.; Barhoma, R.A.E.; Eltabaa, E.F.; Shalaby, A.M.; Alabiad, M.A.; Arakeeb, H.M.; Mohamed, H.A. Possible Protective Effects of CO Q10 against Vincristine-induced Peripheral Neuropathy: Targeting Oxidative Stress, Inflammation, and Sarmoptosis. J. Biochem. Mol. Toxicol. 2022, 36, e22976. [Google Scholar] [CrossRef]
- Gerdts, J.; Summers, D.W.; Milbrandt, J.; DiAntonio, A. Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron 2016, 89, 449–460. [Google Scholar] [CrossRef]
- Summers, D.W.; DiAntonio, A.; Milbrandt, J. Mitochondrial Dysfunction Induces Sarm1-Dependent Cell Death in Sensory Neurons. J. Neurosci. 2014, 34, 9338–9350. [Google Scholar] [CrossRef] [PubMed]
- Nagkrishna, L.; Tamma, N.K.; Tadvi, N.A.; Shareef, S.M. Evaluation of Protective Effect of Vitamin-E on Vincristine Induced Peripheral Neuropathy in Albino Rats. J. Evol. Med. Dent. Sci. 2013, 2, 2538–2544. [Google Scholar] [CrossRef]
- Scalabrino, G.; Monzio-Compagnoni, B.; Ferioli, M.E.; Lorenzini, E.C.; Chiodini, E.; Candiani, R. Subacute Combined Degeneration and Induction of Ornithine Decarboxylase in Spinal Cords of Totally Gastrectomized Rats. Lab. Investig. 1990, 62, 297–304. [Google Scholar] [PubMed]
- Xu, J.; Wang, W.; Zhong, X.X.; Feng, Y.W.; Wei, X.H.; Liu, X.G. Methylcobalamin Ameliorates Neuropathic Pain Induced by Vincristine in Rats: Effect on Loss of Peripheral Nerve Fibers and Imbalance of Cytokines in the Spinal Dorsal Horn. Mol. Pain 2016, 12, 1744806916657089. [Google Scholar] [CrossRef]
- Chen, X.-J.; Wang, L.; Song, X.-Y. Mitoquinone Alleviates Vincristine-Induced Neuropathic Pain through Inhibiting Oxidative Stress and Apoptosis via the Improvement of Mitochondrial Dysfunction. Biomed. Pharmacother. 2020, 125, 110003. [Google Scholar] [CrossRef]
- Shimizu, N.; Ban, N.; Watanabe, Y.; Rikitake, A.; Watanabe, R.; Tanaka, S.; Sato, Y.; Imamura, H.; Kawana, H.; Yamaguchi, T.; et al. The Elevation of Cardio-Ankle Vascular Index in a Patient with Malignant Lymphoma Treated with a Combination Therapy of Rituximab and Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone. J. Clin. Med. Res. 2017, 9, 729–732. [Google Scholar] [CrossRef]
- Zeng, F.; Ju, R.-J.; Liu, L.; Xie, H.-J.; Mu, L.-M.; Lu, W.-L. Efficacy in Treating Lung Metastasis of Invasive Breast Cancer with Functional Vincristine Plus Dasatinib Liposomes. Pharmacology 2018, 101, 43–53. [Google Scholar] [CrossRef]
- Okada, N.; Hanafusa, T.; Sakurada, T.; Teraoka, K.; Kujime, T.; Abe, M.; Shinohara, Y.; Kawazoe, K.; Minakuchi, K. Risk Factors for Early-Onset Peripheral Neuropathy Caused by Vincristine in Patients with a First Administration of R-CHOP or R-CHOP-Like Chemotherapy. J. Clin. Med. Res. 2014, 6, 252–260. [Google Scholar] [CrossRef]
- Nama, N.; Barker, M.K.; Kwan, C.; Sabarre, C.; Solimano, V.; Rankin, A.; Raabe, J.; Ross, C.J.; Carleton, B.; Zwicker, J.G.; et al. Vincristine-Induced Peripheral Neurotoxicity: A Prospective Cohort. Pediatr. Hematol. Oncol. 2020, 37, 15–28. [Google Scholar] [CrossRef]
- LaPointe, N.E.; Morfini, G.; Brady, S.T.; Feinstein, S.C.; Wilson, L.; Jordan, M.A. Effects of Eribulin, Vincristine, Paclitaxel and Ixabepilone on Fast Axonal Transport and Kinesin-1 Driven Microtubule Gliding: Implications for Chemotherapy-Induced Peripheral Neuropathy. Neurotoxicology 2013, 37, 231–239. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Bruna, J.; Marmiroli, P.; Cavaletti, G. Chemotherapy-Induced Peripheral Neurotoxicity (CIPN): An Update. Crit. Rev. Oncol. Hematol. 2012, 82, 51–77. [Google Scholar] [CrossRef] [PubMed]
- Komlodi-Pasztor, E.; Sackett, D.; Wilkerson, J.; Fojo, T. Mitosis Is Not a Key Target of Microtubule Agents in Patient Tumors. Nat. Rev. Clin. Oncol. 2011, 8, 244–250. [Google Scholar] [CrossRef]
- Carlson, K.; Ocean, A.J. Peripheral Neuropathy with Microtubule-Targeting Agents: Occurrence and Management Approach. Clin. Breast Cancer 2011, 11, 73–81. [Google Scholar] [CrossRef]
- Thibault, K.; Rivals, I.; M’Dahoma, S.; Dubacq, S.; Pezet, S.; Calvino, B. Structural and Molecular Alterations of Primary Afferent Fibres in the Spinal Dorsal Horn in Vincristine-Induced Neuropathy in Rat. J. Mol. Neurosci. 2013, 51, 880–892. [Google Scholar] [CrossRef]
- Ji, X.-T.; Qian, N.-S.; Zhang, T.; Li, J.-M.; Li, X.-K.; Wang, P.; Zhao, D.-S.; Huang, G.; Zhang, L.; Fei, Z.; et al. Spinal Astrocytic Activation Contributes to Mechanical Allodynia in a Rat Chemotherapy-Induced Neuropathic Pain Model. PLoS ONE 2013, 8, e60733. [Google Scholar] [CrossRef]
- DeLeo, J.A.; Yezierski, R.P. The Role of Neuroinflammation and Neuroimmune Activation in Persistent Pain. Pain 2001, 90, 1–6. [Google Scholar] [CrossRef]
- Milligan, E.D.; Twining, C.; Chacur, M.; Biedenkapp, J.; O’Connor, K.; Poole, S.; Tracey, K.; Martin, D.; Maier, S.F.; Watkins, L.R. Spinal Glia and Proinflammatory Cytokines Mediate Mirror-Image Neuropathic Pain in Rats. J. Neurosci. 2003, 23, 1026–1040. [Google Scholar] [CrossRef]
- Üçeyler, N.; Kobsar, I.; Biko, L.; Ulzheimer, J.; Levinson, S.R.; Martini, R.; Sommer, C. Heterozygous P0 Deficiency Protects Mice from Vincristine-induced Polyneuropathy. J. Neurosci. Res. 2006, 84, 37–46. [Google Scholar] [CrossRef]
- Muthuraman, A.; Jaggi, A.S.; Singh, N.; Singh, D. Ameliorative Effects of Amiloride and Pralidoxime in Chronic Constriction Injury and Vincristine Induced Painful Neuropathy in Rats. Eur. J. Pharmacol. 2008, 587, 104–111. [Google Scholar] [CrossRef]
- Siau, C.; Bennett, G.J. Dysregulation of Cellular Calcium Homeostasis in Chemotherapy-Evoked Painful Peripheral Neuropathy. Anesth. Analg. 2006, 102, 1485–1490. [Google Scholar] [CrossRef]
- Mbiantcha, M.; Ngouonpe Wembe, A.; Dawe, A.; Yousseu Nana, W.; Ateufack, G. Antinociceptive Activities of the Methanolic Extract of the Stem Bark of Boswellia dalzielii Hutch. (Burseraceae) in Rats Are NO/CGMP/ATP-Sensitive-K+ Channel Activation Dependent. Evid.-Based Complement. Altern. Med. 2017, 2017, 6374907. [Google Scholar] [CrossRef] [PubMed]
- Djaldetti, R.; Hart, J.; Alexandrova, S.; Cohen, S.; Beilin, B.-Z.; Djaldetti, M.; Bessler, H. Vincristine-Induced Alterations in Schwann Cells of Mouse Peripheral Nerve. Am. J. Hematol. 1996, 52, 254–257. [Google Scholar] [CrossRef]
- Konings, P.N.M.; Philipsen, R.L.A.; Veeneman, G.H.; Ruigt, G.F. α-Sialyl Cholesterol Increases Laminin in Schwann Cell Cultures and Attenuates Cytostatic Drug-Induced Reduction of Laminin. Brain Res. 1994, 654, 118–128. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, Y.; Li, C.; Yan, Y.; Ao, L.; Yu, B.; Fang, W.; Liu, J.; Li, Y. Levo-Corydalmine Alleviates Vincristine-Induced Neuropathic Pain in Mice by Inhibiting an NF-Kappa B-Dependent CXCL1/CXCR2 Signaling Pathway. Neuropharmacology 2018, 135, 34–47. [Google Scholar] [CrossRef]
- Dennison, J.B.; Mohutsky, M.A.; Barbuch, R.J.; Wrighton, S.A.; Hall, S.D. Apparent High CYP3A5 Expression Is Required for Significant Metabolism of Vincristine by Human Cryopreserved Hepatocytes. J. Pharmacol. Exp. Ther. 2008, 327, 248–257. [Google Scholar] [CrossRef]
- Lopez-Lopez, E.; Gutierrez-Camino, A.; Astigarraga, I.; Navajas, A.; Echebarria-Barona, A.; Garcia-Miguel, P.; Garcia de Andoin, N.; Lobo, C.; Guerra-Merino, I.; Martin-Guerrero, I.; et al. Vincristine Pharmacokinetics Pathway and Neurotoxicity During Early Phases of Treatment in Pediatric Acute Lymphoblastic Leukemia. Pharmacogenomics 2016, 17, 731–741. [Google Scholar] [CrossRef]
- Zgheib, N.K.; Ghanem, K.M.; Tamim, H.; Aridi, C.; Shahine, R.; Tarek, N.; Saab, R.; Abboud, M.R.; El-Solh, H.; Muwakkit, S.A. Genetic Polymorphisms in Candidate Genes Are Not Associated with Increased Vincristine-Related Peripheral Neuropathy in Arab Children Treated for Acute Childhood Leukemia. Pharmacogenet. Genom. 2018, 28, 189–195. [Google Scholar] [CrossRef]
- Diouf, B.; Crews, K.R.; Lew, G.; Pei, D.; Cheng, C.; Bao, J.; Zheng, J.J.; Yang, W.; Fan, Y.; Wheeler, H.E.; et al. Association of an Inherited Genetic Variant with Vincristine-Related Peripheral Neuropathy in Children with Acute Lymphoblastic Leukemia. JAMA 2015, 313, 815–823. [Google Scholar] [CrossRef]
- Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of Vincristine-Induced Neuropathy in Hematologic Malignancies: A Systematic Review. Cancer Chemother. Pharmacol. 2019, 84, 471–485. [Google Scholar] [CrossRef]
- Kanbayashi, Y.; Hosokawa, T.; Okamoto, K.; Konishi, H.; Otsuji, E.; Yoshikawa, T.; Takagi, T.; Taniwaki, M. Statistical Identification of Predictors for Peripheral Neuropathy Associated with Administration of Bortezomib, Taxanes, Oxaliplatin or Vincristine Using Ordered Logistic Regression Analysis. Anticancer. Drugs 2010, 21, 877–881. [Google Scholar] [CrossRef]
- Edwards, J.K.; Bossaer, J.B.; Lewis, P.O.; Sant, A. Peripheral Neuropathy in Non-Hodgkin’s Lymphoma Patients Receiving Vincristine with and without Aprepitant/Fosaprepitant. J. Oncol. Pharm. Pract. 2020, 26, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Sims, R.P. The Effect of Race on the CYP3A-Mediated Metabolism of Vincristine in Pediatric Patients with Acute Lymphoblastic Leukemia. J. Oncol. Pharm. Pract. 2016, 22, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Renbarger, J.L.; McCammack, K.C.; Rouse, C.E.; Hall, S.D. Effect of Race on Vincristine-associated Neurotoxicity in Pediatric Acute Lymphoblastic Leukemia Patients. Pediatr. Blood Cancer 2008, 50, 769–771. [Google Scholar] [CrossRef]
- Dennison, J.B.; Jones, D.R.; Renbarger, J.L.; Hall, S.D. Effect of CYP3A5 Expression on Vincristine Metabolism with Human Liver Microsomes. J. Pharmacol. Exp. Ther. 2007, 321, 553–563. [Google Scholar] [CrossRef]
- Saba, N.; Seal, A. Identification of a Less Toxic Vinca Alkaloid Derivative for Use as a Chemotherapeutic Agent, Based on in Silico Structural Insights and Metabolic Interactions with CYP3A4 and CYP3A5. J. Mol. Model. 2018, 24, 82. [Google Scholar] [CrossRef]
- Saba, N.; Bhuyan, R.; Nandy, S.; Seal, A. Differential Interactions of Cytochrome P450 3A5 and 3A4 with Chemotherapeutic Agent-Vincristine: A Comparative Molecular Dynamics Study. Anticancer Agents Med. Chem. 2015, 15, 475–483. [Google Scholar] [CrossRef]
- Pozzi, E.; Fumagalli, G.; Chiorazzi, A.; Canta, A.; Cavaletti, G. Genetic Factors Influencing the Development of Vincristine-Induced Neurotoxicity. Expert Opin. Drug Metab. Toxicol. 2021, 17, 215–226. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Solas, C.; Bourgarel-Rey, V.; Quaranta, S.; Rome, A.; Simon, N.; Lacarelle, B.; Andre, N. Impact of Plasma and Intracellular Exposure and CYP3A4, CYP3A5, and ABCB1 Genetic Polymorphisms on Vincristine-Induced Neurotoxicity. Cancer Chemother. Pharmacol. 2011, 68, 1633–1638. [Google Scholar] [CrossRef]
- Ceppi, F.; Langlois-Pelletier, C.; Gagné, V.; Rousseau, J.; Ciolino, C.; De Lorenzo, S.; Kevin, K.M.; Cijov, D.; Sallan, S.E.; Silverman, L.B.; et al. Polymorphisms of the Vincristine Pathway and Response to Treatment in Children with Childhood Acute Lymphoblastic Leukemia. Pharmacogenomics 2014, 15, 1105–1116. [Google Scholar] [CrossRef]
- Broyl, A.; Corthals, S.L.; Jongen, J.L.; van der Holt, B.; Kuiper, R.; de Knegt, Y.; van Duin, M.; el Jarari, L.; Bertsch, U.; Lokhorst, H.M.; et al. Mechanisms of Peripheral Neuropathy Associated with Bortezomib and Vincristine in Patients with Newly Diagnosed Multiple Myeloma: A Prospective Analysis of Data from the HOVON-65/GMMG-HD4 Trial. Lancet Oncol. 2010, 11, 1057–1065. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Bruna, J.; Genazzani, A.A.; Cavaletti, G. Chemotherapy-Induced Peripheral Neurotoxicity: Management Informed by Pharmacogenetics. Nat. Rev. Neurol. 2017, 13, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Kandula, T.; Park, S.B.; Cohn, R.J.; Krishnan, A.V.; Farrar, M.A. Pediatric Chemotherapy Induced Peripheral Neuropathy: A Systematic Review of Current Knowledge. Cancer Treat. Rev. 2016, 50, 118–128. [Google Scholar] [CrossRef] [PubMed]
- van de Velde, M.E.; Kaspers, G.L.; Abbink, F.C.H.; Wilhelm, A.J.; Ket, J.C.F.; van den Berg, M.H. Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review. Crit. Rev. Oncol. Hematol. 2017, 114, 114–130. [Google Scholar] [CrossRef]
- van de Velde, M.; Kaspers, G.; Abbink, F.; Twisk, J.; van der Sluis, I.; van den Bos, C.; van den Heuvel-Eibrink, M.; Segers, H.; Chantrain, C.; van der Werff ten Bosch, J.; et al. Vincristine-Induced Peripheral Neuropathy in Pediatric Oncology: A Randomized Controlled Trial Comparing Push Injections with One-Hour Infusions (The VINCA Trial). Cancers 2020, 12, 3745. [Google Scholar] [CrossRef] [PubMed]
- Nikanjam, M.; Sun, A.; Albers, M.; Mangalindin, K.; Song, E.; Vempaty, H.; Sam, D.; Capparelli, E.V. Vincristine-Associated Neuropathy with Antifungal Usage: A Kaiser Northern California Experience. J. Pediatr. Hematol. Oncol. 2018, 40, e273–e277. [Google Scholar] [CrossRef]
- Ruggiero, A.; Arena, R.; Battista, A.; Rizzo, D.; Attinà, G.; Riccardi, R. Azole Interactions with Multidrug Therapy in Pediatric Oncology. Eur. J. Clin. Pharmacol. 2013, 69, 1–10. [Google Scholar] [CrossRef]
- Moriyama, B.; Henning, S.A.; Leung, J.; Falade-Nwulia, O.; Jarosinski, P.; Penzak, S.R.; Walsh, T.J. Adverse Interactions between Antifungal Azoles and Vincristine: Review and Analysis of Cases. Mycoses 2012, 55, 290–297. [Google Scholar] [CrossRef]
- Thackray, J.; Spatz, K.; Steinherz, P.G. Vincristine Toxicity with Co-administration of Fluconazole: Long-term Concerns. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef]
- Ruggiero, A.; Rizzo, D.; Catalano, M.; Coccia, P.; Triarico, S.; Attiná, G. Acute Chemotherapy-Induced Nausea and Vomiting in Children with Cancer: Still Waiting for a Common Consensus on Treatment. J. Int. Med. Res. 2018, 46, 2149–2156. [Google Scholar] [CrossRef]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol. Rev. 2019, 99, 1381–1431. [Google Scholar] [CrossRef]
- De Graaf, S.S.N.; Bloemhof, H.; Vendrig, D.E.M.M.; Uges, D.R.A. Vincristine Disposition in Children with Acute Lymphoblastic Leukemia. Med. Pediatr. Oncol. 1995, 24, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Crom, W.R.; de Graaf, S.S.N.; Synold, T.; Uges, D.R.A.; Bloemhof, H.; Rivera, G.; Christensen, M.L.; Mahmoud, H.; Evans, W.E. Pharmacokinetics of Vincristine in Children and Adolescents with Acute Lymphocytic Leukemia. J. Pediatr. 1994, 125, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Hershman, D.L.; Till, C.; Wright, J.D.; Awad, D.; Ramsey, S.D.; Barlow, W.E.; Minasian, L.M.; Unger, J. Comorbidities and Risk of Chemotherapy-Induced Peripheral Neuropathy Among Participants 65 Years or Older in Southwest Oncology Group Clinical Trials. J. Clin. Oncol. 2016, 34, 3014–3022. [Google Scholar] [CrossRef]
- Toopchizadeh, V.; Barzegar, M.; Rezamand, A.; Feiz, A. Electrophysiological Consequences of Vincristine Contained Chemotherapy in Children: A Cohort Study. J. Pediatr. Neurol. 2015, 07, 351–356. [Google Scholar] [CrossRef]
- Pollock, B.H.; DeBaun, M.R.; Camitta, B.M.; Shuster, J.J.; Ravindranath, Y.; Pullen, D.J.; Land, V.J.; Mahoney, D.H.; Lauer, S.J.; Murphy, S.B. Racial Differences in the Survival of Childhood B-Precursor Acute Lymphoblastic Leukemia: A Pediatric Oncology Group Study. J. Clin. Oncol. 2000, 18, 813. [Google Scholar] [CrossRef]
- Jeenia, F.T.; Sojib, F.A.; Rahman, M.S.; Ara, T.; Khan, R.; Tanin, M.J.U. Neuroprotective Effect of Vitamin B6 and Vitamin B12 against Vincristine- Induced Peripheral Neuropathy: A Randomized, Double- Blind, Placebo Controlled, Multicenter Trial. J. Pharm. Pharmacol. Res. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Anghelescu, D.L.; Tesney, J.M.; Jeha, S.; Wright, B.B.; Trujillo, L.; Sandlund, J.T.; Pauley, J.; Cheng, C.; Pei, D.; Pui, C. Prospective Randomized Trial of Interventions for Vincristine-related Neuropathic Pain. Pediatr. Blood Cancer 2020, 67, e28539. [Google Scholar] [CrossRef]
- Sands, S.; Ladas, E.J.; Kelly, K.M.; Weiner, M.; Lin, M.; Ndao, D.H.; Dave, A.; Vahdat, L.T.; Bender, J.G. Glutamine for the Treatment of Vincristine-Induced Neuropathy in Children and Adolescents with Cancer. Support. Care Cancer 2017, 25, 701–708. [Google Scholar] [CrossRef]
Tested Substances/Doses | Animals | Results | Involved Mechanism | Reference |
---|---|---|---|---|
Ethosuximide 300 mg/kg bw i.p. | Sprague Dawley rats | Reversed mechanical and thermal sensitivity in von Frey and acetone tests. | N/A | Flatters et al. (2004) [25] |
Propentofylline 10 mg/kg bw i.p. | Holtzman rats | Reduced mechanical allodynia in von Frey test. | ⇓ spinal microglial and astrocytic activation | Sweitzer et al. (2006) [61] |
Lacosamide 3, 10, 20, 30, and 40 mg/kg bw i.p. | Sprague Dawley rats | Attenuated thermal allodynia in hot–cold plate tests and mechanical hyperalgesia in the Randall–Selitto test. | N/A | Beyreuther et al. (2007) [28] |
Memantine 2.5, 5, and 10 mg/kg bw i.p. | Sprague-Dawley rats | The highest dose of memantine successfully increased the paw withdrawal threshold in the von Frey test. | N/A | Park et al. (2010) [46] |
Dexmedetomidine 12.5, 25, 50, and 100 µg/kg bw i.p. | Sprague Dawley rats | Displayed a dose-dependent antiallodynic effect on mechanical and cold stimuli in von Frey, acetone, and hot plate tests. | N/A | Park et al. (2012) [73] |
Tamoxifen 1 mg/kg bw orally | Egyptian rats | Attenuated thermal hypersensitivity in tail immersion and hot plate tests. | ⇓ TNF-α ⇓ NO | El-Masry et al. (2012) [103] |
Cilostazol 20 and 40 mg/kg bw orally | Albino Swiss mice | Attenuated mechanical hyperalgesia and mechanical allodynia in pinprick and paintbrush tests. | N/A | Thacheril Mohanan et al. (2013) [59] |
Topiramate 40 mg/kg bw OR Zonisamide 50 mg/kg bw OR Gabapentin 60 mg/kg bw orally | Albino rats | All 3 drugs significantly reduced thermal hyperalgesia in the hot plate test. | N/A | Jakhar et al. (2014) [31] |
Tropisetron 3 mg/kg bw i.p. | Sprague Dawley rats | Attenuated thermal sensitivity in the hot plate test. | ⇑ MNCV ⇓ TNF-α ⇓ IL-2 | Barzegar-Fallah et al. (2014) [86] |
Duloxetine 10, 20, and 30 mg/kg bw orally | Albino rats | Reduced thermal hypersensitivity in hot plate and tail immersion tests. Increased ambulation, activity factor, and mobility duration in open field test. | ⇑ NCV ⇓ CD11b | Greish et al. (2014) [43] |
Duloxetine 5, 10, and 20 mg/kg bw OR Milnacipran 10, 20 and 40 mg/kg bw | ddY-strain mice | Both drugs significantly reduced mechanical allodynia in the von Frey test. | N/A | Katsuyama et al. (2014) [42] |
Simvastatin 7.5, 15, and 30 mg/kg bw i.p. | Wistar rats | Attenuated thermal (acetone and hot plate tests) and mechanical (pinprick and von Frey tests) sensitivity only at lower doses. | ⇓ MPO ⇓ cholesterol | Bhalla et al. (2015) [49] |
Theoesberiven F 0.1, 0.25 and 0.5 mg/kg bw i.p. | Sprague Dawley rats | Reduced mechanical and cold allodynia in Von Frey and acetone tests. | N/A | Bang et al. (2016) [111] |
Ulinastatin 0.5–5.0 × 105 U/kg i.t. OR Dexmedetomidine 0.4–4.0 μg/kg i.p. OR Ulinastatin 0.81–1.75 × 105 U/kg + Dexmedetomidine 0.69–1.47 U/kg μg/kg | Sprague Dawley rats | Both drugs attenuated mechanical sensitivity in the von Frey test. Dexmedetomidine and ulinastatin exhibited a synergistic effect when used together. | Alone and in combination: ⇑ IL-10 | Nie et al. (2017) [64] |
Sodium cromoglycate 10 and 20 mg/kg bw OR Promethazine 50 and 100 mg/kg bw OR Ranitidine 20 and 40 mg/kg bw i.p. | Wistar rats | All three drugs reduced pain sensitivity in pinprick, acetone, and hot plate tests, with a less pronounced effect for ranitidine. | N/A | Jaggi et al. (2018) [85] |
Tamoxifen 30 mg/kg bw p.o. | Balb/c mice | Suppressed cold and mechanical allodynia in hot–cold plate test. | -inhibited PKC/ERK pathway | Tsubak et al. (2018) [104] |
Sumatriptan 1 mg/kg bw i.p. | Sprague Dawley rats | Reversed thermal and mechanical sensitivity in hot plate, von Frey, and tail-flick tests. | ⇑ MNCV ⇓ TNF-α ⇓ IL-1β ⇓ caspase-3 ⇓ NF-kB | Khalilzadeh et al. (2018) [110] |
Minocycline 25 mg/kg bw i.p. | C57BL/6J AND Tlr4−/− mice | Prevented mechanical allodynia in the von Frey test, and hind paw inflammation induced by vincristine in both models. | ⇓ perivascular infiltrate ⇓ fibroblast reaction | Starobova et al. (2019) [101] |
Aripiprazole 3 mg/kg bw i.p. | Wistar rats | Reduced pain sensitivity in hot plate and von Frey tests. | ⇑ SNCV ⇓ nNOS ⇓ NF-kB | Khalilzadeh et al. (2020) [89] |
Modafinil 5, 25, and 50 mg/kg bw i.p. | Wistar rats | Lowered the hyperalgesia in the tail-flick and von Frey tests. | ⇑ MNCV ⇓ TNF-α ⇓ IL-1β ⇓ TRPA1 | Amirkhanloo et al. (2020) [90] |
Oxytocin 100 μg/kg bw OR Liraglutide 1 mg/kg bw i.p. | Sprague Dawley rats | Liraglutide was the only treatment that significantly restored muscle strength in the inclined-plate test. | Both drugs: ⇑ NGF ⇓ MDA | Erdogan et al. (2020) [53] |
Nefopam 10, 30, and 60 mg/kg bw i.p. | Mice | Reversed mechanical allodynia in von Frey test. | ⇓ neurokinin-1 receptor concentration | Lee et al. (2020) [95] |
Melatonin 5 and 10 mg/kg bw Orally OR Pregabalin 10 mg/kg bw Orally OR Melatonin 5 mg/kg bw AND Pregabalin 15 mg/kg bw orally | Wistar rats | Reduced thermal hypersensitivity in tail immersion test when administered alone and in combination. | Melatonin: ⇑ serum creatinine (5 mg/kg) ⇑ CAT (10 mg/kg) ⇑ urea (5 mg/kg) ⇓ ALT ⇓ AST ⇓ urea (10 mg/kg) ⇓ MDA Pregabalin: ⇓ AST ⇓ MDA ⇑ urea Combination: ⇑ CAT ⇑ urea ⇓ AST ⇓ MDA | Soliman et al. (2020) [39] |
Anakinra 100 mg/kg bw i.p. | C57BL/6J mice | Significantly attenuated mechanical hypersensitivity in von Frey test. | N/A | Starobova et al. (2021) [97] |
Amantadine 2, 5, 12, 25, and 50 mg/kg bw orally | Wistar rats | Reduced pain sensitivity in digital analgesia meter test. | ⇑ Bcl xl ⇑ CAT ⇑ SOD ⇑ IL-10 ⇓ IL-6 ⇓ TNF-α ⇓ MIP-1α ⇓ Perk gene expression ⇓ Bax ⇓ Casp 3 ⇓ Casp 9 ⇓ CX3CR1 | Drummond et al. (2024) [3] |
Netazepide 2 and 5 mg/kg bw orally | Swiss mice | Completely reversed mechanical hypersensitivity in the von Frey test. | -prevented the loss of DRG neurons, the reduction in myelinated fiber density, and the increase in myelinated axon | Bernard et al. (2024) [119] |
Tested Substances/Doses | Animals | Results | Involved Mechanism | Reference |
---|---|---|---|---|
Salvia officinalis extract 100 mg/kg bw i.p. | NMRI mice | Significantly decreased pain in the second phase of the formalin test. | N/A | Abad et al. (2011) [125] |
Acorus calamus extract 100 and 200 mg/kg bworally | Wistar rats | Reversed pain sensitivity in hot plate, plantar, Randall–Selitto, and von Frey hair tests. | ⇓ TCA ⇓ Superoxide anion ⇓ MPO | Muthuraman et al. (2011) [132] |
Matricaria chamomilla extract 25 mg/kg bw i.p. | NMRI mice | Significantly decreased pain responses in both phases of the formalin test. | N/A | Nouri et al. (2012) [126] |
Ginkgo biloba extract 50, 100, and 150 mg/kg bw p.o. | Sprague Dawley rats | Significantly reduced mechanical and thermal sensitivity in von Frey, hot plate, and acetone tests in a dose-dependent manner. | N/A | Park et al. (2012) [127] |
Butea monosperma extract 200, 300 and 400 mg/kg bw orally | Wistar rats | Attenuated pain behavior in hot plate, Randall–Selitto, and tail immersion tests. | ⇑ GSH ⇓ MDA ⇓ TCA | Thiagarajan et al. (2013) [133] |
Gastrodin 0.05–0.8 mg/kg bw i.p. | C57BL/6 mice | Reduced mechanical hyperalgesia in the von Frey test in a dose-dependent manner. | N/A | Guo et al. (2013) [139] |
Vernonia cinerea extract 200, 300, and 400 mg/kg bw orally | Wistar rats | Significantly reversed thermal hyperalgesia in the hot plate and tail immersion tests, mechanical hyperalgesia in Randall–Selitto and von Frey tests, and thermal allodynia in an acetone drop test. | ⇑ GSH ⇓ TBARS ⇓ TCA | Thiagarajan et al. (2014) [134] |
Xylopia aethiopica Ethanolic extract 30–300 mg/kg bw OR Diterpene xylopic acid 10–100 mg/kg bw orally | Sprague Dawley rats | Exhibited hyperalgesia, tactile, and cold anti-allodynic properties in von Frey, Randall–Selitto, and cold water tests, with a more pronounced effect for diterpene xylopic acid. | N/A | Woode et al. (2014) [128] |
Matrine 13, 30, and 60 mg/kg bw i.p. | Mice | Reduced pain sensitivity in von Frey cold plate and plantar tests. | N/A | Linglu et al. (2014) [144] |
Ocimum sanctum Hydro-alcoholic extract OR Saponin fraction 100–200 mg/kg bw orally | Wistar rats | Attenuated pain sensitivity in acetone, hot plate, pinprick, and tail immersion tests. | ⇓ TBARS ⇓ TCA ⇓ Superoxide anion | Kaur et al. (2014) [135] |
Palisota hirsuta extract 30–300 mg/kg bw orally | Sprague Dawley rats | Significantly ameliorated mechanical hyperalgesia, thermal hyperalgesia, and cold and tactile allodynia in Randall–Selitto, Hargreaves, cold water, and von Frey tests in a dose-dependent manner. | N/A | Boakye-Gyasi et al. (2014) [129] |
Curcumin 15, 30, and 60 mg/kg bw orally | Swiss albino mice | The higher dose reversed thermal (hot–cold plate tests), mechanical sensitivity (pinprick test), functional loss (rotarod test), and reduced pain in the delayed phase of the formalin test. | ⇑ SOD ⇑ CAT ⇑ GPx ⇑ GSH ⇓ NO ⇓ LPO ⇓ TCA | Babu et al. (2015) [136] |
Synedrella nodiflora extract 100, 300, and 1000 mgorally | Sprague-Dawley rats | Attenuated mechanical and thermal hypersensitivity in von Frey, hot plate, tail immersion, and Randall–Selitto tests. | N/A | Amoateng et al. (2015) [130] |
Tetrahydrocurcumin 40 and 80 mg/kg bw p.o. | Wistar rats | Higher dose attenuated pain sensitivity in hot–cold plate, Randall–Selitto, and formalin tests. | ⇑ MNCV ⇑ SOD ⇑ CAT ⇑ GPx ⇑ GSH ⇓ LPO ⇓ NO ⇓ TNF-α ⇓ TCA | Greeshma et al. (2015) [146] |
Fucoidan 50, 100, or 200 mg/kg bw i.p. | Sprague Dawley rats | Repeated administration reduced mechanical and thermal sensitivity in von Frey and acetone tests. | -upregulated GABA-B receptor expression | Hu et al. (2016) [149] |
Matrine 15, 30, and 60 mg/kg bw i.p. | Mice | Attenuated mechanical (paw pressure and von Frey tests) and thermal sensitivity (hot–cold plate test) in a dose-dependent manner. | ⇑ T-AOC ⇑ IL-10 ⇑ GPx ⇑ SOD ⇑ TCA ⇓ MPO ⇓ MDA ⇓ TNF-α ⇓ IL-6 | Gong et al. (2016) [145] |
Tithonia tubaeformis extract 100 and 200 mg/kg orally | Balb/c mice | Reduced mechanical allodynia and thermal hyperalgesia in von Frey and tail immersion tests. | N/A | Nawaz et al. (2018) [131] |
Tribulus terrestris saponins 25, 50, and 100 mg/kg bw orally | Wistar rats | Significantly reduced pain sensitivity in Randall–Selitto, von Frey, and formalin tests. | ⇑ SNCV ⇓ TNF-α ⇓ IL-1β ⇓ IL-6 ⇓ L-glutamic acid ⇓ L-aspartic acid | Gautam et al. (2019) [137] |
Morin 25, 50, and 100 mg/kg bw p.o. | Sprague Dawley rats | Reduced pain hypersensitivity in von Frey and radiant heat source tests. | ⇑ SNCV ⇓ IL-6 ⇓ NF-κB ⇓ pNF-κB | Jiang et al. (2019) [150] |
Bergapten 10 mg/kg bw i.p. | Wistar rats | Alleviated pain sensitivity in pressure application measurement, von Frey, and tail immersion tests. | ⇑ GSH ⇓ TNFα ⇓ IL-1β ⇓ NF-kB ⇓ COX-2 ⇓ iNOS ⇓ MDA | Singh et al. (2019) [151] |
Levo-corydalmine 5, 10, and 20 mg/kg bw p.o. | ICR mice | Attenuated thermal and mechanical sensitivity in tail-flick and von Frey tests | ⇑HO-1/CO expression ⇑ Nrf2 ⇓ Cx43 | Zhou et al. (2020) [153] |
Puerarin 25 and 50 mg/kg bw orally | Sprague Dawley rats | Reduced thermal and mechanical sensitivity in hot plate and von Frey tests. | ⇑ TGF-β ⇑ IL-10 ⇑ p-Smad2 ⇑ p-Smad3 ⇓ TNF-α ⇓ IL-1β ⇓ NF-κBp65 | Xie et al. (2020) [159] |
Withametelin 1 mg/kg bw i.p. | Balb/c mice | Reduced thermal (hot plate and acetone tests) and mechanical (von Frey test) hypersensitivity. | ⇑ Bcl-2 ⇑ GSH ⇑ GST ⇑ CAT ⇑ SOD ⇓ MPO ⇓ MDA ⇓ NO ⇓ TRPV1 expression levels ⇓ TRPM8 expression levels ⇓ P2Y nociceptors ⇓ ERK ⇓ JNK ⇓ p-38 ⇓ IL-1β ⇓ TNF-α ⇓ Bax ⇓ Casp-3 | Khan et al. (2021) [162] |
Gastrodin 60 mg/kg bw i.p. | Sprague Dawley rats | Alleviated mechanical and thermal hyperalgesia in von Frey and thermal radiation meter tests. | ⇓ NaV1.7 over-expression ⇓ NaV1.8 over-expression | Wang et al. (2021) [140] |
Gastrodin 60 and 120 mg/kg bw i.p. | Sprague Dawley rats | Reduced mechanical and thermal hypersensitivity in von Frey and Tottenham pain instrument tests. | ⇓ Iba-1 ⇓ CX3CL1 ⇓ TNF-α ⇓ IL-1β ⇓ P-P38 | Qin et al. (2021) [141] |
Thymoquinone 2.5, 5, and 10 mg/kg bw orally | Albino mice | Reduced pain sensitivity in hot plate, cold plate, and formalin tests and fall-off time in the rotarod test. | ⇑ GSH ⇓ MDA ⇓ IL-6 | Alenezi et al. (2022) [172] |
5,7-Dimethoxycoumarin 30, 40, and 50 mg/kg bw i.p. | Balb/c mice | Reduced pain sensitivity in tail immersion, cotton bud, acetone and von Frey tests. | ⇑inosine levels ⇑ vitamin C ⇑ adenosine levels ⇓ serotonin levels ⇑ noradre-naline levels ⇓ dopamine levels ⇓ TNF-α | Usman et al. (2023) [152] |
L-theanine 30, 100, and 300 mg/kg bw i.p. | Wistar rats | Reduced thermal hyperalgesia and allodynia in hot plate and acetone tests and mechanical hyperalgesia and allodynia in paw pressure and von Frey tests. | ⇑ MNCV ⇑ SNCV ⇑ GSH ⇑ SOD ⇑ CAT ⇑ IL-10 ⇓ NO ⇓ MDA ⇓ Casp-3 ⇓ TNF-α ⇓ IL-6 ⇓ MPO | Yang et al. (2023) [173] |
Tested Substances/Doses | Animals | Results | Involved Mechanism | Reference |
---|---|---|---|---|
Vitamin E 50, 100, and 200 mg/kg bw orally | Wistar rats | Higher doses attenuated pain sensitivity in the tail flick, tail immersion, and tail clip tests. | N/A | Nagkrishna et al. (2013) [184] |
Thioctic acid 1, 5, and 10 mg/kg bw i.p. | Sprague Dawley rats | Reduced mechanical and cold allodynia in von Frey and acetone tests. | N/A | Kahng et al. (2015) [175] |
Methylcobalamin 0.12, 0.5, and 1 mg/kg bw i.p. | Sprague Dawley rats | Reduced mechanical allodynia (von Frey test) and thermal hyperalgesia (plantar test). | -inhibited the loss of IENF and prevented mitochondria impairment ⇑ IL-10 ⇓ NADPH oxidase ⇓ p-p65 ⇓ TNF-α | Xu et al. (2016) [186] |
Ferulic acid 50 and 100 mg/kg bw i.p. | Wistar rats | Reduced mechanical and heat hyperalgesia in pinprick and hot plate tests and mechanical and cold allodynia in von Frey and acetone tests. | ⇑ GSH ⇑ IL-10 ⇓ TCA ⇓ MPO ⇓ TNF-α ⇓ IL-6 ⇓ TBARS | Vashistha et al. (2017) [177] |
Mitoquinone 2.5, 5, and 10 mg/kg bw i.p. | ICR mice | Improved pain sensitivity in von Frey and tail-flick latency tests. | ⇑ SOD ⇑ GSH ⇑ Nrf2 ⇑ Bcl-2 ⇓ ROS ⇓ H2O2 ⇓ NADPH oxidase activity ⇓ MDA ⇓ IL-6 ⇓ COX2 ⇓ IL-18 ⇓ IL-1β ⇓ TNF-α ⇓ Iba1 ⇓ GFAP ⇓ CX3CR1 ⇓ CCR2 ⇓ Casp 3 ⇓ Bax ⇓ Cyto-C release | Chen et al. (2020) [187] |
Coenzyme Q10 10 mg/kg bw i.p. | Sprague Dawley rats | Attenuated thermal hypersensitivity in tail immersion and acetone tests. | ⇑ Nrf2 mRNA gene expression ⇑ TAC ⇑ GSH ⇓ MDA ⇓ 8-OHdG ⇓ TNF-α ⇓ IL-1b ⇓ NF-κB ⇓ NFL ⇓ SARM1 mRNA gene expression | Elshamy et al. (2022) [181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pușcașu, C.; Negreș, S.; Zbârcea, C.E.; Chiriță, C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life 2024, 14, 1500. https://doi.org/10.3390/life14111500
Pușcașu C, Negreș S, Zbârcea CE, Chiriță C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life. 2024; 14(11):1500. https://doi.org/10.3390/life14111500
Chicago/Turabian StylePușcașu, Ciprian, Simona Negreș, Cristina Elena Zbârcea, and Cornel Chiriță. 2024. "Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research" Life 14, no. 11: 1500. https://doi.org/10.3390/life14111500
APA StylePușcașu, C., Negreș, S., Zbârcea, C. E., & Chiriță, C. (2024). Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life, 14(11), 1500. https://doi.org/10.3390/life14111500