In Vitro Evaluation of Iraqi Kurdistan Tomato Accessions Under Drought Stress Conditions Using Polyethylene Glycol-6000
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Germination Test and Morphological Traits
2.3. Biochemical Tests
2.4. Statistical Data Analysis
3. Results
3.1. Morphological Trait Performance Under Drought Stress Conditions
3.2. Biochemical Markers Assays
3.3. Ranking of Tomato Accessions for Morphological Traits Under Drought Stress Conditions
3.4. Biochemical Markers Related to Degree of Tolerance by Omics Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T.; Kononowicz, A.K. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 120, 881–902. [Google Scholar] [CrossRef]
- Krishna, R.; Karkute, S.G.; Ansari, W.A.; Jaiswal, D.K.; Verma, J.P.; Singh, M. Transgenic tomatoes for abiotic stress tolerance: Status and way ahead. 3 Biotech 2019, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Bauchet, G.; Causse, M. Genetic Diversity in Tomato (Solanum lycopersicum) and Its Wild Relatives. Genet. Divers. Plants 2012, 8, 134–162. [Google Scholar]
- FAOSTAT. Statistical Data on Crops, Tomatoes, World. Food and Agriculture Organization of the United Nations. 2024. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 24 September 2024).
- Gorni, P.H.; de Lima, G.R.; Pereira, L.M.d.O.; Spera, K.D.; Lapaz, A.d.M.; Pacheco, A.C. Increasing plant performance, fruit production and nutritional value of tomato through foliar applied rutin. Sci. Hortic. 2022, 294, 110755. [Google Scholar] [CrossRef]
- Delgadillo-Diaz, M.; Gullian-Klanian, M.; Sosa-Moguel, O.; Sauri-Duch, E.; Cuevas-Glory, L.F. Evaluation of physico-chemical characteristics, antioxidant compounds and antioxidant capacity in creole tomatoes (Solanum lycopersicum L. and S. pimpinellifolium L.) in an aquaponic system or organic soil. Int. J. Veg. Sci. 2019, 25, 124–137. [Google Scholar] [CrossRef]
- Zwane, E.M. Impact of climate change on primary agriculture, water sources and food security in Western Cape, South Africa. Jàmbá J. Disaster Risk Stud. 2019, 11, 7. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Climate-resilient strategies for sustainable management of water resources and agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef]
- Oshunsanya, S.O.; Nwosu, N.J.; Li, Y. Abiotic Stress in Agricultural Crops under Climatic Conditions/Sustainable Agriculture, Forest and Environmental Management; Springer: Singapore, 2019; pp. 71–100. [Google Scholar]
- Wang, Y.; An, Y.; Yu, J.; Zhou, Z.; He, S.; Ru, M. Different responses of photosystem II and antioxidants to drought stress in two contrasting populations of Sour jujube from the Loess Plateau, China. Ecol. Res. 2016, 31, 761–775. [Google Scholar] [CrossRef]
- Kaur, H.; Kohli, S.K.; Khanna, K.; Bhardwaj, R. Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. Physiol. Plant 2021, 172, 935–962. [Google Scholar] [CrossRef]
- Toulotte, J.M.; Pantazopoulou, C.K.; Sanclemente, M.A.; Voesenek, L.A.C.J.; Sasidharan, R. Water stress resilient cereal crops: Lessons from wild relatives. J. Integr. Plant Biol. 2022, 64, 412–430. [Google Scholar] [CrossRef] [PubMed]
- Wouters, H.; Keune, J.; Petrova, Y.; Van Heerwaarden, C.C.; Teuling, A.J.; Pal, J.S.; de Arellano, J.V.-G.; Miralles, D.G. Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Sci. Adv. 2022, 8, eabe6653. [Google Scholar] [CrossRef] [PubMed]
- Todaka, D.; Takahashi, F.; Yamaguchi-Shinozaki, K.; Shinozaki, K. ABA-responsive gene expression in response to drought stress: Cellular regulation and long-distance signaling. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2019; pp. 83–113. [Google Scholar]
- Yadav, S.; Modi, P.; Dave, A.; Vijapura, A.; Patel, D.; Patel, M. Effect of abiotic stress on crops. Sust. Crop Prod. 2020, 3, 5–16. [Google Scholar]
- Garcia-Caparros, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: A review. Bot. Rev. 2021, 8, 421–466. [Google Scholar] [CrossRef]
- Alayafi, A.A.M. Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: Transcriptional regulation mechanism. Environ. Sci. Pollut. Res. 2020, 27, 19186–19199. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef]
- Hossain, M.A.; Bhattacharjee, S.; Armin, S.M.; Qian, P.; Xin, W.; Li, H.Y.; Burritt, D.J.; Fujita, M.; Tran, L.S.P. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 420. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, M.N.V. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol. Environ. Saf. 2018, 166, 401–418. [Google Scholar] [CrossRef]
- Saed-Moucheshi, A.; Shekoofa, A.; Pessarakli, M. Reactive oxygen species (ROS) generation and detoxifying in plants. J. Plant Nutr. 2014, 37, 1573–1585. [Google Scholar] [CrossRef]
- Kijowska-Oberc, J.; Dylewski, Ł.; Ratajczak, E. Proline concentrations in seedlings of woody plants change with drought stress duration and are mediated by seed characteristics: A meta-analysis. Sci. Rep. 2023, 13, 15157. [Google Scholar]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, W.; Yang, L.; Zou, Z.; Zhang, X.; Addo-Danso, S.D.; Zhou, L.; Li, S. Effects of Drought Stress on Non-Structural Carbohydrates in Different Organs of Cunninghamia lanceolata. Plants 2023, 12, 2477. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Reddy, P.S.; Ferrante, A.; Khan, N.A. Plant Signaling Molecules: Role and Regulation Under Stressful Environments; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Xian, Z.; Hu, N.; Lin, D.; Ren, H.; Chen, J.; Su, D.; Li, Z. Overexpression of slgras40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Front. Plant Sci. 2017, 8, 1659. [Google Scholar] [CrossRef]
- Shtereva, L.; Atanassova, B.; Karcheva, T.; Petkov, V. The effect of water stress on the growth rate, water content and proline accumulation in tomato calli and seedlings. Acta Hortic. 2008, 789, 189–197. [Google Scholar] [CrossRef]
- Waheed, A. Screening and selection of tomato genotypes cultivars for drought tolerance using multivariate analysis. Pak. J. Bot. 2014, 46, 1165–1178. [Google Scholar]
- Rasul, K.S.; Grundler, F.M.W.; Tahir, N.A. Genetic diversity and population structure assessment of Iraqi tomato accessions using fruit characteristics and molecular markers. Hortic. Environ. Biotechnol. 2022, 63, 523–538. [Google Scholar] [CrossRef]
- Lateef, D.D.; Mustafa, K.M.; Tahir, N.A. Screening of Iraqi barley accessions under PEG-induced drought conditions. All Life 2021, 14, 308–332. [Google Scholar] [CrossRef]
- Tahir, N.A.; Lateef, D.D.; Mustafa, K.M.; Rasul, K.S.; Khurshid, F.F. determination of physiochemical characteristics associated with various degrees of cadmium tolerance in barley accessions. Agronomy 2023, 13, 1502. [Google Scholar] [CrossRef]
- Tahir, N.A.; Rasul, K.S.; Lateef, D.D. Effect of mixing oak leaf biomass with soil on cadmium toxicity and translocation in tomato genotypes. Heliyon 2023, 9, e18660. [Google Scholar] [CrossRef] [PubMed]
- Tahir, N.A.; Rasul, K.S.; Lateef, D.D.; Grundler, F.M.W. Effects of Oak Leaf extract, biofertilizer, and soil containing oak leaf powder on tomato growth and biochemical characteristics under water stress conditions. Agriculture 2022, 12, 2082. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Yousefian, M.; Moradkhani, H.; Moghaddam, V.M.; Poczai, P.; Siddique, K.H.M. iPASTIC: An online toolkit to estimate plant abiotic stress indices. Appl. Plant Sci. 2019, 7, e11278. [Google Scholar] [CrossRef]
- Ketata, H.; Yau, S.K.; Nachit, M. Relative consistency performance across environments. In Proceedings of the International Symposium on Physiology and Breeding of Winter Cereals for Stressed Mediterranean Environments, Montpellier, France, 3–6 July 1989. [Google Scholar]
- Ullah, U.; Ashraf, M.; Shahzad, S.M.; Siddiqui, A.R.; Piracha, M.A.; Suleman, M. Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ. 2016, 35, 65–75. [Google Scholar]
- Ibrahim, M.F.M.; Abd Elbar, O.H.; Farag, R.; Hikal, M.; El-Kelish, A.; El-Yazied, A.A.; Alkahtani, J.; Abd El-Gawad, H.G. Melatonin counteracts drought induced oxidative damage and stimulates growth, productivity and fruit quality properties of tomato plants. Plants 2020, 9, 1276. [Google Scholar] [CrossRef]
- Brestic, M.; Allakhverdiev, S.I. Photosynthesis under Biotic and Abiotic Environmental Stress. Cells 2022, 11, 3953. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Ke, Q.; Kwak, S.S.; Zhang, S.; Deng, X. Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. Int. J. Mol. Sci. 2020, 21, 9174. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Hui, W.; Zhao, F.; Wang, P.; Su, C.; Gong, W. Physiology of plant responses to water stress and related genes: A review. Forests 2022, 13, 324. [Google Scholar] [CrossRef]
- Lawlor, D.W. Absorption of Polyethylene Glycols by Plants and Their Effects on Plant Growth. New Phytol. 1970, 69, 501–513. [Google Scholar] [CrossRef]
- Basal, O.; Szabó, A.; Veres, S. PEG-induced drought stress effects on soybean germination parameters. J. Plant Nutr. 2020, 43, 1768–1779. [Google Scholar] [CrossRef]
- Koskosidis, A.; Ebrahim, K.; Mavromatis, A.; Pavli, O.; Vlachostergios, D.N. Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) genotypes. Not. Bot. Horti. Agrobot. Cluj Napoca 2020, 48, 294–304. [Google Scholar] [CrossRef]
- George, S.; Jatoi, S.A.; Siddiqui, S.U. Genotypic differences against PEG simulated drought stress in tomato. Pak. J. Bot. 2013, 45, 1551–1556. [Google Scholar]
- Zhou, R.; Yu, X.; Ottosen, C.O.O.; Rosenqvist, E.; Zhao, L.; Wang, Y.; Yu, W.; Zhao, T.; Wu, Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 2017, 17, 24. [Google Scholar] [CrossRef]
- Brdar-Jokanović, M.; Girek, Z.; Pavlović, S.; Ugrinović, M.; Zdravković, J. Shoot and root dry weight in drought exposed tomato populations. Genetika 2014, 46, 495–504. [Google Scholar] [CrossRef]
- Ashti, S.A.; Hero, F.H.K.; Dlshad, A.O.; Nawroz, A.T. Response of some plant species towards the allelopathy of two types of chickpea (Cicer arietinum L.) seed extracts. Appl. Ecol. Environ. Res. 2018, 16, 8119–8129. [Google Scholar] [CrossRef]
- Bowne, J.B.; Erwin, T.A.; Juttner, J.; Schnurbusch, T.; Langridge, P.; Bacic, A.; Roessner, U. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol. Plant. 2012, 5, 418–429. [Google Scholar] [CrossRef]
- Khan, S.H. Effect of Drought Stress on Tomato cv. Bombino. J. Food Process. Technol. 2015, 6, 465–470. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, S.; Liu, X.; He, J.; Cheng, L.; Duan, M.; Liu, H.; Wang, W.; Yu, Y. Overexpression of CsSnRK2.5 increases tolerance to drought stress in transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 150, 162–170. [Google Scholar] [CrossRef]
- Barna, B.; Fodor, J.; Pogany, M.; Kiraly, Z. Role of reactive oxygen species and antioxidants in plant disease resistance. Pest Manag. Sci. 2003, 59, 459–564. [Google Scholar] [CrossRef]
- Tani, E.; Chronopoulou, E.G.; Labrou, N.E.; Sarri, E.; Goufa, M.; Vaharidi, X.; Abraham, Ε.M. Growth, physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L., Medicago arborea L. and their hybrid (Alborea). Agronomy 2019, 9, 38. [Google Scholar] [CrossRef]
- Quan, N.T.; Anh, L.H.; Khang, D.T.; Tuyen, P.T.; Toan, N.P.; Minh, T.N.; Minh, L.T.; Bach, D.T.; Ha, P.T.T.; Elzaawely, A.A.; et al. Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture 2016, 6, 23. [Google Scholar] [CrossRef]
- Shigeto, J.; Tsutsumi, Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016, 209, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Kidwai, M.; Ahmad, I.Z.; Chakrabarty, D. Class III peroxidase: An indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep. 2020, 39, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, M.H. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef]
- Sharif, I.; Aleem, S.; Junaid, J.A.; Ali, Z.; Aleem, M.; Shahzad, R.; Farooq, J.; Khan, M.I.; Arshad, W.; Ellahi, F. Multiomics approaches to explore drought tolerance in cotton. J. Cotton Res. 2024, 7, 32. [Google Scholar] [CrossRef]
Traits | T0 (Control or 0% PEG) | ||||
---|---|---|---|---|---|
Min | Max | Mean | F | Pr > F | |
GP | 55.00 | 100.00 | 90.10 | 12.20 *** | <0.0001 |
RL | 3.12 | 10.93 | 8.21 | 15.10 *** | <0.0001 |
SL | 4.50 | 8.41 | 7.08 | 5.62 *** | <0.0001 |
FW | 29.55 | 68.97 | 47.35 | 7.14 *** | <0.0001 |
DW | 0.92 | 2.83 | 1.95 | 6.68 *** | <0.0001 |
PC | 268.87 | 1697.59 | 854.45 | 104.83 *** | <0.0001 |
SSC | 66.42 | 214.57 | 129.97 | 47.89 *** | <0.0001 |
TPC | 49.96 | 131.8 | 78.33 | 40.42 *** | <0.0001 |
AC | 461.89 | 653.78 | 557.82 | 89.32 *** | <0.0001 |
GPA | 0.09 | 0.33 | 0.20 | 6.64 *** | <0.0001 |
CAT | 25.97 | 149.35 | 88.88 | 8.06 *** | <0.0001 |
LP | 2.98 | 6.82 | 4.55 | 110.74 *** | <0.0001 |
T1 (7.5% PEG) | |||||
GP | 55.00 | 100.00 | 86.34 | 8.24 *** | <0.0001 |
RL | 2.21 | 7.98 | 6.14 | 11.00 *** | <0.0001 |
SL | 3.98 | 7.20 | 5.52 | 7.02 *** | <0.0001 |
FW | 25.31 | 56.78 | 39.24 | 6.64 *** | <0.0001 |
DW | 1.35 | 3.92 | 2.61 | 6.58 *** | <0.0001 |
PC | 617.08 | 2961.18 | 1447.35 | 677.37 *** | <0.0001 |
SSC | 124.75 | 339.88 | 189.86 | 515.62 *** | <0.0001 |
TPC | 92.85 | 505.58 | 269.15 | 2522.69 *** | <0.0001 |
AC | 534.19 | 738.92 | 663.47 | 474.26 *** | <0.0001 |
GPA | 0.19 | 0.51 | 0.35 | 41.63 *** | <0.0001 |
CAT | 84.42 | 305.19 | 174.21 | 52.79 *** | <0.0001 |
LP | 3.77 | 7.97 | 5.78 | 693.51 *** | <0.0001 |
T2 (15% PEG) | |||||
GP | 20.00 | 94.67 | 80.04 | 11.84 *** | <0.0001 |
RL | 0.83 | 8.02 | 4.65 | 17.23 *** | <0.0001 |
SL | 1.00 | 6.07 | 3.63 | 9.79 *** | <0.0001 |
FW | 16.72 | 38.39 | 30.25 | 7.63 *** | <0.0001 |
DW | 1.69 | 5.00 | 3.08 | 8.09 *** | <0.0001 |
PC | 520.15 | 4714.77 | 2295.87 | 4439.84 *** | <0.0001 |
SSC | 84.32 | 396.36 | 220.88 | 1334.72 *** | <0.0001 |
TPC | 189.10 | 617.19 | 389.86 | 6249.08 *** | <0.0001 |
AC | 570.68 | 839.59 | 732.29 | 105.95 *** | <0.0001 |
GPA | 0.22 | 0.65 | 0.40 | 163.68 *** | <0.0001 |
CAT | 71.43 | 350.65 | 178.77 | 115.61 *** | <0.0001 |
LP | 4.18 | 9.19 | 6.39 | 524.02 *** | <0.0001 |
Traits | Mean Square of Accessions | Pr > F | Mean Square of PEG Concentration | Pr > F | Mean Square of Accessions × PEG Concentration | Pr > F |
---|---|---|---|---|---|---|
GP | 26.51 *** | <0.0001 | 184.31 *** | <0.0001 | 2.87 *** | <0.0001 |
RL | 29.84 *** | <0.0001 | 1717.21 *** | <0.0001 | 6.57 *** | <0.0001 |
SL | 12.96 *** | <0.0001 | 2319.67 *** | <0.0001 | 4.64 *** | <0.0001 |
FW | 14.82 *** | <0.0001 | 715.98 *** | <0.0001 | 3.21 *** | <0.0001 |
DW | 16.30 *** | <0.0001 | 493.62 *** | <0.0001 | 2.75 *** | <0.0001 |
PC | 3091.76 *** | <0.0001 | 111,025.50 *** | <0.0001 | 1050.77 *** | <0.0001 |
SSC | 1121.39 *** | <0.0001 | 25,652.06 *** | <0.0001 | 311.35 *** | <0.0001 |
TPC | 5368.06 *** | <0.0001 | 631,700.60 *** | <0.0001 | 1434.61 *** | <0.0001 |
AC | 239.4224 *** | <0.0001 | 36,960.56 *** | <0.0001 | 135.4114 *** | <0.0001 |
GPA | 133.43 *** | <0.0001 | 6638.74 *** | <0.0001 | 33.83 *** | <0.0001 |
CAT | 112.90 *** | <0.0001 | 4799.69 *** | <0.0001 | 49.45 *** | <0.0001 |
LP | 1392.67 *** | <0.0001 | 28,019.48 *** | <0.0001 | 114.31 *** | <0.0001 |
T1 (7.5% PEG) | T2 (15% PEG) | T1 + T2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Accession Code | STI | AR | Rank | Accession Code | STI | AR | Rank | Accession Code | STI | AR | Rank |
AC4 | 1.15 | 4.64 | 1.00 | AC63 | 1.08 | 5.27 | 1.00 | AC61 | 1.10 | 2.73 | 1.00 |
AC6 | 1.14 | 5.91 | 2.00 | AC61 | 1.07 | 3.91 | 2.00 | AC9 | 1.06 | 7.09 | 2.00 |
AC61 | 1.13 | 3.00 | 3.00 | AC6 | 1.01 | 14.64 | 3.00 | AC63 | 1.09 | 7.36 | 3.00 |
AC43 | 1.12 | 13.55 | 4.00 | AC9 | 1.00 | 9.73 | 4.00 | AC6 | 1.08 | 10.00 | 4.00 |
AC63 | 1.11 | 18.82 | 5.00 | AC39 | 1.00 | 12.00 | 5.00 | AC54 | 0.98 | 10.09 | 5.00 |
AC9 | 1.11 | 5.55 | 6.00 | AC43 | 0.99 | 19.18 | 6.00 | AC39 | 1.04 | 12.09 | 6.00 |
AC42 | 1.11 | 9.36 | 7.00 | AC64 | 0.99 | 24.00 | 7.00 | AC27 | 0.97 | 13.91 | 7.00 |
AC64 | 1.09 | 22.91 | 8.00 | AC15 | 0.98 | 15.82 | 8.00 | AC4 | 1.07 | 14.45 | 8.00 |
AC39 | 1.08 | 18.55 | 9.00 | AC54 | 0.98 | 7.82 | 9.00 | AC26 | 1.03 | 14.82 | 9.00 |
AC60 | 1.08 | 20.82 | 10.00 | AC26 | 0.98 | 16.64 | 10.00 | AC43 | 1.05 | 14.91 | 10.00 |
AC41 | 1.07 | 25.55 | 11.00 | AC4 | 0.98 | 25.00 | 11.00 | AC38 | 0.95 | 16.91 | 11.00 |
AC26 | 1.07 | 18.18 | 12.00 | AC41 | 0.97 | 26.91 | 12.00 | AC42 | 1.03 | 17.36 | 12.00 |
AC44 | 1.05 | 20.45 | 13.00 | AC58 | 0.96 | 15.55 | 13.00 | AC31 | 0.97 | 17.55 | 13.00 |
AC48 | 1.05 | 11.00 | 14.00 | AC50 | 0.95 | 12.64 | 14.00 | AC50 | 0.97 | 18.09 | 14.00 |
AC47 | 1.04 | 9.91 | 15.00 | AC42 | 0.95 | 26.73 | 15.00 | AC32 | 0.98 | 19.45 | 15.00 |
AC17 | 1.03 | 31.45 | 16.00 | AC27 | 0.95 | 13.00 | 16.00 | AC47 | 0.95 | 20.00 | 16.00 |
AC32 | 1.02 | 24.91 | 17.00 | AC32 | 0.94 | 21.55 | 17.00 | AC28 | 0.97 | 22.00 | 17.00 |
AC46 | 1.02 | 15.00 | 18.00 | AC29 | 0.94 | 24.82 | 18.00 | AC46 | 0.96 | 22.36 | 18.00 |
AC29 | 1.02 | 29.09 | 19.00 | AC1 | 0.94 | 14.27 | 19.00 | AC64 | 1.04 | 22.45 | 19.00 |
AC34 | 1.01 | 29.09 | 20.00 | AC31 | 0.93 | 18.00 | 20.00 | AC55 | 0.89 | 22.82 | 20.00 |
AC7 | 1.01 | 19.73 | 21.00 | AC28 | 0.93 | 21.27 | 21.00 | AC41 | 1.02 | 25.27 | 21.00 |
AC27 | 1.00 | 16.55 | 22.00 | AC34 | 0.93 | 25.55 | 22.00 | AC12 | 0.92 | 25.36 | 22.00 |
AC28 | 1.00 | 29.18 | 23.00 | AC17 | 0.92 | 34.45 | 23.00 | AC29 | 0.98 | 25.45 | 23.00 |
AC62 | 1.00 | 20.55 | 24.00 | AC38 | 0.92 | 16.27 | 24.00 | AC34 | 0.97 | 25.45 | 24.00 |
AC31 | 1.00 | 23.27 | 25.00 | AC60 | 0.90 | 37.36 | 25.00 | AC56 | 0.88 | 26.09 | 25.00 |
AC54 | 0.98 | 19.82 | 26.00 | AC12 | 0.90 | 20.18 | 26.00 | AC58 | 0.96 | 26.55 | 26.00 |
AC50 | 0.98 | 32.18 | 27.00 | AC2 | 0.90 | 32.82 | 27.00 | AC62 | 0.94 | 26.55 | 27.00 |
AC15 | 0.98 | 39.82 | 28.00 | AC55 | 0.90 | 16.27 | 28.00 | AC53 | 0.87 | 27.82 | 28.00 |
AC38 | 0.97 | 20.36 | 29.00 | AC46 | 0.90 | 29.55 | 29.00 | AC15 | 0.98 | 28.27 | 29.00 |
AC58 | 0.97 | 38.91 | 30.00 | AC23 | 0.89 | 27.82 | 30.00 | AC60 | 0.99 | 28.73 | 30.00 |
AC36 | 0.97 | 38.55 | 31.00 | AC25 | 0.89 | 34.18 | 31.00 | AC24 | 0.89 | 28.82 | 31.00 |
AC40 | 0.95 | 36.55 | 32.00 | AC36 | 0.89 | 36.73 | 32.00 | AC7 | 0.94 | 31.27 | 32.00 |
AC25 | 0.95 | 41.82 | 33.00 | AC62 | 0.88 | 32.64 | 33.00 | AC45 | 0.85 | 31.36 | 33.00 |
AC22 | 0.95 | 32.27 | 34.00 | AC56 | 0.88 | 20.64 | 34.00 | AC17 | 0.98 | 32.09 | 34.00 |
AC16 | 0.94 | 33.55 | 35.00 | AC53 | 0.88 | 21.82 | 35.00 | AC48 | 0.94 | 33.00 | 35.00 |
AC12 | 0.94 | 35.36 | 36.00 | AC18 | 0.87 | 35.73 | 36.00 | AC23 | 0.91 | 33.27 | 36.00 |
AC23 | 0.93 | 40.36 | 37.00 | AC7 | 0.86 | 41.91 | 37.00 | AC52 | 0.84 | 33.82 | 37.00 |
AC59 | 0.92 | 37.55 | 38.00 | AC24 | 0.85 | 29.18 | 38.00 | AC10 | 0.87 | 35.64 | 38.00 |
AC24 | 0.92 | 29.45 | 39.00 | AC47 | 0.85 | 39.27 | 39.00 | AC36 | 0.93 | 37.91 | 39.00 |
AC18 | 0.92 | 47.36 | 40.00 | AC10 | 0.84 | 31.64 | 40.00 | AC51 | 0.83 | 38.27 | 40.00 |
AC21 | 0.91 | 32.00 | 41.00 | AC40 | 0.84 | 44.55 | 41.00 | AC22 | 0.89 | 38.45 | 41.00 |
AC10 | 0.90 | 41.45 | 42.00 | AC48 | 0.83 | 46.91 | 42.00 | AC5 | 0.82 | 39.27 | 42.00 |
AC45 | 0.89 | 28.00 | 43.00 | AC59 | 0.82 | 41.27 | 43.00 | AC40 | 0.90 | 39.45 | 43.00 |
AC55 | 0.89 | 37.45 | 44.00 | AC22 | 0.82 | 45.09 | 44.00 | AC25 | 0.92 | 40.00 | 44.00 |
AC56 | 0.88 | 37.82 | 45.00 | AC45 | 0.82 | 32.73 | 45.00 | AC21 | 0.85 | 40.27 | 45.00 |
AC53 | 0.87 | 39.55 | 46.00 | AC16 | 0.81 | 46.82 | 46.00 | AC59 | 0.87 | 40.91 | 46.00 |
AC19 | 0.87 | 51.18 | 47.00 | AC52 | 0.81 | 34.55 | 47.00 | AC16 | 0.88 | 41.55 | 47.00 |
AC51 | 0.87 | 39.45 | 48.00 | AC57 | 0.79 | 41.18 | 48.00 | AC18 | 0.89 | 42.09 | 48.00 |
AC52 | 0.87 | 35.36 | 49.00 | AC51 | 0.79 | 38.91 | 49.00 | AC44 | 0.92 | 42.27 | 49.00 |
AC37 | 0.86 | 53.18 | 50.00 | AC21 | 0.79 | 45.36 | 50.00 | AC49 | 0.79 | 43.45 | 50.00 |
AC20 | 0.86 | 49.91 | 51.00 | AC49 | 0.79 | 35.18 | 51.00 | AC1 | 0.88 | 44.82 | 51.00 |
AC5 | 0.85 | 39.45 | 52.00 | AC44 | 0.79 | 51.36 | 52.00 | AC20 | 0.82 | 48.55 | 52.00 |
AC2 | 0.85 | 54.09 | 53.00 | AC20 | 0.78 | 48.09 | 53.00 | AC2 | 0.87 | 48.64 | 53.00 |
AC35 | 0.84 | 44.55 | 54.00 | AC5 | 0.78 | 40.00 | 54.00 | AC57 | 0.81 | 49.36 | 54.00 |
AC57 | 0.82 | 54.64 | 55.00 | AC19 | 0.77 | 54.09 | 55.00 | AC14 | 0.75 | 49.91 | 55.00 |
AC1 | 0.82 | 56.45 | 56.00 | AC14 | 0.73 | 45.27 | 56.00 | AC33 | 0.56 | 52.82 | 56.00 |
AC3 | 0.79 | 57.45 | 57.00 | AC3 | 0.72 | 54.82 | 57.00 | AC19 | 0.82 | 53.27 | 57.00 |
AC49 | 0.79 | 54.55 | 58.00 | AC37 | 0.66 | 57.55 | 58.00 | AC3 | 0.76 | 56.55 | 58.00 |
AC14 | 0.77 | 55.09 | 59.00 | AC35 | 0.65 | 57.82 | 59.00 | AC35 | 0.75 | 56.73 | 59.00 |
AC11 | 0.75 | 45.27 | 60.00 | AC33 | 0.51 | 56.64 | 60.00 | AC37 | 0.76 | 56.82 | 60.00 |
AC8 | 0.64 | 47.45 | 61.00 | AC30 | 0.48 | 60.45 | 61.00 | AC11 | 0.60 | 59.82 | 61.00 |
AC33 | 0.62 | 46.36 | 62.00 | AC11 | 0.46 | 61.91 | 62.00 | AC8 | 0.52 | 61.09 | 62.00 |
AC30 | 0.53 | 62.73 | 63.00 | AC8 | 0.39 | 62.73 | 63.00 | AC30 | 0.51 | 62.73 | 63.00 |
AC13 | 0.37 | 45.64 | 64.00 | AC13 | 0.13 | 64.00 | 64.00 | AC13 | 0.25 | 63.73 | 64.00 |
Treatments | Traits | p-Value | Significant | Moderate Tolerance | High Tolerance | Low Tolerance |
---|---|---|---|---|---|---|
T1 (7.5% PEG) | PC (µg/g) | 0.00 | Yes | 1158.00 ± 21.22 b | 1642.00 ± 42.01a | 821.24 ± 27.19 b |
SSC (µg/g) | 0.00 | Yes | 169.04 ±12.13 a | 204.13 ± 16.27 b | 142.42 ± 17.72 a | |
TPC (µg/g) | 0.00 | Yes | 221.24 ± 9.17 a | 302.84 ± 25.21 b | 151.41 ± 22.61 a | |
T2 (15% PEG) | PC (µg/g) | 0.00 | Yes | 3281.02 ± 36 a | 1880.03 ± 44.67 b | 881.18 ± 31.72 c |
SSC (µg/g) | 0.00 | Yes | 276.49 ± 18.28 a | 196.86 ± 13.23 b | 143.45 ± 14.02 c | |
TPC (µg/g) | 0.00 | Yes | 482.73 ± 17.16 a | 353.89 ± 22.70 b | 241.08 ± 17.06 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, N.A.-r.; Rasul, K.S.; Lateef, D.D.; Aziz, R.R.; Ahmed, J.O. In Vitro Evaluation of Iraqi Kurdistan Tomato Accessions Under Drought Stress Conditions Using Polyethylene Glycol-6000. Life 2024, 14, 1502. https://doi.org/10.3390/life14111502
Tahir NA-r, Rasul KS, Lateef DD, Aziz RR, Ahmed JO. In Vitro Evaluation of Iraqi Kurdistan Tomato Accessions Under Drought Stress Conditions Using Polyethylene Glycol-6000. Life. 2024; 14(11):1502. https://doi.org/10.3390/life14111502
Chicago/Turabian StyleTahir, Nawroz Abdul-razzak, Kamaran Salh Rasul, Djshwar Dhahir Lateef, Rebwar Rafat Aziz, and Jalal Omer Ahmed. 2024. "In Vitro Evaluation of Iraqi Kurdistan Tomato Accessions Under Drought Stress Conditions Using Polyethylene Glycol-6000" Life 14, no. 11: 1502. https://doi.org/10.3390/life14111502
APA StyleTahir, N. A. -r., Rasul, K. S., Lateef, D. D., Aziz, R. R., & Ahmed, J. O. (2024). In Vitro Evaluation of Iraqi Kurdistan Tomato Accessions Under Drought Stress Conditions Using Polyethylene Glycol-6000. Life, 14(11), 1502. https://doi.org/10.3390/life14111502