Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Ovarian Stimulation, Oocyte Retrieval, Intracytoplasmic Sperm Injection (ICSI) and Embryo Culture
2.3. Morphological Classification of Embryos
2.4. The Waste Embryo Culture Medium Collection
2.5. Total RNA Isolation and Real Time Polymerase Chain Reaction (RT-PCR)
2.6. Statistical Analysis
3. Results
3.1. The Evaluation of Ages Between NOR, PKOS, POR-Y and POR-A Samples
3.2. Determination and Comparisons of Gene Expression Profiles Between NOR, PKOS, POR-Y and POR-A Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garolla, A.; Pizzol, D.; Carosso, A.R.; Borini, A.; Ubaldi, F.M.; Calogero, A.E.; Ferlin, A.; Lanzone, A.; Tomei, F.; Engl, B.; et al. Practical Clinical and Diagnostic Pathway for the Investigation of the Infertile Couple. Front. Endocrinol. 2021, 11, 591837. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.A.J.; Schomakers, B.V.; van Weeghel, M.; Wever, E.J.M.; Wüst, R.C.I.; Dijk, F.; Janssens, G.E.; Goddijn, M.; Mastenbroek, S.; Houtkooper, R.H.; et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum. Reprod. 2023, 38, 2208–2220. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Ahmed, S.M.; El-Gammal, Z.; Shouman, S.; Ahmed, A.; Mansour, R.; El-Badri, N. Oocyte Aging: The Role of Cellular and Environmental Factors and Impact on Female Fertility. Adv. Exp. Med. Biol. 2020, 1247, 109–123. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, S.W.; Kim, H.S.; Kang, M.J.; Kim, S.A.; Han, J.Y.; Kim, H.; Ku, S.Y. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int. J. Mol. Sci. 2024, 25, 751. [Google Scholar] [CrossRef] [PubMed]
- Stimpfel, M.; Bacer-Kermavner, L.; Jancar, N.; Vrtacnik-Bokal, E. The influence of the type of embryo culture media on the outcome of IVF/ICSI cycles. Taiwan J. Obstet. Gynecol. 2020, 59, 848–854. [Google Scholar] [CrossRef]
- Sacha, C.R.; Gopal, D.; Liu, C.L.; Cabral, H.R.; Stern, J.E.; Carusi, D.A.; Racowsky, C.; Bormann, C.L. The impact of single-step and sequential embryo culture systems on obstetric and perinatal outcomes in singleton pregnancies: The Massachusetts Outcomes Study of Assisted Reproductive Technology. Fertil. Steril. 2022, 117, 1246–1254. [Google Scholar] [CrossRef]
- Mottis, A.; Herzig, S.; Auwerx, J. Mitocellular communication: Shaping health and disease. Science 2019, 366, 827–832. [Google Scholar] [CrossRef]
- Merry, T.L.; Chan, A.; Woodhead, J.S.T.; Reynolds, J.C.; Kumagai, H.; Kim, S.J.; Lee, C. Mitochondrial-derived peptides in energy metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E659–E666. [Google Scholar] [CrossRef]
- Rigoulet, M.; Bouchez, C.L.; Paumard, P.; Ransac, S.; Cuvellier, S.; Duvezin-Caubet, S.; Mazat, J.P.; Devin, A. Cell energy metabolism: An update. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148276. [Google Scholar] [CrossRef]
- Catandi, G.D.; Obeidat, Y.M.; Broeckling, C.D.; Chen, T.W.; Chicco, A.J.; Carnevale, E.M. Equine maternal aging affects oocyte lipid content, metabolic function and developmental potential. Reproduction 2021, 161, 399–409. [Google Scholar] [CrossRef]
- Catandi, G.D.; Bresnahan, D.R.; Peters, S.O.; Fresa, K.J.; Maclellan, L.J.; Broeckling, C.D.; Carnevale, E.M. Equine maternal aging affects the metabolomic profile of oocytes and follicular cells during different maturation time points. Front. Cell Dev. Biol. 2023, 11, 1239154. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, P.; Jia, L.; Li, T.; Yang, X.; Liang, Q.; Zeng, Y.; Liu, J.; Wu, T.; Hu, W.; et al. Multi-Omics Analysis Reveals Translational Landscapes and Regulations in Mouse and Human Oocyte Aging. Adv. Sci. 2023, 10, e2301538. [Google Scholar] [CrossRef]
- Lefkimmiatis, K.; Grisan, F.; Iannucci, L.F.; Surdo, N.C.; Pozzan, T.; Di Benedetto, G. Mitochondrial communication in the context of aging. Aging Clin. Exp. Res. 2021, 33, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, P.V.S.; Evangelou, K.; Vlasis, K.; Fildisis, G.; Panayiotidis, M.I.; Chronopoulos, E.; Passias, P.G.; Kouloukoussa, M.; Gorgoulis, V.G.; Havaki, S. Mitochondrial homeostasis and cellular senescence. Cells 2019, 8, 686. [Google Scholar] [CrossRef]
- Hazafa, A.; Batool, A.; Ahmad, S.; Amjad, M.; Chaudhry, S.N.; Asad, J.; Ghuman, H.F.; Khan, H.M.; Naeem, M.; Ghani, U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci. 2021, 264, 118679. [Google Scholar] [CrossRef] [PubMed]
- Vitale, I.; Pietrocola, F.; Guilbaud, E.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostini, M.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; et al. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ. 2023, 30, 1097–1154. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Wang, D. Deciphering the PTM codes of the tumor suppressor p53. J. Mol. Cell Biol. 2022, 13, 774–785. [Google Scholar] [CrossRef]
- Bowen, M.E.; Attardi, L.D. The role of p53 in developmental syndromes. J. Mol. Cell Biol. 2019, 11, 200–211. [Google Scholar] [CrossRef]
- Levine, A.J. The many faces of p53: Something for everyone. J. Mol. Cell Biol. 2019, 11, 524–530. [Google Scholar] [CrossRef]
- Deguise, M.O.; Chehade, L.; Kothary, R. Metabolic Dysfunction in Spinal Muscular Atrophy. Int. J. Mol. Sci. 2021, 22, 5913. [Google Scholar] [CrossRef]
- Zilio, E.; Piano, V.; Wirth, B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int. J. Mol. Sci. 2022, 23, 10878. [Google Scholar] [CrossRef] [PubMed]
- Sansa, A.; de la Fuente, S.; Comella, J.X.; Garcera, A.; Soler, R.M. Intracellular pathways involved in cell survival are deregulated in mouse and human spinal muscular atrophy motoneurons. Neurobiol. Dis. 2021, 155, 105366. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, Z.; Zhang, S.; Zhang, T.; Liu, Y.; Zhang, L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023, 13, 736–766. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhu, P.; Huang, R.; Wang, C.; Sun, L.; Lan, B.; He, Y.; Zhao, H.; Gao, Y. PINK1: The guard of mitochondria. Life Sci. 2020, 259, 118247. [Google Scholar] [CrossRef] [PubMed]
- Humeau, J.; Leduc, M.; Cerrato, G.; Loos, F.; Kepp, O.; Kroemer, G. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy. Cell Death Dis. 2020, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Safiulina, D.; Kuum, M.; Choubey, V.; Gogichaishvili, N.; Liiv, J.; Hickey, M.A.; Cagalinec, M.; Mandel, M.; Zeb, A.; Liiv, M.; et al. Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J. 2019, 38, e99384. [Google Scholar] [CrossRef]
- Yapa, N.M.B.; Lisnyak, V.; Reljic, B.; Ryan, M.T. Mitochondrial dynamics in health and disease. FEBS Lett. 2021, 595, 1184–1204. [Google Scholar] [CrossRef]
- Popov, L.D. Mitochondrial peptides-appropriate options for therapeutic exploitation. Cell Tissue Res. 2019, 377, 161–165. [Google Scholar] [CrossRef]
- Reynolds, J.C.; Bwiza, C.P.; Lee, C. Mitonuclear genomics and aging. Hum. Genet. 2020, 139, 381–399. [Google Scholar] [CrossRef]
- Niikura, T. Humanin and Alzheimer’s disease: The beginning of a new field. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130024. [Google Scholar] [CrossRef]
- Kim, K.H. Intranasal delivery of mitochondrial protein humanin rescues cell death and promotes mitochondrial function in Parkinson’s disease. Theranostics 2023, 13, 3330–3345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallace, D.C.; Lott, M.T.; Procaccio, V. 10—Mitochondrial Biology and Medicine. In Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics, 7th ed.; Pyeritz, R.E., Korf, B.R., Grody, W.W., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 267–322. [Google Scholar]
- Kwon, C.; Sun, J.L.; Jeong, J.H.; Jung, T.W. Humanin attenuates palmitate-induced hepatic lipid accumulation and insulin resistance via AMPK-mediated suppression of the mTOR pathway. Biochem. Biophys. Res. Commun. 2020, 526, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Zhang, L.; Lin, Y.; Rao, X.; Wang, X.; Hua, F. Mitochondria-derived peptide MOTS-c: Effects and mechanisms related to stress, metabolism and aging. J. Transl. Med. 2023, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.Y.; Zhu, H.Y.; Shi, R.J.; Wu, Y.F.; Fan, Y.; Jin, L. Regulation of glucose metabolism: Effects on oocyte, preimplantation embryo, assisted reproductive technology and embryonic stem cell. Heliyon 2024, 10, e38551. [Google Scholar] [CrossRef]
- Zaninovic, N.; Rosenwaks, Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil. Steril. 2020, 114, 914–920. [Google Scholar] [CrossRef]
- Cai, S.; Quan, S.; Yang, G.; Ye, Q.; Chen, M.; Yu, H.; Wang, G.; Wang, Y.; Zeng, X.; Qiao, S. One carbon metabolism and mammalian pregnancy outcomes. Mol. Nutr. Food Res. 2021, 65, 2000734. [Google Scholar] [CrossRef]
- Pinto, S.; Guerra-Carvalho, B.; Crisóstomo, L.; Rocha, A.; Barros, A.; Alves, M.G.; Oliveira, P.F. Metabolomics Integration in Assisted Reproductive Technologies for Enhanced Embryo Selection beyond Morphokinetic Analysis. Int. J. Mol. Sci. 2023, 25, 491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dumollard, R.; Carroll, J.; Duchen, M.R.; Campbell, K.; Swann, K. Mitochondrial function and redox state in mammalian embryos. Semin. Cell Biol. 2009, 20, 346–353. [Google Scholar] [CrossRef]
- Richani, D.; Dunning, K.R.; Thompson, J.G.; Gilchrist, R.B. Metabolic co-dependence of the oocyte and cumulus cells: Essential role in determining oocyte developmental competence. Hum. Reprod. Update 2021, 27, 27–47. [Google Scholar] [CrossRef]
- Cheredath, A.; Uppangala, S.; Asha, C.S.; Jijo, A.; Vani Lakshmi, R.; Kumar, P.; Joseph, D.; Nagana Gowda, G.A.; Kalthur, G.; Adiga, S.K. Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction. Reprod. Sci. 2023, 30, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Gao, M.; Liu, B.; Qin, Y.; Chen, L.; Liu, H.; Wu, H.; Gong, G. Mitochondrial autophagy: Molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Lammers, J.; Reignier, A.; Loubersac, S.; Chtourou, S.; Lefebvre, T.; Barrière, P.; Fréour, T. Modification of late human embryo development after blastomere removal on day 3 for preimplantation genetic testing. Syst. Biol. Reprod. Med. 2021, 67, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kakourou, G.; Mamas, T.; Vrettou, C.; Traeger-Synodinos, J. An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo. Curr. Genom. 2022, 23, 337–352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cabello-Pinedo, S.; Abdulla, H.A.; Seth-Smith, M.L.; Escriba, M.; Crespo, J.; Munne, S.; Horcajadas, J.A. A novel non-invasive metabolomics approach to screen embryos for aneuploidy. Fertil. Steril. 2020, 114, e5–e6. [Google Scholar] [CrossRef]
- May-Panloup, P.; Brochard, V.; Hamel, J.F.; Desquiret-Dumas, V.; Chupin, S.; Reynier, P.; Duranthon, V. Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. Hum. Reprod. 2019, 34, 1313–1324. [Google Scholar] [CrossRef]
- Terradas, A.L.; Zittlau, K.I.; Macek, B.; Fraiberg, M.; Elazar, Z.; Kahle, P.J. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. J. Biol. Chem. 2021, 297, 101339. [Google Scholar] [CrossRef]
- Boudoures, A.L.; Saben, J.; Drury, A.; Scheaffer, S.; Modi, Z.; Zhang, W.; Moley, K.H. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev. Biol. 2017, 426, 126–138. [Google Scholar] [CrossRef]
- Podolak, A.; Woclawek-Potocka, I.; Lukaszuk, K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022, 11, 797. [Google Scholar] [CrossRef]
- Yang, X.; Xue, P.; Chen, H.; Yuan, M.; Kang, Y.; Duscher, D.; Machens, H.G.; Chen, Z. Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction, mitophagy and apoptosis via miR-142a-5p/MFN1 axis. Theranostics 2020, 10, 1415–1432. [Google Scholar] [CrossRef]
- Zhang, M.; Bener, M.B.; Jiang, Z.; Wang, T.; Esencan, E.; Scott, R.; Horvath, T.; Seli, E. Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 2019, 11, 3919–3938. [Google Scholar] [CrossRef]
- Liu, Q.; Kang, L.; Wang, L.; Zhang, L.; Xiang, W. Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function. Sci. Rep. 2016, 6, 30561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Bener, M.B.; Jiang, Z. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death Dis. 2019, 10, 560. [Google Scholar] [CrossRef] [PubMed]
- Zanjirband, M.; Hodayi, R.; Safaeinejad, Z.; Nasr-Esfahani, M.H. Evaluation of the p53 pathway in polycystic ovarian syndrome pathogenesis and apoptosis enhancement in human granulosa cells through transcriptome data analysis. Sci. Rep. 2023, 13, 11648. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.N.; Hoffman, S.; Reddi, P.P.; Singh, R.N. Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166063. [Google Scholar] [CrossRef]
- Tu, M.X.; Wu, Y.Q.; Wang, F.X.; Huang, Y.; Qian, Y.L.; Li, J.Y.; Lv, P.P.; Ying, Y.Y.; Liu, J.; Liu, Y.F.; et al. Effect of lncRNA MALAT1 on the Granulosa Cell Proliferation and Pregnancy Outcome in Patients with PCOS. Front. Endocrinol. 2022, 13, 825431. [Google Scholar] [CrossRef]
- García-Ferreyra, J.; Carpio, J.; Zambrano, M.; Valdivieso-Mejía, P.; Valdivieso-Rivera, P. Overweight and obesity significantly reduce pregnancy, implantation, and live birth rates in women undergoing In Vitro Fertilization procedures. JBRA Assist. Reprod. 2021, 25, 394–402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kirillova, A.; Smitz, J.E.J.; Sukhikh, G.T.; Mazunin, I. The Role of Mitochondria in Oocyte Maturation. Cells 2021, 10, 2484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harrington, J.S.; Ryter, S.W.; Plataki, M.; Price, D.R.; Choi, A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev. 2023, 103, 2349–2422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xia, Y.; Zhang, H.Y.; Ma, S.; Zhou, F. Age-related Changes in Humanin Expression in the Ovarian Tissue of Rat. Curr. Med. Sci. 2023, 43, 579–584. [Google Scholar] [CrossRef]
- Rao, M.; Zhou, F.; Tang, L.; Zeng, Z.; Hu, S.; Wang, Y.; Ke, D.; Cheng, G.; Xia, W.; Zhang, L.; et al. Follicular fluid humanin concentration is related to ovarian reserve markers and clinical pregnancy after IVF-ICSI: A pilot study. Reprod. Biomed. Online 2019, 38, 108–117. [Google Scholar] [CrossRef]
- Yang, D.; Ying, J.; Wang, X.; Zhao, T.; Yoon, S.; Fang, Y.; Zheng, Q.; Liu, X.; Yu, W.; Hua, F. Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential Target for Neurodegenerative Disease. Front. Neurosci. 2021, 15, 654785. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Sequence | Reverse Sequence |
---|---|---|
MFN1 | 5′-GTTACCGAGGAGGTGGCAAA-′3 | 5′-GGTCTGAAGCACTAAGGCGT-′3 |
MFN2 | 5′-TCTCCCGGCCAAACATCTTC-′3 | 5′-TCCATGTACTCGGGCTCTGA-′3 |
SMN1 | 5′-CACAGGCCAGAGCGATGATT-′3 | 5′-TGGAGCAGATTTGGGCTTGA-‘3 |
SMN2 | 5′-CACAGGCCAGAGCGATGATT-′3 | 5′-TGGAGCAGATTTGGGCTTGA-′3 |
PINK1 | 5′-TGGCTGGTGATCGCAGATTT-′3 | 5′-AGAGCGTTTCACACTCCAGG-′3 |
PARKIN | 5′-CTGCCGGGAATGTAAAGAAGC-3′ | 5′-CCACAGTTCCAGCACCACTC-3′ |
HUMANIN | 5′-CACTCCACCTTACTACCAG-′3 | 5′-ATAATTTTTCATCTTTCCC-′3 |
p53 | 5′-TGAAGCTCCCAGAATGCCAG-′3 | 5′-TGGTGTTGTTGGACAGTGCT-′3 |
GAPDH | 5′-CGAGGGGGGAGCCAAAAGGG-′3 | 3′-GAAACTGCGACCCCGACCGT-′5 |
Correlations For All Gene Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
MFN1 | MFN2 | SMN1 | SMN2 | PINK1 | PARKIN | HUMANIN | p53 | |||
Spearman’s Rho | MFN1 | R | 1.000 | 0.385 ** | 0.550 ** | 0.529 ** | 0.258 ** | 0.372 ** | 0.344 ** | 0.429 ** |
Sig. (2-) | - | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
MFN2 | R | 0.385 ** | 1.000 | 0.536 ** | 0.489 ** | 0.549 ** | 0.599 ** | 0.606 ** | 0.668 ** | |
Sig. (2-) | 0.000 | - | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
SMN1 | R | 0.550 ** | 0.536 ** | 1.000 | 0.641 ** | 0.468 ** | 0.594 ** | 0.441 ** | 0.505 ** | |
Sig. (2-) | 0.000 | 0.000 | - | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
SMN2 | R | 0.529 ** | 0.489 ** | 0.641 ** | 1.000 | 0.405 ** | 0.498 ** | 0.411 ** | 0.511 ** | |
Sig. (2-) | 0.000 | 0.000 | 0.000 | - | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
PINK1 | R | 0.258 ** | 0.549 ** | 0.468 ** | 0.405 ** | 1.000 | 0.637 ** | 0.362 ** | 0.402 ** | |
Sig. (2-) | 0.000 | 0.000 | 0.000 | 0.000 | - | 0.000 | 0.000 | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
PARKIN | R | 0.372 ** | 0.599 ** | 0.594 ** | 0.498 ** | 0.637 ** | 1.000 | 0.447 ** | 0.549 ** | |
Sig. (2-) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | - | 0.000 | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
HUMANIN | R | 0.344 ** | 0.606 ** | 0.441 ** | 0.411 ** | 0.362 ** | 0.447 ** | 1.000 | 0.724 ** | |
Sig. (2-) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | - | 0.000 | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | ||
p53 | R | 0.429 ** | 0.668 ** | 0.505 ** | 0.511 ** | 0.402 ** | 0.549 ** | 0.724 ** | 1.000 | |
Sig. (2-) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | - | ||
N | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kütük, D.; Öner, Ç.; Başar, M.; Akcay, B.; Olcay, İ.O.; Çolak, E.; Selam, B.; Cincik, M. Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types. Life 2024, 14, 1507. https://doi.org/10.3390/life14111507
Kütük D, Öner Ç, Başar M, Akcay B, Olcay İO, Çolak E, Selam B, Cincik M. Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types. Life. 2024; 14(11):1507. https://doi.org/10.3390/life14111507
Chicago/Turabian StyleKütük, Duygu, Çağrı Öner, Murat Başar, Berkay Akcay, İbrahim Orçun Olcay, Ertuğrul Çolak, Belgin Selam, and Mehmet Cincik. 2024. "Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types" Life 14, no. 11: 1507. https://doi.org/10.3390/life14111507
APA StyleKütük, D., Öner, Ç., Başar, M., Akcay, B., Olcay, İ. O., Çolak, E., Selam, B., & Cincik, M. (2024). Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types. Life, 14(11), 1507. https://doi.org/10.3390/life14111507