Prediction Model of Late Fetal Growth Restriction with Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Definitions of FGR
2.3. Machine Learning Analysis
2.3.1. Data Preparation
2.3.2. Variables Used to Develop the Late FGR Prediction Models
2.3.3. Machine Learning Algorithm and Interpretation
2.3.4. Evaluation and Validation of the Simplified Model
3. Results
3.1. Data Set
3.2. Machine Learning Predictive Models for Late FGR at E1 and T1 Periods
3.3. Feature Importance for Late FGR in the Prediction Models
3.4. Feature Selections for a Simplified Prediction Model of Late FGR and Performances
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, I.M.; Horbar, J.D.; Badger, G.J.; Ohlsson, A.; Golan, A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am. J. Obstet. Gynecol. 2000, 182, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Unterscheider, J.; O’Donoghue, K.; Daly, S.; Geary, M.P.; Kennelly, M.M.; McAuliffe, F.M.; Hunter, A.; Morrison, J.J.; Burke, G.; Dicker, P.; et al. Fetal growth restriction and the risk of perinatal mortality-case studies from the multicentre PORTO study. BMC Pregnancy Childbirth 2014, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet. Gynecol. 2021, 137, e16–e28. [CrossRef] [PubMed]
- Society for Maternal-Fetal Medicine (SMFM); Martins, J.G.; Biggio, J.R.; Abuhamad, A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 2020, 223, B2–B17. [Google Scholar] [CrossRef] [PubMed]
- Carreno, C.A.; Costantine, M.M.; Holland, M.G.; Ramin, S.M.; Saade, G.R.; Blackwell, S.C. Approximately one-third of medically indicated late preterm births are complicated by fetal growth restriction. Am. J. Obstet. Gynecol. 2011, 204, 263.e1–263.e4. [Google Scholar] [CrossRef]
- Melamed, N.; Baschat, A.; Yinon, Y.; Athanasiadis, A.; Mecacci, F.; Figueras, F.; Berghella, V.; Nazareth, A.; Tahlak, M.; McIntyre, H.D.; et al. FIGO (international Federation of Gynecology and Obstetrics) initiative on fetal growth: Best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021, 152 (Suppl. S1), 3–57. [Google Scholar] [CrossRef]
- Frøen, J.F.; Gardosi, J.O.; Thurmann, A.; Francis, A.; Stray-Pedersen, B. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet. Gynecol. Scand. 2004, 83, 801–807. [Google Scholar] [CrossRef]
- Kovo, M.; Schreiber, L.; Ben-Haroush, A.; Cohen, G.; Weiner, E.; Golan, A.; Bar, J. The placental factor in early- and late-onset normotensive fetal growth restriction. Placenta 2013, 34, 320–324. [Google Scholar] [CrossRef]
- Baschat, A.A. Fetal growth restriction—From observation to intervention. J. Perinat. Med. 2010, 38, 239–246. [Google Scholar] [CrossRef]
- Gujral, K.; Nayar Current, S. Trends in management of fetal growth restriction. J. Fetal Med. 2014, 1, 125–129. [Google Scholar] [CrossRef]
- Crovetto, F.; Triunfo, S.; Crispi, F.; Rodriguez-Sureda, V.; Roma, E.; Dominguez, C.; Gratacos, E.; Figueras, F. First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound Obstet. Gynecol. 2016, 48, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Cosmi, E.; Ambrosini, G.; D’Antona, D.; Saccardi, C.; Mari, G. Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses. Obstet. Gynecol. 2005, 106, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, S.; Desai, A.; Block-Abraham, D.; Berg, C.; Gembruch, U.; Baschat, A.A. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am. J. Obstet. Gynecol. 2014, 211, 669.e1–669.e10. [Google Scholar] [CrossRef] [PubMed]
- Figueras, F.; Gardosi, J. Intrauterine growth restriction: New concepts in antenatal surveillance, diagnosis, and management. Am. J. Obstet. Gynecol. 2011, 204, 288–300. [Google Scholar] [CrossRef]
- Sanz-Cortes, M.; Egaña-Ugrinovic, G.; Simoes, R.V.; Vazquez, L.; Bargallo, N.; Gratacos, E. Association of brain metabolism with sulcation and corpus callosum development assessed by MRI in late-onset small fetuses. Am. J. Obstet. Gynecol. 2015, 212, 804.e1–804.e8. [Google Scholar] [CrossRef]
- Simões, R.V.; Cruz-Lemini, M.; Bargalló, N.; Gratacós, E.; Sanz-Cortés, M. Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome. Am. J. Obstet. Gynecol. 2015, 213, 210.e1–210.e11. [Google Scholar] [CrossRef]
- Gardosi, J.; Madurasinghe, V.; Williams, M.; Malik, A.; Francis, A. Maternal and fetal risk factors for stillbirth: Population based study. BMJ 2013, 346, f108. [Google Scholar] [CrossRef]
- Nardozza, L.M.M.; Caetano, A.C.R.; Zamarian, A.C.P.; Mazzola, J.B.; Silva, C.P.; Marçal, V.M.G.; Lobo, T.F.; Peixoto, A.B.; Araujo Júnior, E. Fetal growth restriction: Current knowledge. Arch. Gynecol. Obstet. 2017, 295, 1061–1077. [Google Scholar] [CrossRef]
- Oros, D.; Figueras, F.; Cruz-Martinez, R.; Meler, E.; Munmany, M.; Gratacos, E. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet. Gynecol. 2011, 37, 191–195. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacós, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef]
- Sotiriadis, A.; Figueras, F.; Eleftheriades, M.; Papaioannou, G.K.; Chorozoglou, G.; Dinas, K.; Papantoniou, N. First-trimester and combined first- and second-trimester prediction of small-for-gestational age and fetuses with late growth restriction. Ultrasound Obstet. Gynecol. 2019, 53, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Crovetto, F.; Triunfo, S.; Crispi, F.; Rodriguez-Sureda, V.; Dominguez, C.; Figueras, F.; Gratacos, E. Differential performance of first-trimester screening in predicting small for-gestational-age neonate or fetal growth restriction. Ultrasound Obstet. Gynecol. 2017, 49, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Sovio, U.; White, I.R.; Dacey, A.; Pasupathy, D.; Smith, G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: A prospective cohort study. Lancet 2015, 386, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Rodriguez-Lopez, M.; Triunfo, S.; Sairanen, M.; Kouru, H.; Parra-Saavedra, M.; Crovetto, F.; Figueras, F.; Crispi, F.; Gratacós, E. Prediction of fetal growth restriction using estimated fetal weight vs a combined screening model in the third trimester. Ultrasound Obstet. Gynecol. 2017, 50, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.Y.; Mattar, C.N.Z.; Biswas, A.; Hoo, W.L.; Saw, S.N. Interpreting the role of nuchal fold for fetal growth restriction prediction using machine learning. Sci. Rep. 2022, 12, 3907. [Google Scholar] [CrossRef]
- Lee, J.K.; Jang, H.L.; Kang, B.H.; Lee, K.S.; Choi, Y.S.; Shim, K.S.; Lim, J.W.; Bae, C.W.; Chung, S.H. Percentile Distributions of Birth Weight according to Gestational Ages in Korea (2010–2012). J. Korean Med. Sci. 2016, 31, 939–949. [Google Scholar] [CrossRef]
- Savchev, S.; Figueras, F.; Sanz-Cortes, M.; Cruz-Lemini, M.; Triunfo, S.; Botet, F.; Gratacos, E. Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagn. Ther. 2014, 36, 99–105. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef]
- Chen, C.W.; Tsai, Y.H.; Chang, F.R.; Lin, W.C. Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results. Expert Syst. 2020, 37, e12553. [Google Scholar] [CrossRef]
- Caradeux, J.; Eixarch, E.; Mazarico, E.; Basuki, T.R.; Gratacós, E.; Figueras, F. Second- to third-trimester longitudinal growth assessment for prediction of small-for-gestational age and late fetal growth restriction. Ultrasound Obstet. Gynecol. 2018, 51, 219–224. [Google Scholar] [CrossRef]
- Zheng, C.; Ji, C.; Wang, B.; Zhang, J.; He, Q.; Ma, J.; Yang, Z.; Pan, Q.; Sun, L.; Sun, N.; et al. Construction of prediction model for fetal growth restriction during first trimester in an Asian population. Ultrasound Obstet. Gynecol. 2024, 63, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, M.A.; Palmer, K.R.; Hodges, R.J.; Costa, F.D.S.; Rolnik, D.L. Uterine artery Doppler in screening for pre-eclampsia and fetal growth restriction. Rev. Bras. Ginecol. Obstet. 2018, 40, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kienast, C.; Moya, W.; Rodriguez, O.; Jijón, A.; Geipel, A. Predictive value of angiogenic factors, clinical risk factors and uterine artery Doppler for pre-eclampsia and fetal growth restriction in second and third trimester pregnancies in an Ecuadorian population. J. Matern. Fetal Neonatal Med. 2016, 29, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Visnic, A. The characteristics of a fibroid in pregnancy can influence the perinatal outcome. Arch. Gynecol. Obstet. 2024, 310, 1905–1918. [Google Scholar] [CrossRef]
- Hu, H.T.; Xu, J.J.; Lin, J.; Li, C.; Wu, Y.T.; Sheng, J.Z.; Liu, X.M.; Huang, H.F. Association between first caesarean delivery and adverse outcomes in subsequent pregnancy: A retrospective cohort study. BMC Pregnancy Childbirth 2018, 18, 273. [Google Scholar] [CrossRef]
- Goto, E. Dose-response associations of maternal height and weight with small for gestational age: A meta-analysis. Eur. J. Clin. Nutr. 2020, 74, 106–111. [Google Scholar] [CrossRef]
- Shechter-Maor, G.; Sadeh-Mestechkin, D.; Ganor Paz, Y.; Sukenik Halevy, R.; Markovitch, O.; Biron-Shental, T. Does parity affect pregnancy outcomes in the elderly gravida? Arch. Gynecol. Obstet. 2020, 301, 58–91. [Google Scholar] [CrossRef]
- Liang, X.; Zheng, W.; Liu, C.; Zhang, L.; Zhang, L.; Tian, Z.; Li, G. Clinical characteristics, gestational weight gain and pregnancy outcomes in women with a history of gestational diabetes mellitus. Diabetol. Metab. Syndr. 2021, 13, 73. [Google Scholar] [CrossRef]
- Stefan, K.; Bryan, M.; Hongqun, Z.; David, H.; Alexander, C.A.; Joseph, K.S.; Victoria, M.A. Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: A retrospective cohort study. BMC Pregnancy Childbirth 2018, 18, 333. [Google Scholar] [CrossRef]
- Sua, N.V.; Jinhui, C.; Yanling, W.; Hui, J.; Feng, S.; Ye, L. Identifying First-Trimester Risk Factors for SGA-LGA Using Weighted Inheritance Voting Ensemble Learning. Bioengineering 2024, 11, 657. [Google Scholar] [CrossRef]
- Malacova, E.; Regan, A.; Nassar, N.; Raynes-Greenow, C.; Leonard, H.; Srinivasjois, R.; Shand, A.W.; Lavin, T.; Pereira, G. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: Systematic review and meta-analysis. BJOG 2018, 125, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Posont, R.J.; Cadaret, C.N.; Barnes, T.L.; Yates, D.T. A potential role for mTORC1/2 in β2 adrenergic regulation of skeletal muscle glucose oxidation in models of intrauterine growth restriction. Diabesity 2017, 3, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, H.S.; Liu, L.; Meng, L.; Lu, Y.; Han, L.; Tang, G.; Wang, J.; Chen, L.; Zhang, Y.; et al. Elevated levels of renal function tests conferred increased risks of developing various pregnancy complications and adverse perinatal outcomes: Insights from a population-based cohort study. Clin. Chem. Lab. Med. 2023, 61, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Bodnar, L.M.; Lain, K.Y.; Hubel, C.A.; Markovic, N.; Ness, R.B.; Powers, R.W. Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension 2005, 46, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Darakhshan, A.; Peeters, R.P.; Taylor, P.N.; Bilddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; Chen, L.; Knight, B.A.; Ghafoor, F.; et al. Association of maternal thyroid function with birthweight: A systematic review and individual-participant data meta-analysis. Lancet Diabetes Endocrinol. 2020, 8, 501–510. [Google Scholar] [CrossRef]
- Singh, M.; Wambua, S.; Lee, S.I.; Okoth, K.; Wang, Z.; Fazla, F.; Fayaz, A.; Eastwood, K.A.; Nelson-Piercy, C.; Nirantharakumar, K.; et al. Autoimmune disease and adverse pregnancy outcomes: An umbrella review. Lancet 2023, 402 (Suppl. S1), S84. [Google Scholar] [CrossRef]
- Al Khalaf, S.; Bodunde, E.; Maher, G.M.; O’Reilly, E.J.; McCarthy, F.P.; O’Shaughnessy, M.M.; O’Neill, S.M.; Khashan, A.S. Chronic kidney disease and adverse pregnancy outcomes: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2022, 226, 656–670. [Google Scholar] [CrossRef]
- Ulusoy, C.O.; Kurt, A.; Seyhanli, Z.; Hizli, B.; Bucak, M.; Agaoglu, R.T.; Oguz, Y.; Yucel, K.Y. Role of Inflammatory Markers and Doppler Parameters in late-Onset Fetal Growth Restriction: A Machine-Learning Approach. Am. J. Reprod. Immunol. 2024, 92, e70004. [Google Scholar] [CrossRef]
Variables | Training Set (N = 22,610) | Test Set (N = 9691) | ||||
---|---|---|---|---|---|---|
No Late FGR a (N = 20,645) | Late FGR (N = 1965) | p-Value | No Late FGR (N = 8849) | Late FGR (N = 842) | p-Value | |
Age | ||||||
Mean (SD) | 32.77 (4.46) | 32.27 (4.69) | <0.001 | 32.88 (4.43) | 32.19 (4.61) | <0.001 |
<35 years, n (%) | 13,459 (65.19) | 0.001 | 5712 (64.55) | 580 (68.88) | 0.013 | |
≥35 years, <40 years, n (%) | 5938 (28.76) | 490 (24.94) | 2558 (28.91) | 224 (26.6) | ||
≥40 years, n (%) | 1248 (6.05) | 115 (5.85) | 579 (6.54) | 38 (4.51) | ||
Nulliparity, n (%) | 10,422 (50.48) | 1268 (64.53) | <0.001 | 4426 (50.02) | 544 (64.61) | <0.001 |
Maternal height (cm), mean (SD) | 161.44 (5.34) | 160.09 (5.36) | <0.001 | 161.46 (5.24) | 159.88 (5.28) | <0.001 |
BMI a before pregnancy, kg/m2 | ||||||
Mean (SD) | 21.83 (3.72) | 20.98 (3.29) | <0.001 | 21.84 (3.78) | 21.10 (3.52) | <0.001 |
<25 kg/m2, n (%) | 17,303 (84.18) | 1756 (89.73) | 7437 (84.36) | 735 (87.60) | 0.029 | |
≥25 kg/m2, <30 kg/m2, n (%) | 2445 (11.90) | 156 (7.97) | 1009 (11.45) | 81 (9.65) | ||
≥30 kg/m2, n (%) | 806 (3.92) | 45 (2.30) | 370 (4.20) | 23 (2.74) | ||
BMI at delivery, kg/m2 | ||||||
Mean (SD) | 26.59 (3.93) | 25.52 (3.65) | <0.001 | 26.60 (4.02) | 25.56 (3.74) | <0.001 |
<25 kg/m2, n (%) | 7857 (38.15) | 971 (49.59) | <0.001 | 3386 (38.37) | 412 (49.11) | <0.001 |
≥25 kg/m2, <30 kg/m2, n (%) | 9357 (45.44) | 794 (40.55) | 4000 (45.33) | 336 (40.05) | ||
≥30 kg/m2, n (%) | 3380 (16.41) | 193 (9.86) | 1439 (16.31) | 91 (10.85) | ||
Weight gain during pregnancy, mean (SD) | 12.39 (5.11) | 11.62 (4.80) | <0.001 | 12.40 (5.13) | 11.38 (4.67) | <0.001 |
Preexisting disease | ||||||
Hypertension, n (%) | 760 (3.68) | 88 (4.48) | 0.076 | 352 (3.98) | 46 (5.46) | 0.038 |
Diabetes, n (%) | 254 (1.23) | 17 (0.87) | 0.155 | 90 (1.02) | 4 (0.48) | 0.125 |
CKD a, n (%) | 46 (0.22) | 10 (0.51) | 0.027 | 21 (0.24) | 4 (0.48) | 0.270 |
Arrhythmia, n (%) | 291 (1.41) | 10 (0.51) | 0.001 | 128 (1.45) | 13 (1.54) | 0.822 |
Renal disease, n (%) | 194 (0.94) | 34 (1.73) | 0.001 | 82 (0.93) | 18 (2.14) | 0.001 |
Lupus, n (%) | 128 (0.62) | 32 (1.63) | <0.001 | 47 (0.53) | 16 (1.90) | <0.001 |
Hypothyroidism, n (%) | 1063 (5.15) | 78 (3.97) | 0.023 | 441 (4.98) | 32 (3.80) | 0.128 |
Pregnancy complication | ||||||
GDM a, n (%) | 1612 (7.81) | 124 (6.31) | 0.017 | 743 (8.40) | 50 (5.94) | 0.013 |
Gestational hypertension, n (%) | 399 (1.93) | 86 (4.38) | <0.001 | 149 (1.68) | 36 (4.28) | <0.001 |
Preeclampsia, n (%) | 665 (3.22) | 233 (11.86) | <0.001 | 294 (3.32) | 104 (12.35) | <0.001 |
Eclampsia, n (%) | 16 (0.08) | 4 (0.20) | 0.09 | 3 (0.03) | 2 (0.24) | 0.063 |
Superimposed pre-eclampsia, n (%) | 130 (0.63) | 27 (1.37) | <0.001 | 55 (0.62) | 9 (1.07) | 0.126 |
Previous pregnancy history | ||||||
Previous preterm delivery history, n (%) | 1349 (6.53) | 88 (4.48) | <0.001 | 585 (6.61) | 51 (6.06) | <0.001 |
Previous pre-eclampsia history, n (%) | 376 (1.82) | 57 (2.90) | <0.001 | 160 (1.81) | 19 (2.26) | <0.001 |
Previous FDIU a history, n (%) | 161 (0.78) | 10 (0.51) | <0.001 | 73 (0.82) | 9 (1.07) | <0.001 |
Previous GDM history, n (%) | 356 (1.72) | 28 (1.42) | <0.001 | 162 (1.83) | 6 (0.71) | <0.001 |
Previous FGR history, n (%) | 390 (1.89) | 78 (3.97) | <0.001 | 178 (2.01) | 33 (3.92) | <0.001 |
Previous placenta previa history, n (%) | 180 (0.87) | 12 (0.61) | <0.001 | 70 (0.79) | 4 (0.48) | <0.001 |
Previous PAS a history, n (%) | 54 (0.26) | 4 (0.20) | <0.001 | 18 (0.20) | 3 (0.36) | <0.001 |
Previous postpartum hemorrhage history, n (%) | 3491 (16.91) | 183 (9.31) | <0.001 | 1487 (16.80) | 83 (9.86) | <0.001 |
Myoma, n (%) | 3028 (14.67) | 286 (14.55) | 0.893 | 1350 (15.26) | 121 (14.37) | 0.494 |
IVF a, n (%) | 542 (2.63) | 45 (2.29) | 0.372 | 222 (2.51) | 19 (2.26) | 0.653 |
Paternal age, years | ||||||
Mean (SD) | 35.41 (4.87) | 35.13 (4.93) | 0.008 | 35.44 (4.80) | 34.88 (4.93) | 0.002 |
<35 years, n (%) | 8728 (44.66) | 886 (48.63) | 0.001 | 3719 (44.42) | 393 (50.13) | 0.002 |
≥35 years, n (%) | 10,814 (55.34) | 936 (51.37) | 4653 (55.58) | 391 (49.87) |
Baseline check |
Please answer: |
Age: __________ years old |
Height: __________ cm |
Pre-pregnancy weight: ____________ kg |
How many times have you given birth before? _____________ |
Do you have uterine myoma? Yes/No |
Have you ever been diagnosed with an renal or glomerular disease? Yes/No |
Have you ever been diagnosed with lupus or antiphospholipid syndrome? Yes/No |
Have you ever been diagnosed with impaired glucose disease? Yes/No |
Have you ever been diagnosed with hypo/hyperthyroidism? Hypo (Yes/No) Hyper (Yes/No) |
Have you ever been diagnosed with immune disease? Yes (duration:___ years)/No |
Have you ever been treated with steroid medication? Yes/No |
Please fill out / check only if you have given birth before: |
Have you ever undergone a cesarean section in a previous pregnancy? Yes/No |
If yes, number of cesarean sections ______ |
In your last pregnancy, was your baby small or large for gestational age? SGA a/LGA a/No |
Have you ever had a preterm birth in a previous pregnancy? Yes/No |
If yes, number of preterm births ______ |
Have you ever had a pregnancy with a congenital anomaly? Yes/No |
Have you ever been diagnosed with gestational diabetes mellitus? Yes/No |
Have you ever been diagnosed with gestational hypertension or pre-eclampsia in a previous pregnancy? |
Yes/No |
T: Late pregnancy variables (final results until 28 weeks of gestation) |
To be written by the clinician |
Ultrasonographic abnormalities: Oligohydramnios: Yes/No |
Obstetric complications: |
Gestational hypertension: Yes/No, (Superimposed)Pre-eclampsia/eclampsia: Yes/No |
Tocolytics during pregnancy (If no, 0): |
Ritodrine ______days, Atosiban ______days, Nifedipine ____days |
The last lab results |
50 g GCT a: _____________ mg/dL |
BUN a _____ mg/dL, Cr a _______ mg/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.U.; Choi, S.K.; Jo, Y.S.; Wie, J.H.; Shin, J.E.; Kim, Y.H.; Kil, K.; Ko, H.S. Prediction Model of Late Fetal Growth Restriction with Machine Learning Algorithms. Life 2024, 14, 1521. https://doi.org/10.3390/life14111521
Lee SU, Choi SK, Jo YS, Wie JH, Shin JE, Kim YH, Kil K, Ko HS. Prediction Model of Late Fetal Growth Restriction with Machine Learning Algorithms. Life. 2024; 14(11):1521. https://doi.org/10.3390/life14111521
Chicago/Turabian StyleLee, Seon Ui, Sae Kyung Choi, Yun Sung Jo, Jeong Ha Wie, Jae Eun Shin, Yeon Hee Kim, Kicheol Kil, and Hyun Sun Ko. 2024. "Prediction Model of Late Fetal Growth Restriction with Machine Learning Algorithms" Life 14, no. 11: 1521. https://doi.org/10.3390/life14111521
APA StyleLee, S. U., Choi, S. K., Jo, Y. S., Wie, J. H., Shin, J. E., Kim, Y. H., Kil, K., & Ko, H. S. (2024). Prediction Model of Late Fetal Growth Restriction with Machine Learning Algorithms. Life, 14(11), 1521. https://doi.org/10.3390/life14111521