Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Tissue Collection
2.2. RNA Isolation and Small RNA Library Construction
2.3. Bioinformatic Analysis
2.4. Expression Level of miRNA Analysis Based on Transcripts and qRT-PCR
2.5. Differentially Expressed miRNA Enrichment Analysis
2.6. Chemosensory-Related Target Gene Prediction and Expression Levels Based on Transcript Analysis
2.7. Data Analysis
3. Results
3.1. Overview of Small RNA Sequencing Data
3.2. Identification and Analysis of miRNAs
3.3. Abundance of miRNAs in Antennae of Loxostege sticticalis
3.4. Differentially Expressed miRNAs in Antennae of Loxostege sticticalis
3.5. GO Functional Analysis and KEGG Pathway Enrichment of DEmiRNAs
3.6. Prediction of Chemosensory-Related Target Genes and Analysis of Transcript Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Behura, S.K. Insect microRNAs: Structure, function and evolution. Insect Biochem. Mol. Biol. 2007, 37, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, X.J.; Zou, Q.; Wang, S.P.; Tang, S.M.; Zhang, G.Z. Biological functions of microRNAs: A review. J. Physiol. Biochem. 2011, 67, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Samynathan, R.; Venkidasamy, B.; Shanmugam, A.; Ramalingam, S.; Thiruvengadam, M. Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Front. Genet. 2023, 14, 1272446. [Google Scholar] [CrossRef] [PubMed]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [CrossRef]
- Caygill, E.E.; Johnston, L.A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 Heterochronic microRNAs. Curr. Biol. 2008, 18, 943–950. [Google Scholar] [CrossRef]
- Hilgers, V.; Bushati, N.; Cohen, S.M. Drosophila microRNAs 263a/b confer robustness during development by protecting nascent Sense organs from Apoptosis. PLoS Biol. 2010, 8, e1000396. [Google Scholar] [CrossRef]
- Weng, R.F.; Cohen, S.M. Control of Drosophila type I and type II central brain neuroblast proliferation by bantam microRNA. Development 2015, 142, 3713–3720. [Google Scholar] [PubMed]
- Xiong, X.P.; Kurthkoti, K.; Chang, K.Y.; Li, J.L.; Ren, X.J.; Ni, J.Q.; Rana, T.M.; Zhou, R. miR-34 modulates innate immunity and ecdysone signaling in Drosophila. PLoS Pathog. 2016, 12, e1006034. [Google Scholar] [CrossRef]
- Winter, F.; Edaye, S.; Hüttenhofer, A.; Brunel, C. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res. 2007, 35, 6953–6962. [Google Scholar] [CrossRef] [PubMed]
- Bryant, B.; Macdonald, W.; Raikhel, A.S. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. USA 2010, 107, 22391–22398. [Google Scholar] [CrossRef]
- Ling, L.; Kokoza, V.A.; Zhang, C.Y.; Aksoy, E.; Raikhel, A.S. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 2017, 114, E8017–E8024. [Google Scholar] [CrossRef]
- Macedo, L.M.F.; Nunes, F.M.F.; Freitas, F.C.P.; Pires, C.V.; Tanaka, E.D.; Martins, J.R.; Piulachs, M.-D.; Cristino, A.S.; Pinheiro, D.G.; Simões, Z.L.P. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Mol. Biol. 2016, 25, 216–226. [Google Scholar] [CrossRef]
- Ling, L.; Ge, X.; Li, Z.Q.; Zeng, B.S.; Xu, J.; Aslam, A.F.M.; Song, Q.S.; Shang, P.; Huang, Y.P.; Tan, A.J. MicroRNA Let-7 regulates molting and metamorphosis in the silkworm, Bombyx mori. Insect Mol. Biol. 2014, 53, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Wang, S.N.; Song, X.; Khashaveh, A.; Lu, Z.Y.; Dhiloo, K.H.; Li, R.J.; Gao, X.W.; Zhang, Y.J. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. Insect Sci. 2020, 28, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, X.J.; Lin, S.J.; Chen, S.Y.; Lin, G.F.; Song, Q.S.; Bai, J.L.; You, M.S.; Xie, M. Profiling of microRNAs in midguts of Plutella xylostella provides novel insights into the Bacillus thuringiensis resistance. Front. Genet. 2021, 12, 739849. [Google Scholar] [CrossRef] [PubMed]
- Khashaveh, A.; An, X.K.; Shan, S.; Pang, X.Q.; Li, Y.; Fu, X.W.; Zhang, Y.J. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022, 114, 110447. [Google Scholar] [CrossRef]
- Liu, Z.L.; Xu, J.; Ling, L.; Luo, X.Y.; Yang, D.H.; Yang, X.; Zhang, X.Q.; Huang, Y.P. miR-34 regulates larval growth and wing morphogenesis by directly modulating ecdysone signaling and cuticle protein in Bombyx mori. RNA Biol. 2020, 17, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Liu, Z.X.; Nian, X.G.; Xu, X.H.; Zhang, Y. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genet. 2019, 15, e1007655. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.K.; Shrinet, J.; Sunil, S. Aedes aegypti microRNA, miR-2944b-5p interacts with 3’UTR of chikungunya virus and cellular target vps-13 to regulate viral replication. PLoS Negl. Trop. Dis. 2019, 13, e0007429. [Google Scholar] [CrossRef]
- Picao-Osorio, J.; Lago-Baldaia, I.; Patraquim, P.; Alonso, C.R. Pervasive behavioral effects of microRNA regulation in Drosophila. Genetics 2017, 206, 1535–1548. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.L.; Wei, Y.Y.; Jiang, F.; Wang, Y.L.; Guo, X.J.; He, J.; Kang, L. MicroRNA-133 inhibits behavioral aggregation by controlling Dopamine synthesis in locusts. PLoS Genet. 2014, 10, e1004206. [Google Scholar] [CrossRef] [PubMed]
- Cayirlioglu, P.; Kadow, I.G.; Zhan, X.L.; Okamura, K.; Suh, G.S.B.; Gunning, D.; Lai, E.C.; Zipursky, S.L. Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 2008, 319, 1256–1260. [Google Scholar] [CrossRef]
- Li, W.H.; Cressy, M.; Qin, H.T.; Fulga, T.; Van Vactor, D.; Dubnau, J. MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila. J. Neurosci. 2013, 33, 5821–5833. [Google Scholar] [CrossRef] [PubMed]
- McCann, C.; Holohan, E.E.; Das, S.; Dervan, A.; Larkin, A.; Lee, J.A.; Rodrigues, V.; Parker, R.; Ramaswami, M. The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc. Natl. Acad. Sci. USA 2011, 108, E655–E662. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.J.; Ma, Z.Y.; Du, B.Z.; Li, T.; Li, W.D.; Xu, L.L.; He, J.; Kang, L. Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts. Nat. Commun. 2018, 9, 1193. [Google Scholar] [CrossRef]
- Wang, B.; Dong, W.Y.; Li, H.M.; D’Onofrio, C.; Bai, P.H.; Chen, R.P.; Yang, L.L.; Wu, J.N.; Wang, X.Q.; Wang, B.; et al. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr. Biol. 2022, 32, 951–962.e7. [Google Scholar] [CrossRef]
- Bai, P.H.; Yu, J.P.; Hu, R.R.; Fu, Q.W.; Wu, H.C.; Li, X.Y.; Zu, G.H.; Liu, B.S.; Zhang, Y. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to plant volatiles. J. Invertebr. Pathol. 2024, 203, 108067. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Zhang, S.; Cao, S.; Jacquin-Joly, E.; Zhou, Q.; Liu, Y.; Wang, G.R. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol. 2024, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- de Bruyne, M.; Clyne, P.J.; Carlson, J.R. Odor coding in a model olfactory organ: The Drosophila maxillary palp. J. Neurosci. 1999, 19, 4520–4532. [Google Scholar] [CrossRef] [PubMed]
- Crespo, J.G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 2011, 11, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Renou, M.; Anton, S. Insect olfactory communication in a complex and changing world. Curr. Opin. Insect Sci. 2020, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Auer, T.O.; Khallaf, M.A.; Silbering, A.F.; Zappia, G.; Ellis, K.; Álvarez-Ocaña, R.; Arguello, J.R.; Hansson, B.S.; Jefferis, G.S.X.E.; Caron, S.J.C.; et al. Olfactory receptor and circuit evolution promote host specialization. Nature 2020, 579, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pentzold, S.; Burse, A.; Boland, W. Contact chemosensation of phytochemicals by insect herbivores. Nat. Prod. Rep. 2017, 34, 478–483. [Google Scholar] [CrossRef]
- Wang, S.; Yi, J.K.; Yang, S.; Liu, Y.; Zhang, J.H.; Xi, J.H. Identification and characterization of microRNAs expressed in antennae of Holotrichia parallela Motschulsky and their possible roles in olfactory regulation. Arch. Insect Biochem. Physiol. 2017, 94, e21369. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, H.B.; Li, Y.Y.; Xu, L.B.; Hao, L.F.; Wang, H.; Wang, W.H.; Gao, S.J.; Lin, K.J. Functional characterization of pheromone receptors in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Insects 2023, 14, 584. [Google Scholar] [CrossRef]
- Wei, H.S.; Li, K.B.; Zhang, S.; Cao, Y.Z.; Yin, J. Identification of candidate chemosensory genes by transcriptome analysis in Loxostege sticticalis Linnaeus. PLoS ONE 2017, 12, e0174036. [Google Scholar] [CrossRef]
- Yin, J.; Yang, S.; Li, K.B.; Guo, W.; Cao, Y.Z. Identification and molecular characterization of a chitin-binding protein from the beet webworm, Loxostege sticticalis L. Int. J. Mol. Sci. 2014, 15, 19147–19161. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhuang, X.; Wang, Q.; Cao, Y.; Zhang, S.; Xiao, C.; Li, K. Three amino acid residues of an odorant-binding protein are involved in binding odours in Loxostege sticticalis L. Insect Mol. Biol. 2015, 24, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Li, E.T.; Chen, Q.; Kang, H.; Zhang, S.; Li, K.B.; Wang, Y.L.; Jiao, Y.; Ren, B.Z. A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae). J. Insect Physiol. 2019, 118, 103941. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Li, E.; Li, J.Q.; Chen, Q.; Zhou, H.F.; Zhang, S.; Li, K.B.; Ren, B.Z.; Wang, Y.L.; Yin, J. Molecular characterization and key binding sites of sex pheromone-binding proteins from the meadow moth, Loxostege sticticalis. J. Agric. Food Chem. 2019, 67, 12685–12695. [Google Scholar] [CrossRef] [PubMed]
- Burge, S.W.; Daub, J.; Eberhardt, R.; Tate, J.; Barquist, L.; Nawrocki, E.P.; Eddy, S.R.; Gardner, P.P.; Bateman, A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013, 41, D226–D232. [Google Scholar] [CrossRef]
- Griffiths-Jones, S. The microRNA registry. Nucleic Acids Res. 2004, 32, 109D–111D. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human microRNA targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.; Rehmsmeier, M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34, W451–W454. [Google Scholar] [CrossRef]
- Duan, T.F.; Li, L.; Tan, Y.; Li, Y.Y.; Pang, B.P. Identification and functional analysis of microRNAs in the regulation of summer diapause in Galeruca daurica. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Li, R.M.; Huang, Y.; Zhang, Q.; Zhou, H.J.; Jin, P.; Ma, F. The miR-317 functions as a negative regulator of Toll immune response and influences Drosophila survival. Dev. Comp. Immunol. 2019, 95, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Sun, X.; Nie, X.M.; Liang, P.; Gao, X.W. MicroRNA-998–3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. Insect Biochem. Mol. Biol. 2020, 117, 103283. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Ren, X.X.; Liu, Y.; Smagghe, G.; Liang, P.; Gao, X.W. MiR-189942 regulates fufenozide susceptibility by modulating ecdysone receptor isoform B in Plutella xylostella (L.). Pestici. Biochem. Physiol. 2020, 163, 235–240. [Google Scholar] [CrossRef]
- Cristino, A.S.; Barchuk, A.R.; Freitas, F.C.P.; Narayanan, R.K.; Biergans, S.D.; Zhao, Z.Y.; Simoes, Z.L.P.; Reinhard, J.; Claudianos, C. Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nat. Commun. 2014, 5, 5529. [Google Scholar] [CrossRef]
- Freitas, F.C.; Pires, C.V.; Claudianos, C.; Cristino, A.S.; Simões, Z.L. MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee. Sci. Rep. 2017, 7, 40884. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Shi, T.F.; Yin, W.; Su, X.; Qi, L.; Huang, Z.Y.; Zhang, S.W.; Yu, L.S. The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). Insect Biochem. Mol. Biol. 2017, 90, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, M.; Xu, X.X.; Xu, J.; Li, S.Z.; Yu, J.L.; Zhou, X.Q.; Xu, X.J.; Hu, Q.B.; Yu, X.Q.; Jin, F.L. Genome-wide identification of destruxin A-responsive immunity-related microRNAs in diamondback moth, Plutella xylostella. Front. Immunol. 2018, 9, 185. [Google Scholar] [CrossRef]
- Aravin, A.A.; Lagos-Quintana, M.; Yalcin, A.; Zavolan, M.; Marks, D.; Snyder, B.; Gaasterland, T.; Meyer, J.; Tuschl, T. The small RNA profile during Drosophila melanogaster development. Dev. Cell 2003, 5, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.S.; Lu, Y.H.; Xiu, C.L.; Geng, H.H.; Cai, X.M.; Sun, X.L.; Zhang, Y.J.; Williams, L., III; Wyckhuys, K.A.G.; Wu, K.M. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug. Sci. Rep. 2015, 5, 14805. [Google Scholar] [CrossRef] [PubMed]
Group of Reads * | Number of Reads | Total Reads | |||||
---|---|---|---|---|---|---|---|
LstiMA-1 | LstiMA-2 | LstiMA-3 | LstiFA-1 | LstiFA-2 | LstiFA-3 | ||
Raw reads | 14,333,482 | 15,869,882 | 14,117,311 | 13,781,722 | 13,420,963 | 15,953,761 | 87,477,121 |
Clean reads | 12,662,289 | 10,290,098 | 12,543,503 | 12,156,083 | 11,349,143 | 13,119,518 | 72,120,634 |
Unannotated reads | 783,277 | 216,504 | 742,613 | 462,210 | 339,366 | 717,068 | 3,261,038 |
rRNA | 172,911 | 187,451 | 132,289 | 125,477 | 100,691 | 131,774 | 850,593 |
tRNA | 14,261 | 13,209 | 11,501 | 8595 | 6247 | 9889 | 63,702 |
snRNA | 3582 | 2602 | 3458 | 2337 | 1972 | 3714 | 17,665 |
snoRNA | 2015 | 935 | 2213 | 1151 | 1047 | 2487 | 9848 |
Repeat | 637 | 228 | 616 | 455 | 331 | 627 | 2257 |
Mapped reads | 12,662,289 | 10,290,098 | 12,543,503 | 12,156,083 | 35,443,662 | 21,253,107 | 104,348,742 |
Known miRNA | 471 | 415 | 508 | 433 | 422 | 450 | 869 |
Novel miRNA | 71 | 28 | 67 | 66 | 67 | 77 | 251 |
miRNA Name | Sequence (5′-3′) | Length (nt) | Expression Level (CPM *) |
---|---|---|---|
miR-965-1 | TAAGCGTATAGCTTTTCCCATT | 22 | 4450 |
miR-71-2 | TGAAAGACATGGGTAGTGAGATT | 23 | 3816 |
miR-87-3 | GTGAGCAAACTTTCAGGTGTGT | 22 | 2627 |
miR-278-1 | TCGGTGGGACTTTCGTTCGT | 20 | 2508 |
miR-279-2 | GGGCGAGTTTGCTTCTGGTTC | 21 | 1505 |
miR-204-1 | TTCCCTTTGTCATCCTTCGCCT | 22 | 1058 |
miR-306-3 | TCAGGTACTAGGTGACTCTGAG | 22 | 592 |
miR-279-3 | TGACTAGATCTACACTCATTGA | 22 | 467 |
miR-282-3 | TAGCCTCTACTTGGCTTTGTCTG | 23 | 464 |
miR-31-1 | AGGCAAGAAGTCGGCATAG | 19 | 408 |
novel-miR-73 | CCGCCAAATCAGAAGTGCCCG | 21 | 221,836 |
novel-miR-75 | CCGCCAAATCAGAAGTGCCCG | 21 | 221,834 |
novel-miR-77 | CCGCCAAATCAGAAGTGCCCG | 21 | 221,829 |
novel-miR-40 | TCTTTGGTATCCTAGCTGTAGG | 22 | 134,453 |
novel-miR-245 | TGGAAGACTAGTGATTTTGTTGTTTT | 26 | 18,495 |
novel-miR-74 | GGCACTTCTGATTTGATGACT | 21 | 12,983 |
novel-miR-76 | GGCACTTCTGATTTGATGACT | 21 | 12,980 |
novel-miR-78 | GGCACTTCTGATTTGATGACT | 21 | 12,980 |
novel-miR-142 | TAGGAACTTCATACCGTGCTCTT | 23 | 12,814 |
novel-miR-79 | TCATAAGACACACGCGGCTCTCT | 23 | 3049 |
miRNA | Sequence (5′-3′) | Target mRNA | RNAhybrid | miRanda | ||
---|---|---|---|---|---|---|
MFE * | p-Value | MFE * | Score | |||
let-7-4 | TGAGGTAGTAGGTTGTATGGTTT | LstiOR8 | −27.2 | 0.040887 | −25.4 | 165 |
miR-183-1 | TATGGCACTGGTAGAATTCACTGT | LstiCSP5 | −30.2 | 0.004825 | −27.2 | 158 |
miR-7911-1 | CTCCCGGCCGATGCACCA | LstiOBP10 | −28.4 | 0.013131 | −25.4 | 145 |
miR-2756-1 | CCCCTGGCTGCTACATCGTAT | LstiOR3 | −32.7 | 0.003096 | −26.8 | 171 |
undef-miR-48 | CGGCGGCGGCGCGTGGCG | LstiOBP4 | −32.9 | 0.002526 | −26.8 | 162 |
undef-miR-55 | ATCCCACCGCTGTCACCA | LstiPBP2 | −29.8 | 0.003019 | −25.3 | 176 |
undef-miR-94 | TAGCAGCACGTAAATATTGGTG | LstiGR63a.2 | −28.4 | 0.006389 | −25.2 | 170 |
undef-miR-158 | TGAGGTAGTTGGTTGTATGGT | LstiGR21b | −28.2 | 0.006776 | −26.1 | 150 |
undef-miR-316 | CCACTGCCCCAGGTGCTGCTGG | LstiCSP10 | −37.9 | 0.001731 | −35.9 | 149 |
undef-miR-316 | CCACTGCCCCAGGTGCTGCTGG | LstiOBP22 | −42.2 | 0.000035 | −40.2 | 165 |
undef-miR-321 | CTCCTGACTCCAGGTCCTGTG | LstiCSP3 | −25.6 | 0.020271 | −25.6 | 162 |
undef-miR-353 | TCAGTGCATCACAGAACTTTGTA | LstiOBP12 | −27.0 | 0.005103 | −25.3 | 163 |
undef-miR-398 | ACTGGACTTGGAGTCAGAAGG | LstiGR63a | −29.5 | 0.002488 | −26.2 | 158 |
undef-miR-460 | TGAGGGGCAGAGAGCGAGACTTT | LstiOBP15 | −30.9 | 0.025787 | −25.8 | 155 |
undef-miR-521 | ACCCTGTAGCTGCTTAGGGGCG | LstiGR45 | −28.8 | 0.010805 | −26.1 | 156 |
undef-miR-523 | CCATCCTTCGACTCGACTGGCG | LstiIR7g | −27.8 | 0.038807 | −27.5 | 170 |
novel-miR-7 | GTTCCGGTAGTATGCCCCTA | LstiOBP17 | −28.9 | 0.004842 | −25.0 | 160 |
novel-miR-30 | TCACCATCGCTCGGCTGTCGCT | LstiOBP26 | −35.5 | 0.000704 | −29.8 | 168 |
novel-miR-30 | TCACCATCGCTCGGCTGTCGCT | LstiOR48 | −31.7 | 0.003536 | −30.6 | 166 |
novel-miR-31 | GTCGCCATCGCCATCGCTCG | LstiOBP29 | −28.7 | 0.016774 | −26.9 | 153 |
novel-miR-103 | CGCGGCCGAGGGCGGCGCGGA | LstiOR43 | −33.4 | 0.047515 | −26.2 | 153 |
novel-miR-132 | CTCGTCGTCGGCGCCGGCTCCG | LstiOBP13 | −31.7 | 0.03937 | −30.6 | 155 |
novel-miR-137 | ATGGCAGTCGCGACTTTGCAAAT | LstiGR5b | −28.4 | 0.013829 | −25.0 | 165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Y.; Han, H.; Wang, X.; Gao, S.; Zhao, Q.; Bieerdebieke, H.; Xu, L.; Zang, Q.; Wang, H.; et al. Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Life 2024, 14, 1705. https://doi.org/10.3390/life14121705
Zhang Y, Li Y, Han H, Wang X, Gao S, Zhao Q, Bieerdebieke H, Xu L, Zang Q, Wang H, et al. Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Life. 2024; 14(12):1705. https://doi.org/10.3390/life14121705
Chicago/Turabian StyleZhang, Yu, Yanyan Li, Haibin Han, Xiaoling Wang, Shujing Gao, Qing Zhao, Halima Bieerdebieke, Linbo Xu, Qicong Zang, Hui Wang, and et al. 2024. "Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae)" Life 14, no. 12: 1705. https://doi.org/10.3390/life14121705
APA StyleZhang, Y., Li, Y., Han, H., Wang, X., Gao, S., Zhao, Q., Bieerdebieke, H., Xu, L., Zang, Q., Wang, H., Bai, P., & Lin, K. (2024). Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Life, 14(12), 1705. https://doi.org/10.3390/life14121705