Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management
Abstract
:1. Introduction
2. Gustatory Receptors (GRs)
3. Olfactory Receptors (ORs)
4. Ionotropic Glutamate Receptors (IRs)
5. Other Families of Chemosensory Receptors
5.1. PPK Channels
5.2. Alka Channels
5.3. TRP Channels
5.4. Otop Channels
6. Food Mechanosensation in Insects
7. Precision Pest Control Strategies
7.1. Genetically Modified Crops
7.2. Sterile Insect Technique (SIT)
7.3. Specific Insecticides Targeting Pest Sensory Receptors
8. Perspective
Funding
Conflicts of Interest
References
- Liman, E.R.; Zhang, Y.V.; Montell, C. Peripheral Coding of Taste. Neuron 2014, 81, 984–1000. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Vaziri, A.; Wilinski, D.; Woerner, R.K.R.; Freddolino, P.L.; Dus, M. Nutrigenomic regulation of sensory plasticity. eLife 2023, 12, e83979. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Avila-Herrera, A.; Tun, K.M.; Serpa, P.H.; Peng, J.; Parthasarathy, S.; Knapp, J.M.; Stern, D.L.; Davis, G.W.; Pollard, K.S.; et al. Evolution of Mechanisms that Control Mating in Drosophila Males. Cell Rep. 2019, 27, 2527–2536.e2524. [Google Scholar] [CrossRef]
- Moon, S.J.; Lee, Y.; Jiao, Y.; Montell, C. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 2009, 19, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Montell, C. Drosophila sensory receptors—A set of molecular Swiss Army Knives. Genetics 2021, 217, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.M.; Carlson, J.R. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet. 2015, 31, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Dahanukar, A.; Foster, K.; van der Goes van Naters, W.M.; Carlson, J.R. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat. Neurosci. 2001, 4, 1182–1186. [Google Scholar] [CrossRef]
- Jiao, Y.; Moon, S.J.; Wang, X.; Ren, Q.; Montell, C. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 2008, 18, 1797–1801. [Google Scholar] [CrossRef]
- Slone, J.; Daniels, J.; Amrein, H. Sugar receptors in Drosophila. Curr. Biol. 2007, 17, 1809–1816. [Google Scholar] [CrossRef]
- Aryal, B.; Dhakal, S.; Shrestha, B.; Lee, Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr. Biol. 2022, 32, 1376–1386 e1374. [Google Scholar] [CrossRef]
- Ganguly, A.; Pang, L.; Duong, V.K.; Lee, A.; Schoniger, H.; Varady, E.; Dahanukar, A. A Molecular and Cellular Context-Dependent Role for Ir76b in Detection of Amino Acid Taste. Cell Rep. 2017, 18, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, J.; Li, J.; Li, V.; McDowell, S.A.T.; Audette, K.; Davis, G.; Jelen, M.; Slamani, S.; Kelliher, L.; Gordon, M.D.; et al. Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Cell Rep. 2024, 43, 114625. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.B.; Shah, K.D.; Palermo, J.; Dey, M.; Dahanukar, A.; Keene, A.C. Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. eLife 2021, 10, e67878. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.E.; Chen, Y.; Amrein, H. Molecular basis of fatty acid taste in Drosophila. eLife 2017, 6, e30115. [Google Scholar] [CrossRef]
- Pradhan, R.N.; Shrestha, B.; Lee, Y. Molecular Basis of Hexanoic Acid Taste in Drosophila melanogaster. Mol. Cells 2023, 46, 451–460. [Google Scholar] [CrossRef]
- Dey, A.; Ghosh, S. Investigation of the vesicle-to-micelle transition of 11-amino undecanoic acid derived sulphonamide and a comprehensive study of its interaction with protein. Int. J. Biol. Macromol. 2023, 253, 127282. [Google Scholar] [CrossRef]
- Masek, P.; Keene, A.C. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013, 9, e1003710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.V.; Ni, J.; Montell, C. The molecular basis for attractive salt-taste coding in Drosophila. Science 2013, 340, 1334–1338. [Google Scholar] [CrossRef]
- Dweck, H.K.M.; Talross, G.J.S.; Luo, Y.; Ebrahim, S.A.M.; Carlson, J.R. Ir56b is an atypical ionotropic receptor that underlies appetitive salt response in Drosophila. Curr. Biol. 2022, 32, 1776–1787 e1774. [Google Scholar] [CrossRef]
- Jaeger, A.H.; Stanley, M.; Weiss, Z.F.; Musso, P.Y.; Chan, R.C.; Zhang, H.; Feldman-Kiss, D.; Gordon, M.D. A complex peripheral code for salt taste in Drosophila. eLife 2018, 7, e37167. [Google Scholar] [CrossRef]
- Mi, T.; Mack, J.O.; Lee, C.M.; Zhang, Y.V. Molecular and cellular basis of acid taste sensation in Drosophila. Nat. Commun. 2021, 12, 3730. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Chandel, A.; Turner, H.; Wang, S.; Liman, E.R.; Montell, C. Requirement for an Otopetrin-like protein for acid taste in Drosophila. Proc. Natl. Acad. Sci. USA 2021, 118, e2110641118. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Lee, Y. Mechanisms of Carboxylic Acid Attraction in Drosophila melanogaster. Mol. Cells 2021, 44, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Stanley, M.; Ghosh, B.; Weiss, Z.F.; Christiaanse, J.; Gordon, M.D. Mechanisms of lactic acid gustatory attraction in Drosophila. Curr. Biol. 2021, 31, 3525–3537 e3526. [Google Scholar] [CrossRef]
- Sung, H.Y.; Jeong, Y.T.; Lim, J.Y.; Kim, H.; Oh, S.M.; Hwang, S.W.; Kwon, J.Y.; Moon, S.J. Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat. Commun. 2017, 8, 1484. [Google Scholar] [CrossRef]
- Shim, J.; Lee, Y.; Jeong, Y.T.; Kim, Y.; Lee, M.G.; Montell, C.; Moon, S.J. The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 2015, 6, 8867. [Google Scholar] [CrossRef]
- Moon, S.J.; Kottgen, M.; Jiao, Y.; Xu, H.; Montell, C. A taste receptor required for the caffeine response in vivo. Curr. Biol. 2006, 16, 1812–1817. [Google Scholar] [CrossRef]
- McDowell, S.A.T.; Stanley, M.; Gordon, M.D. A molecular mechanism for high salt taste in Drosophila. Curr. Biol. 2022, 32, 3070–3081 e3075. [Google Scholar] [CrossRef]
- Pontes, G.; Latorre-Estivalis, J.M.; Gutierrez, M.L.; Cano, A.; Beron de Astrada, M.; Lorenzo, M.G.; Barrozo, R.B. Molecular and functional basis of high-salt avoidance in a blood-sucking insect. iScience 2022, 25, 104502. [Google Scholar] [CrossRef]
- Sang, J.; Dhakal, S.; Shrestha, B.; Nath, D.K.; Kim, Y.; Ganguly, A.; Montell, C.; Lee, Y. A single pair of pharyngeal neurons functions as a commander to reject high salt in Drosophila melanogaster. eLife 2024, 12, e93464. [Google Scholar] [CrossRef]
- Rimal, S.; Sang, J.; Poudel, S.; Thakur, D.; Montell, C.; Lee, Y. Mechanism of Acetic Acid Gustatory Repulsion in Drosophila. Cell Rep. 2019, 26, 1432–1442 e1434. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.; Mack, J.O.; Koolmees, W.; Lyon, Q.; Yochimowitz, L.; Teng, Z.-Q.; Jiang, P.; Montell, C.; Zhang, Y.V. Alkaline taste sensation through the alkaliphile chloride channel in Drosophila. Nat. Metab. 2023, 5, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Shrestha, B.; Lee, Y. Avoiding alkaline taste through ionotropic receptors. iScience 2024, 27, 110087. [Google Scholar] [CrossRef] [PubMed]
- Scott, K. Gustatory Processing in Drosophila melanogaster. Annu. Rev. Entomol. 2018, 63, 15–30. [Google Scholar] [CrossRef]
- Stocker, R.F. The organization of the chemosensory system in Drosophila melanogaster: A review. Cell Tissue Res. 1994, 275, 3–26. [Google Scholar] [CrossRef]
- Shanbhag, S.R.; Park, S.K.; Pikielny, C.W.; Steinbrecht, R.A. Gustatory organs of Drosophila melanogaster: Fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res. 2001, 304, 423–437. [Google Scholar] [CrossRef]
- Sun, J.Y.; Sonderby, I.E.; Halkier, B.A.; Jander, G.; de Vos, M. Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J. Chem. Ecol. 2009, 35, 1427–1436. [Google Scholar] [CrossRef]
- Green, E.I.; Jaouen, E.; Klug, D.; Proveti Olmo, R.; Gautier, A.; Blandin, S.; Marois, E. A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes. eLife 2023, 12, e93142. [Google Scholar] [CrossRef]
- Chen, J.; Luo, J.; Wang, Y.; Gurav, A.S.; Li, M.; Akbari, O.S.; Montell, C. Suppression of female fertility in Aedes aegypti with a CRISPR-targeted male-sterile mutation. Proc. Natl. Acad. Sci. USA 2021, 118, e2105075118. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, Y.; Liu, J.; Guan, Z.; Zhang, W. CRISPR/Cas9-mediated genome editing of gustatory receptor NlugGr23a causes male sterility in the brown planthopper Nilaparvata lugens. Int. J. Biol. Macromol. 2023, 241, 124612. [Google Scholar] [CrossRef]
- Nakatani, Y.; Furutani, S.; Ihara, M.; Matsuda, K. Ivermectin modulation of pH-sensitive chloride channels in the silkworm larvae of Bombyx mori. Pestic. Biochem. Physiol. 2016, 126, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Brady, R., Jr.; Cravchik, A.; Morozov, P.; Rzhetsky, A.; Zuker, C.; Axel, R. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001, 104, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Clyne, P.J.; Warr, C.G.; Carlson, J.R. Candidate taste receptors in Drosophila. Science 2000, 287, 1830–1834. [Google Scholar] [CrossRef]
- Weiss, L.A.; Dahanukar, A.; Kwon, J.Y.; Banerjee, D.; Carlson, J.R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 2011, 69, 258–272. [Google Scholar] [CrossRef]
- Dweck, H.K.M.; Carlson, J.R. Molecular Logic and Evolution of Bitter Taste in Drosophila. Curr. Biol. 2020, 30, 17–30 e13. [Google Scholar] [CrossRef]
- Hill, C.A.; Fox, A.N.; Pitts, R.J.; Kent, L.B.; Tan, P.L.; Chrystal, M.A.; Cravchik, A.; Collins, F.H.; Robertson, H.M.; Zwiebel, L.J. G protein-coupled receptors in Anopheles gambiae. Science 2002, 298, 176–178. [Google Scholar] [CrossRef]
- Kent, L.B.; Walden, K.K.; Robertson, H.M. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem. Senses 2008, 33, 79–93. [Google Scholar] [CrossRef]
- Xu, P.; Wen, X.; Leal, W.S. CO(2) per se activates carbon dioxide receptors. Insect Biochem. Mol. Biol. 2020, 117, 103284. [Google Scholar] [CrossRef]
- Wanner, K.W.; Robertson, H.M. The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol. Biol. 2008, 17, 621–629. [Google Scholar] [CrossRef]
- Briscoe, A.D.; Macias-Munoz, A.; Kozak, K.M.; Walters, J.R.; Yuan, F.; Jamie, G.A.; Martin, S.H.; Dasmahapatra, K.K.; Ferguson, L.C.; Mallet, J.; et al. Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS Genet. 2013, 9, e1003620. [Google Scholar] [CrossRef]
- Cheng, T.; Wu, J.; Wu, Y.; Chilukuri, R.V.; Huang, L.; Yamamoto, K.; Feng, L.; Li, W.; Chen, Z.; Guo, H.; et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 2017, 1, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Anderson, A.R.; Trowell, S.C.; Luo, A.R.; Xiang, Z.H.; Xia, Q.Y. Topological and functional characterization of an insect gustatory receptor. PLoS ONE 2011, 6, e24111. [Google Scholar] [CrossRef]
- Ma, D.; Hu, M.; Yang, X.; Liu, Q.; Ye, F.; Cai, W.; Wang, Y.; Xu, X.; Chang, S.; Wang, R.; et al. Structural basis for sugar perception by Drosophila gustatory receptors. Science 2024, 383, eadj2609. [Google Scholar] [CrossRef]
- Frank, H.M.; Walujkar, S.; Walsh, R.M., Jr.; Laursen, W.J.; Theobald, D.L.; Garrity, P.A.; Gaudet, R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep. 2024, 43, 114035. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.V.; Singh-Bhagania, S.; Cenci, M.; Chacon Cordon, C.; Singh, M.; Butterwick, J.A. The molecular basis of sugar detection by an insect taste receptor. Nature 2024, 629, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Mang, D.; Shu, M.; Tanaka, S.; Nagata, S.; Takada, T.; Endo, H.; Kikuta, S.; Tabunoki, H.; Iwabuchi, K.; Sato, R. Expression of the fructose receptor BmGr9 and its involvement in the promotion of feeding, suggested by its co-expression with neuropeptide F1 in Bombyx mori. Insect Biochem. Mol. Biol. 2016, 75, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Moon, S.J.; Montell, C. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. USA 2009, 106, 4495–4500. [Google Scholar] [CrossRef]
- Ueno, K.; Ohta, M.; Morita, H.; Mikuni, Y.; Nakajima, S.; Yamamoto, K.; Isono, K. Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr. Biol. 2001, 11, 1451–1455. [Google Scholar] [CrossRef]
- Uchizono, S.; Itoh, T.Q.; Kim, H.; Hamada, N.; Kwon, J.Y.; Tanimura, T. Deciphering the Genes for Taste Receptors for Fructose in Drosophila. Mol. Cells 2017, 40, 731–736. [Google Scholar] [CrossRef]
- Miyamoto, T.; Slone, J.; Song, X.; Amrein, H. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 2012, 151, 1113–1125. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Wang, P.-C.; Ning, C.; Yang, K.; Li, G.-C.; Cao, L.-L.; Huang, L.-Q.; Wang, C.-Z. The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sucrose. eLife 2024, 12, RP91711. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, W.; Cui, Z.; Pan, Y.; Smagghe, G.; Zhang, L.; Wickham, J.D.; Sun, J.; Mang, D. HcGr76 responds to fructose and chlorogenic acid and is involved in regulation of peptide expression in the midgut of Hyphantria cunea larvae. Pest. Manag. Sci. 2024, 80, 5672–5683. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Tanaka, K.; Touhara, K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proc. Natl. Acad. Sci. USA 2011, 108, 11680–11685. [Google Scholar] [CrossRef]
- Liu, X.L.; Yan, Q.; Yang, Y.L.; Hou, W.; Miao, C.L.; Peng, Y.C.; Dong, S.L. A Gustatory Receptor GR8 Tunes Specifically to D-Fructose in the Common Cutworm Spodoptera litura. Insects 2019, 10, 272. [Google Scholar] [CrossRef]
- Aidlin Harari, O.; Dekel, A.; Wintraube, D.; Vainer, Y.; Mozes-Koch, R.; Yakir, E.; Malka, O.; Morin, S.; Bohbot, J.D. A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem feeding. iScience 2023, 26, 106752. [Google Scholar] [CrossRef]
- Li, F.; Di, Z.; Tian, J.; Dewer, Y.; Qu, C.; Yang, S.; Luo, C. Silencing the gustatory receptor BtGR11 affects the sensing of sucrose in the whitefly Bemisia tabaci. Front. Bioeng. Biotechnol. 2022, 10, 1054943. [Google Scholar] [CrossRef]
- Simcock, N.K.; Wakeling, L.A.; Ford, D.; Wright, G.A. Effects of age and nutritional state on the expression of gustatory receptors in the honeybee (Apis mellifera). PLoS ONE 2017, 12, e0175158. [Google Scholar] [CrossRef]
- Takada, T.; Sasaki, T.; Sato, R.; Kikuta, S.; Inoue, M.N. Differential expression of a fructose receptor gene in honey bee workers according to age and behavioral role. Arch. Insect Biochem. Physiol. 2018, 97, e21437. [Google Scholar] [CrossRef]
- Degirmenci, L.; Roge Ferreira, F.L.; Vukosavljevic, A.; Heindl, C.; Keller, A.; Geiger, D.; Scheiner, R. Sugar perception in honeybees. Front. Physiol. 2022, 13, 1089669. [Google Scholar] [CrossRef]
- Xu, W.; Papanicolaou, A.; Zhang, H.-J.; Anderson, A. Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Sci. Rep. 2016, 6, 23666. [Google Scholar] [CrossRef]
- McMeniman, C.J.; Corfas, R.A.; Matthews, B.J.; Ritchie, S.A.; Vosshall, L.B. Multimodal Integration of Carbon Dioxide and Other Sensory Cues Drives Mosquito Attraction to Humans. Cell 2014, 156, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tauxe, G.M.; Perry, S.; Scott, C.A.; Dahanukar, A.; Ray, A. Contributions of the Conserved Insect Carbon Dioxide Receptor Subunits to Odor Detection. Cell Rep. 2020, 31, 107510. [Google Scholar] [CrossRef] [PubMed]
- Costa-da-Silva, A.L.; Cabal, S.; Lopez, K.; Boloix, J.; Rodriguez, B.G.; Marrero, K.M.; Bellantuono, A.J.; DeGennaro, M. Female Aedes aegypti mosquitoes use communal cues to manage population density at breeding sites. Commun. Biol. 2024, 7, 143. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, S.; Wang, W.; Liu, D.; Wang, Y. Molecular Basis of CO2 Sensing in Hyphantria cunea. Int. J. Mol. Sci. 2024, 25, 5987. [Google Scholar] [CrossRef]
- Vosshall, L.B.; Stocker, R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 2007, 30, 505–533. [Google Scholar] [CrossRef]
- Hallem, E.A.; Dahanukar, A.; Carlson, J.R. Insect odor and taste receptors. Annu. Rev. Entomol. 2006, 51, 113–135. [Google Scholar] [CrossRef]
- Gadenne, C.; Barrozo, R.B.; Anton, S. Plasticity in Insect Olfaction: To Smell or Not to Smell? Annu. Rev. Entomol. 2016, 61, 317–333. [Google Scholar] [CrossRef]
- Touhara, K.; Vosshall, L.B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 2009, 71, 307–332. [Google Scholar] [CrossRef]
- Frenkel, L.; Muraro, N.I.; Beltran Gonzalez, A.N.; Marcora, M.S.; Bernabo, G.; Hermann-Luibl, C.; Romero, J.I.; Helfrich-Forster, C.; Castano, E.M.; Marino-Busjle, C.; et al. Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell Rep. 2017, 19, 72–85. [Google Scholar] [CrossRef]
- Benton, R.; Sachse, S.; Michnick, S.W.; Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006, 4, e20. [Google Scholar] [CrossRef]
- Larsson, M.C.; Domingos, A.I.; Jones, W.D.; Chiappe, M.E.; Amrein, H.; Vosshall, L.B. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004, 43, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Vosshall, L.B.; Amrein, H.; Morozov, P.S.; Rzhetsky, A.; Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999, 96, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Clyne, P.J.; Warr, C.G.; Freeman, M.R.; Lessing, D.; Kim, J.; Carlson, J.R. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, A.Q.; Ryu, J.; Del Mármol, J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science 2024, 384, 1460–1467. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Wang, B.; Guan, Z.; Dong, Z.; Zhang, J.; Cao, S.; Yang, L.; Wang, B.; Gong, Z. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024, 384, 1453–1460. [Google Scholar] [CrossRef]
- Clyne, P.J.; Certel, S.J.; de Bruyne, M.; Zaslavsky, L.; Johnson, W.A.; Carlson, J.R. The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron 1999, 22, 339–347. [Google Scholar] [CrossRef]
- Robertson, H.M.; Warr, C.G.; Carlson, J.R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2003, 100 (Suppl. S2), 14537–14542. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Smidler, A.L.; Pai, J.J.; Apte, R.A.; Sánchez, C.H.M.; Corder, R.M.; Jeffrey Gutiérrez, E.; Thakre, N.; Antoshechkin, I.; Marshall, J.M.; Akbari, O.S. A confinable female-lethal population suppression system in the malaria vector, Anopheles gambiae. Sci. Adv. 2023, 9, eade8903. [Google Scholar] [CrossRef]
- De Obaldia, M.E.; Morita, T.; Dedmon, L.C.; Boehmler, D.J.; Jiang, C.S.; Zeledon, E.V.; Cross, J.R.; Vosshall, L.B. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell 2022, 185, 4099–4116.e4013. [Google Scholar] [CrossRef]
- Rose, N.H.; Sylla, M.; Badolo, A.; Lutomiah, J.; Ayala, D.; Aribodor, O.B.; Ibe, N.; Akorli, J.; Otoo, S.; Mutebi, J.-P. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 2020, 30, 3570–3579. e3576. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zung, J.L.; Hinze, A.; Kriete, A.L.; Iqbal, A.; Younger, M.A.; Matthews, B.J.; Merhof, D.; Thiberge, S.; Ignell, R. Mosquito brains encode unique features of human odour to drive host seeking. Nature 2022, 605, 706–712. [Google Scholar] [CrossRef] [PubMed]
- DeGennaro, M.; McBride, C.S.; Seeholzer, L.; Nakagawa, T.; Dennis, E.J.; Goldman, C.; Jasinskiene, N.; James, A.A.; Vosshall, L.B. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013, 498, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Raji, J.I.; Melo, N.; Castillo, J.S.; Gonzalez, S.; Saldana, V.; Stensmyr, M.C.; DeGennaro, M. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr. Biol. 2019, 29, 1253–1262.e1257. [Google Scholar] [CrossRef]
- Xu, P.; Choo, Y.M.; De La Rosa, A.; Leal, W.S. Mosquito odorant receptor for DEET and methyl jasmonate. Proc. Natl. Acad. Sci. USA 2014, 111, 16592–16597. [Google Scholar] [CrossRef]
- Di, C.; Ning, C.; Huang, L.-Q.; Wang, C.-Z. Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochem. Mol. Biol. 2017, 84, 48–62. [Google Scholar] [CrossRef]
- Liu, N.-Y.; Xu, W.; Papanicolaou, A.; Dong, S.-L.; Anderson, A. Identification and characterization of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera. BMC Genom. 2014, 15, 597. [Google Scholar] [CrossRef]
- Zhang, R.B.; Liu, Y.; Yan, S.C.; Wang, G.R. Identification and functional characterization of an odorant receptor in pea aphid, Acyrthosiphon pisum. Insect Sci. 2019, 26, 58–67. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Zhang, R.-B.; Yang, L.-L.; Song, C.; Francis, F.; Bing, W.; Wang, G.-R. Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum. J. Integr. Agric. 2022, 21, 1414–1423. [Google Scholar] [CrossRef]
- Shi, J.H.; Shao, R.; Abdelkhalek, S.T.; Zhang, S.; Wang, M.Q. The oviposition of cotton bollworms stimulates the defense against its eggs and larvae in tomato plants. Pest. Manag. Sci. 2024. [Google Scholar] [CrossRef]
- Liu, M.; Yu, H.; Li, G. Oviposition deterrents from eggs of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae): Chemical identification and analysis by electroantennogram. J. Insect Physiol. 2008, 54, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Li, H.-L.; Zhang, H.-F.; Luo, Q.-W.; Guo, X.-R.; Wang, G.-P.; Li, W.-Z.; Yuan, G. Experience-based mediation of feeding and oviposition behaviors in the cotton bollworm: Helicoverpa armigera (Lepidoptera: Noctuidae). PLoS ONE 2018, 13, e0190401. [Google Scholar] [CrossRef] [PubMed]
- d’Ettorre, P.; Deisig, N.; Sandoz, J.-C. Decoding ants’ olfactory system sheds light on the evolution of social communication. Proc. Natl. Acad. Sci. USA 2017, 114, 8911–8913. [Google Scholar] [CrossRef] [PubMed]
- Slone, J.D.; Pask, G.M.; Ferguson, S.T.; Millar, J.G.; Berger, S.L.; Reinberg, D.; Liebig, J.; Ray, A.; Zwiebel, L.J. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. Proc. Natl. Acad. Sci. USA 2017, 114, 8586–8591. [Google Scholar] [CrossRef] [PubMed]
- Paoli, M.; Galizia, G.C. Olfactory coding in honeybees. Cell Tissue Res. 2021, 383, 35–58. [Google Scholar] [CrossRef]
- Mogily, S.; VijayKumar, M.; Sethy, S.K.; Joseph, J. Characterization of the olfactory system of the giant honey bee, Apis dorsata. Cell Tissue Res. 2020, 379, 131–145. [Google Scholar] [CrossRef]
- Benton, R.; Vannice, K.S.; Gomez-Diaz, C.; Vosshall, L.B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 2009, 136, 149–162. [Google Scholar] [CrossRef]
- Hussain, A.; Zhang, M.; Üçpunar, H.K.; Svensson, T.; Quillery, E.; Gompel, N.; Ignell, R.; Grunwald Kadow, I.C. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines. PLoS Biol. 2016, 14, e1002454. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Gao, S.; Li, Y.; Liu, L.; Zhu, Y. Taste coding of heavy metal ion-induced avoidance in Drosophila. iScience 2023, 26, 106607. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, Y.; Jia, Y.; Zhang, Y.; Li, Z.; Zhao, J.; Liu, T.; Zhang, W. Molecular basis and homeostatic regulation of Zinc taste. Protein Cell 2022, 13, 462–469. [Google Scholar] [CrossRef]
- Sánchez-Alcañiz, J.A.; Silbering, A.F.; Croset, V.; Zappia, G.; Sivasubramaniam, A.K.; Abuin, L.; Sahai, S.Y.; Münch, D.; Steck, K.; Auer, T.O.; et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 2018, 9, 4252. [Google Scholar] [CrossRef] [PubMed]
- Knecht, Z.A.; Silbering, A.F.; Ni, L.; Klein, M.; Budelli, G.; Bell, R.; Abuin, L.; Ferrer, A.J.; Samuel, A.D.T.; Benton, R.; et al. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLife 2016, 5, e17879. [Google Scholar] [CrossRef] [PubMed]
- Budelli, G.; Ni, L.; Berciu, C.; van Giesen, L.; Knecht, Z.A.; Chang, E.C.; Kaminski, B.; Silbering, A.F.; Samuel, A.; Klein, M.; et al. Ionotropic Receptors Specify the Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in Drosophila. Neuron 2019, 101, 738–747.e733. [Google Scholar] [CrossRef] [PubMed]
- Enjin, A.; Zaharieva, E.E.; Frank, D.D.; Mansourian, S.; Suh, G.S.; Gallio, M.; Stensmyr, M.C. Humidity Sensing in Drosophila. Curr. Biol. 2016, 26, 1352–1358. [Google Scholar] [CrossRef]
- Raji, J.I.; Potter, C.J. Chemosensory ionotropic receptors in human host-seeking mosquitoes. Curr. Opin. Insect Sci. 2022, 54, 100967. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, F.; Sun, H.; Ferguson, S.T.; Baker, A.; Ochieng, S.A.; Zwiebel, L.J. Discrete roles of Ir76b ionotropic coreceptor impact olfaction, blood feeding, and mating in the malaria vector mosquito Anopheles coluzzii. Proc. Natl. Acad. Sci. USA 2022, 119, e2112385119. [Google Scholar] [CrossRef]
- Zhang, J.; Bisch-Knaden, S.; Fandino, R.A.; Yan, S.; Obiero, G.F.; Grosse-Wilde, E.; Hansson, B.S.; Knaden, M. The olfactory coreceptor IR8a governs larval feces-mediated competition avoidance in a hawkmoth. Proc. Natl. Acad. Sci. USA 2019, 116, 21828–21833. [Google Scholar] [CrossRef]
- Zhang, R.; Lun, X.; Zhang, Y.; Zhao, Y.; Xu, X.; Zhang, Z. Characterization of Ionotropic Receptor Gene EonuIR25a in the Tea Green Leafhopper, Empoasca onukii Matsuda. Plants 2023, 12, 2034. [Google Scholar] [CrossRef]
- Liu, N.Y.; Xu, W.; Dong, S.L.; Zhu, J.Y.; Xu, Y.X.; Anderson, A. Genome-wide analysis of ionotropic receptor gene repertoire in Lepidoptera with an emphasis on its functions of Helicoverpa armigera. Insect Biochem. Mol. Biol. 2018, 99, 37–53. [Google Scholar] [CrossRef]
- Tang, R.; Jiang, N.J.; Ning, C.; Li, G.C.; Huang, L.Q.; Wang, C.Z. The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. Insect Biochem. Mol. Biol. 2020, 118, 103312. [Google Scholar] [CrossRef]
- Guo, J.M.; Wei, Z.Q.; Hou, J.H.; He, Y.; Luan, X.P.; Zhang, Y.Y.; Liu, X.L.; Zhang, X.T.; Zhang, J.; Yan, Q.; et al. Ionotropic Receptor IR75q.2 Mediates Avoidance Reaction to Nonanoic Acid in the Fall Armyworm Spodoptera frugiperda (Lepidoptera, Noctuidae). J. Agric. Food Chem. 2023, 71, 20602–20612. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.Q.; Zhang, D.D.; Powell, D.; Wang, H.L.; Andersson, M.N.; Lofstedt, C. Ionotropic receptors in the turnip moth Agrotis segetum respond to repellent medium-chain fatty acids. BMC Biol. 2022, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.N.; Peng, Y.; Lu, Z.Y.; Dhiloo, K.H.; Zheng, Y.; Shan, S.; Li, R.J.; Zhang, Y.J.; Guo, Y.Y. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). J. Insect Physiol. 2016, 90, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Wang, S.N.; Song, X.; Khashaveh, A.; Lu, Z.Y.; Dhiloo, K.H.; Li, R.J.; Gao, X.W.; Zhang, Y.J. Antennal ionotropic receptors IR64a1 and IR64a2 of the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidate) collaboratively perceive habitat and host cues. Insect Biochem. Mol. Biol. 2019, 114, 103204. [Google Scholar] [CrossRef] [PubMed]
- Cameron, P.; Hiroi, M.; Ngai, J.; Scott, K. The molecular basis for water taste in Drosophila. Nature 2010, 465, 91–95. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wang, Z. The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J. Neurosci. 2010, 30, 6247–6252. [Google Scholar] [CrossRef]
- Al-Anzi, B.; Tracey, W.D., Jr.; Benzer, S. Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr. Biol. 2006, 16, 1034–1040. [Google Scholar] [CrossRef]
- Kang, K.; Pulver, S.R.; Panzano, V.C.; Chang, E.C.; Griffith, L.C.; Theobald, D.L.; Garrity, P.A. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 2010, 464, 597–600. [Google Scholar] [CrossRef]
- Zhang, Y.V.; Raghuwanshi, R.P.; Shen, W.L.; Montell, C. Food experience–induced taste desensitization modulated by the Drosophila TRPL channel. Nat. Neurosci. 2013, 16, 1468–1476. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, Y.; Akitake, B.; Woodward, O.M.; Guggino, W.B.; Montell, C. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. USA 2010, 107, 8440–8445. [Google Scholar] [CrossRef]
- Lu, B.; LaMora, A.; Sun, Y.; Welsh, M.J.; Ben-Shahar, Y. ppk23-Dependent Chemosensory Functions Contribute to Courtship Behavior in Drosophila melanogaster. PLoS Genet. 2012, 8, e1002587. [Google Scholar] [CrossRef]
- Thistle, R.; Cameron, P.; Ghorayshi, A.; Dennison, L.; Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 2012, 149, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Starostina, E.; Liu, T.; Vijayan, V.; Zheng, Z.; Siwicki, K.K.; Pikielny, C.W. A Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. J. Neurosci. 2012, 32, 4665–4674. [Google Scholar] [CrossRef]
- Matthews, B.J.; Younger, M.A.; Vosshall, L.B. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 2019, 8, e43963. [Google Scholar] [CrossRef] [PubMed]
- Paje, F.; Mossakowski, D. pH-preferences and habitat selection in carabid beetles. Oecologia 1984, 64, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, J.-S.; He, P.-Y.; Zhang, M.-H.; Cao, H.-Q.; Palli, S.R.; Sheng, C.-W. Identification and pharmacological characterization of pH-sensitive chloride channels in the fall armyworm, Spodoptera frugiperda. Insect Biochem. Mol. Biol. 2025, 177, 104243. [Google Scholar] [CrossRef]
- Mounsey, K.E.; Dent, J.A.; Holt, D.C.; McCarthy, J.; Currie, B.J.; Walton, S.F. Molecular characterisation of a pH-gated chloride channel from Sarcoptes scabiei. Invert. Neurosci. 2007, 7, 149–156. [Google Scholar] [CrossRef]
- Okuhara, D.; Furutani, S.; Ito, K.; Ihara, M.; Matsuda, K. Splice Variants of pH-Sensitive Chloride Channel Identify a Key Determinant of Ivermectin Sensitivity in the Larvae of the Silkworm Bombyx mori. Mol. Pharmacol. 2017, 92, 491–499. [Google Scholar] [CrossRef]
- Feingold, D.; Starc, T.; O’Donnell, M.J.; Nilson, L.; Dent, J.A. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules. J. Exp. Biol. 2016, 219, 2629–2638. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem. 2007, 76, 387–417. [Google Scholar] [CrossRef]
- Soldano, A.; Alpizar, Y.A.; Boonen, B.; Franco, L.; López-Requena, A.; Liu, G.; Mora, N.; Yaksi, E.; Voets, T.; Vennekens, R.; et al. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. eLife 2016, 5, e13133. [Google Scholar] [CrossRef]
- Sato, S.; Magaji, A.M.; Tominaga, M.; Sokabe, T. Avoidance of thiazoline compound depends on multiple sensory pathways mediated by TrpA1 and ORs in Drosophila. Front. Mol. Neurosci. 2023, 16, 1249715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.-J.; Guo, D.; Wang, L.-X.; Niu, C.-D.; Wu, S.-F.; Zhang, Y.V.; Gao, C.-F. Function of Transient Receptor Potential-Like Channel in Insect Egg Laying. Front. Mol. Neurosci. 2022, 15, 823563. [Google Scholar] [CrossRef] [PubMed]
- Inocente, E.A.; Shaya, M.; Acosta, N.; Rakotondraibe, L.H.; Piermarini, P.M. A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti. PLoS Neglected Trop. Dis. 2018, 12, e0006265. [Google Scholar] [CrossRef]
- Melo, N.; Capek, M.; Arenas, O.M.; Afify, A.; Yilmaz, A.; Potter, C.J.; Laminette, P.J.; Para, A.; Gallio, M.; Stensmyr, M.C. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr. Biol. 2021, 31, 1988–1994.e1985. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Kashio, M.; Xu, Y.; Tominaga, M.; Kadowaki, T. HsTRPA of the Red Imported Fire Ant, Solenopsis invicta, Functions as a Nocisensor and Uncovers the Evolutionary Plasticity of HsTRPA Channels. eNeuro 2018, 5. [Google Scholar] [CrossRef]
- Shimomura, K.; Ino, S.; Tamura, K.; Terajima, T.; Tomizawa, M. TRPA1-mediated repellency behavior in the red flour beetle Tribolium castaneum. Sci. Rep. 2022, 12, 15270. [Google Scholar] [CrossRef]
- Tu, Y.H.; Cooper, A.J.; Teng, B.; Chang, R.B.; Artiga, D.J.; Turner, H.N.; Mulhall, E.M.; Ye, W.; Smith, A.D.; Liman, E.R. An evolutionarily conserved gene family encodes proton-selective ion channels. Science 2018, 359, 1047–1050. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, H.; Zhang, W.; Ding, C.; O’Keeffe, S.; Ye, M.; Zuker, C.S. Sour Sensing from the Tongue to the Brain. Cell 2019, 179, 392–402.e315. [Google Scholar] [CrossRef]
- Zhang, Y.V.; Aikin, T.J.; Li, Z.; Montell, C. The Basis of Food Texture Sensation in Drosophila. Neuron 2016, 91, 863–877. [Google Scholar] [CrossRef]
- Kurima, K.; Peters, L.M.; Yang, Y.; Riazuddin, S.; Ahmed, Z.M.; Naz, S.; Arnaud, D.; Drury, S.; Mo, J.; Makishima, T.; et al. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat. Genet. 2002, 30, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Vreugde, S.; Erven, A.; Kros, C.J.; Marcotti, W.; Fuchs, H.; Kurima, K.; Wilcox, E.R.; Friedman, T.B.; Griffith, A.J.; Balling, R.; et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat. Genet. 2002, 30, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Fettiplace, R.; Furness, D.N.; Beurg, M. The conductance and organization of the TMC1-containing mechanotransducer channel complex in auditory hair cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2210849119. [Google Scholar] [CrossRef]
- Clark, S.; Jeong, H.; Posert, R.; Goehring, A.; Gouaux, E. The structure of the Caenorhabditis elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction. Proc. Natl. Acad. Sci. USA 2024, 121, e2314096121. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Zhang, W.; Meltzer, S.; Zanini, D.; Yu, Y.; Li, J.; Cheng, T.; Guo, Z.; Wang, Q.; et al. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc. Natl. Acad. Sci. USA 2016, 113, 7243–7248. [Google Scholar] [CrossRef]
- Yue, X.; Sheng, Y.; Kang, L.; Xiao, R. Distinct functions of TMC channels: A comparative overview. Cell. Mol. Life Sci. 2019, 76, 4221–4232. [Google Scholar] [CrossRef]
- Jeong, H.; Clark, S.; Goehring, A.; Dehghani-Ghahnaviyeh, S.; Rasouli, A.; Tajkhorshid, E.; Gouaux, E. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature 2022, 610, 796–803. [Google Scholar] [CrossRef]
- Li, Q.; Montell, C. Mechanism for food texture preference based on grittiness. Curr. Biol. 2021, 31, 1850–1861.e1856. [Google Scholar] [CrossRef]
- Jeong, Y.T.; Oh, S.M.; Shim, J.; Seo, J.T.; Kwon, J.Y.; Moon, S.J. Mechanosensory neurons control sweet sensing in Drosophila. Nat. Commun. 2016, 7, 12872. [Google Scholar] [CrossRef]
- Sánchez-Alcañiz, J.A.; Zappia, G.; Marion-Poll, F.; Benton, R. A mechanosensory receptor required for food texture detection in Drosophila. Nat. Commun. 2017, 8, 14192. [Google Scholar] [CrossRef]
- Yu, J.; Guo, X.; Zheng, S.; Zhang, W. A dedicate sensorimotor circuit enables fine texture discrimination by active touch. PLoS Genet. 2023, 19, e1010562. [Google Scholar] [CrossRef] [PubMed]
- Warren, B.; Matheson, T. The Role of the Mechanotransduction Ion Channel Candidate Nanchung-Inactive in Auditory Transduction in an Insect Ear. J. Neurosci. 2018, 38, 3741–3752. [Google Scholar] [CrossRef] [PubMed]
- Hennenfent, A.; Liu, H.; Torkkeli, P.H.; French, A.S. RNA interference supports a role for Nanchung–Inactive in mechanotransduction by the cockroach, Periplaneta americana, tactile spine. Invertebr. Neurosci. 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-X.; Niu, C.-D.; Salgado, V.L.; Lelito, K.; Stam, L.; Jia, Y.-L.; Zhang, Y.; Gao, C.-F.; Wu, S.-F. Pymetrozine activates TRPV channels of brown planthopper Nilaparvata lugens. Pestic. Biochem. Physiol. 2019, 153, 77–86. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Huang, F.; Ghimire, M.N.; Leonard, B.R.; Siegfried, B.D.; Rangasamy, M.; Yang, Y.; Wu, Y.; Gahan, L.J.; Heckel, D.G.; et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat. Biotechnol. 2011, 29, 1128–1131. [Google Scholar] [CrossRef]
- Lester, P.J.; Bulgarella, M.; Baty, J.W.; Dearden, P.K.; Guhlin, J.; Kean, J.M. The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps. Sci. Rep. 2020, 10, 12398. [Google Scholar] [CrossRef]
- Guo, H.; Kunwar, K.; Smith, D. Multiple channels of DEET repellency in Drosophila. Pest. Manag. Sci. 2020, 76, 880–887. [Google Scholar] [CrossRef]
- Badenes-Perez, F.R.; Reichelt, M.; Gershenzon, J.; Heckel, D.G. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Phytochemistry 2013, 86, 36–43. [Google Scholar] [CrossRef]
- Adams, C.G.; Schenker, J.H.; McGhee, P.S.; Gut, L.J.; Brunner, J.F.; Miller, J.R. Maximizing Information Yield From Pheromone-Baited Monitoring Traps: Estimating Plume Reach, Trapping Radius, and Absolute Density of Cydia pomonella (Lepidoptera: Tortricidae) in Michigan Apple. J. Econ. Entomol. 2017, 110, 305–318. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, J.; Yan, Q.; Miao, C.L.; Han, W.K.; Hou, W.; Yang, K.; Hansson, B.S.; Peng, Y.C.; Guo, J.M.; et al. The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Curr. Biol. 2020, 30, 4476–4482.e4475. [Google Scholar] [CrossRef]
- Koch, A.; Wassenegger, M. Host-induced gene silencing—Mechanisms and applications. New Phytol. 2021, 231, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Mamta; Reddy, K.R.; Rajam, M.V. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol. Biol. 2016, 90, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gong, Y.; He, Q.; Kuang, S.; Gao, Q.; Ding, W.; He, H.; Xue, J.; Li, Y.; Qiu, L. FAR knockout significantly inhibits Chilo suppressalis survival and transgene expression of double-stranded FAR in rice exhibits strong pest resistance. Plant Biotechnol. J. 2022, 20, 2272–2283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Zhang, S.S.; Niu, B.L.; Ji, D.F.; Liu, X.J.; Li, M.W.; Bai, H.; Palli, S.R.; Wang, C.Z.; Tan, A.J. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol. 2019, 17, e3000162. [Google Scholar] [CrossRef]
- Li, J.Q.; Chen, Y.W.; Wang, Q.; Yin, M.Z.; Ma, S.; Liu, Q.; Sun, X.Y.; Zhang, W.J.; Yang, Y.Y.; Mang, D.Z.; et al. Gustatory Receptor 206 Participates in the Foraging Behavior of Larvae of Polyphagous Pest Spodoptera litura. J. Agric. Food Chem. 2024, 72, 12003–12013. [Google Scholar] [CrossRef]
- Huang, S.-W.; Wang, P.-C.; Wang, Y.; Wang, J.-Q.; Gao, P.; Yang, X.-Q. Plant volatile-based fumigation improves mating competitiveness of males for population suppression of the global fruit pest Cydia pomonella. Preprint 2024. [Google Scholar] [CrossRef]
- Ojha, A.; Zhang, W. Characterization of gustatory receptor 7 in the brown planthopper reveals functional versatility. Insect Biochem. Mol. Biol. 2021, 132, 103567. [Google Scholar] [CrossRef]
- Di Pizio, A.; Behrens, M.; Krautwurst, D. Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. Int. J. Mol. Sci. 2019, 20, 1402. [Google Scholar] [CrossRef]
- Nesterov, A.; Spalthoff, C.; Kandasamy, R.; Katana, R.; Rankl, N.B.; Andres, M.; Jahde, P.; Dorsch, J.A.; Stam, L.F.; Braun, F.J.; et al. TRP Channels in Insect Stretch Receptors as Insecticide Targets. Neuron 2015, 86, 665–671. [Google Scholar] [CrossRef]
- Zhang, D.D. Tick chemosensation and implications for novel control strategies. Curr. Opin. Insect Sci. 2024, 65, 101249. [Google Scholar] [CrossRef]
- Viswanath, S. AlphaFold opens the doors to deorphanizing secreted proteins. Cell Syst. 2024, 15, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Song, J.; Hsieh, C.Y.; Cao, D.; Kang, Y.; Ye, W.; Wu, Z.; Wang, J.; Zhang, O.; Zhang, X.; et al. DrugFlow: An AI-Driven One-Stop Platform for Innovative Drug Discovery. J. Chem. Inf. Model. 2024, 64, 5381–5391. [Google Scholar] [CrossRef] [PubMed]
- Tuthill, J.C.; Wilson, R.I. Mechanosensation and Adaptive Motor Control in Insects. Curr. Biol. 2016, 26, R1022–R1038. [Google Scholar] [CrossRef]
- Lizana, P.; Mutis, A.; Quiroz, A.; Venthur, H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front. Physiol. 2022, 13, 924750. [Google Scholar] [CrossRef]
- Sato, K.; Pellegrino, M.; Nakagawa, T.; Nakagawa, T.; Vosshall, L.B.; Touhara, K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008, 452, 1002–1006. [Google Scholar] [CrossRef]
- Llopis-Gimenez, A.; Carrasco-Oltra, T.; Jacquin-Joly, E.; Herrero, S.; Crava, C.M. Coupling Transcriptomics and Behaviour to Unveil the Olfactory System of Spodoptera exigua Larvae. J. Chem. Ecol. 2020, 46, 1017–1031. [Google Scholar] [CrossRef]
- Xiao, H.; Ye, X.; Xu, H.; Mei, Y.; Yang, Y.; Chen, X.; Yang, Y.; Liu, T.; Yu, Y.; Yang, W.; et al. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol. Ecol. Resour. 2020, 20, 1050–1068. [Google Scholar] [CrossRef]
- Potter, C.J. Stop the biting: Targeting a mosquito’s sense of smell. Cell 2014, 156, 878–881. [Google Scholar] [CrossRef]
- Ponton, F.; Tan, Y.X.; Forster, C.C.; Austin, A.J.; English, S.; Cotter, S.C.; Wilson, K. The complex interactions between nutrition, immunity and infection in insects. J. Exp. Biol. 2023, 226, jeb245714. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, T.; Sheng, C.; Lee, C.K.; Nguyen, P.; Zhang, Y.V. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life 2025, 15, 110. https://doi.org/10.3390/life15010110
Mi T, Sheng C, Lee CK, Nguyen P, Zhang YV. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life. 2025; 15(1):110. https://doi.org/10.3390/life15010110
Chicago/Turabian StyleMi, Tingwei, Chengwang Sheng, Cassidy Kylene Lee, Peter Nguyen, and Yali V. Zhang. 2025. "Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management" Life 15, no. 1: 110. https://doi.org/10.3390/life15010110
APA StyleMi, T., Sheng, C., Lee, C. K., Nguyen, P., & Zhang, Y. V. (2025). Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life, 15(1), 110. https://doi.org/10.3390/life15010110