Associations of Sedentary Behavior and Screen Time with Human Gut Microbiome Composition and Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Subject Demographics and Health History
2.3. Sedentary Behavior, Screen Time, and Physical Activity
2.4. Measurement of Glucose, Lipids, and Hemoglobin A1c
2.5. Diet History Questionnaire
2.6. Stool Sample Collection, Taxonomic Identification, and Alpha Diversity Analysis
2.7. Covariates
2.8. Sensitivity Power Analysis
2.9. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Taxonomic Identification
3.3. Sedentary Behavior
3.4. Screen Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, D.P.; Hewson, D.J.; Champion, R.B.; Sayegh, S.M. Sitting time and risk of cardiovascular disease and diabetes: A systematic review and meta-analysis. Am. J. Prev. Med. 2019, 57, 408–416. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; Aminian, S.; et al. Sedentary Behavior Research Network (SBRN)—Terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef]
- Young, D.R.; Hivert, M.F.; Alhassan, S.; Camhi, S.M.; Ferguson, J.F.; Katzmarzyk, P.T.; Lewis, C.E.; Owen, N.; Perry, C.K.; Siddique, J.; et al. Sedentary behavior and cardiovascular morbidity and mortality: A science advisory from the American Heart Association. Circulation 2016, 134, e262–e279. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report. Available online: https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 29 June 2022).
- Ford, E.S.; Schulze, M.B.; Kröger, J.; Pischon, T.; Bergmann, M.M.; Boeing, H. Television watching and incident diabetes: Findings from the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. J. Diabetes 2010, 2, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Li, T.Y.; Colditz, G.A.; Willett, W.C.; Manson, J.A.E. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 2003, 289, 1785–1791. [Google Scholar] [CrossRef]
- Krishnan, S.; Rosenberg, L.; Palmer, J.R. Physical activity and television watching in relation to risk of type 2 diabetes: The black women’s health study. Am. J. Epidemiol. 2009, 169, 428–434. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Salmon, J.O.; Owen, N.; Armstrong, T.; Zimmet, P.Z.; Welborn, T.A.; Cameron, A.J.; Dwyer, T.; Jolley, D.; Shaw, J.E. Physical activity and television viewing in relation to risk of undiagnosed abnormal glucose metabolism in adults. Diabetes Care 2004, 27, 2603–2609. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Salmon, J.; Healy, G.N.; Shaw, J.E.; Jolley, D.; Zimmet, P.Z.; Owen, N. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care 2007, 30, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.; Vogensen, F.K.; van den Berg, F.W.J.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.M.; Mailing, L.J.; Niemiro, G.M.; Moore, R.; Cook, M.D.; White, B.A.; Holscher, H.D.; Woods, J.A. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 2018, 50, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014, 63, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Gallè, F.; Valeriani, F.; Cattaruzza, M.S.; Ubaldi, F.; Romano Spica, V.; Liguori, G.; Calimeri, S.; Bono, R.; Privitera, G.; Fabiani, L.; et al. Exploring the association between physical activity and gut microbiota composition: A review of current evidence. Ann. Di Ig. Med. Prev. E Comunita 2019, 31, 582–589. [Google Scholar] [CrossRef]
- Mailing, L.J.; Allen, J.M.; Buford, T.W.; Fields, C.J.; Woods, J.A. Exercise and the gut microbiome: A review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport Sci. Rev. 2019, 47, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Bressa, C.; Bailén-Andrino, M.; Pérez-Santiago, J.; González-Soltero, R.; Pérez, M.; Montalvo-Lominchar, M.G.; Maté-Muñoz, J.L.; Domínguez, R.; Moreno, D.; Larrosa, M. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 2017, 12, e0171352. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, N.; Diez, G.G.; Antúnez-Almagro, C.; Bailén, M.; Bressa, C.; González Soltero, R.; Pérez, M.; Larrosa, M. A critical mutualism—Competition interplay underlies the loss of microbial diversity in sedentary lifestyle. Front. Microbiol. 2020, 10, 3142. [Google Scholar] [CrossRef]
- Zhong, X.; Powell, C.; Phillips, C.M.; Millar, S.R.; Carson, B.P.; Dowd, K.P.; Perry, I.J.; Kearney, P.M.; Harrington, J.M.; O’Toole, P.W.; et al. The influence of different physical activity behaviours on the gut microbiota of older Irish adults. J. Nutr. Health Aging 2021, 25, 854–861. [Google Scholar] [CrossRef]
- Jasbi, P.; Mohr, A.E.; Shi, X.; Mahmood, T.; Zhu, Q.; Bruening, M.; Gu, H.; Whisner, C. Microbiome and metabolome profiles of high screen time in a cohort of healthy college students. Sci. Rep. 2022, 12, 3452. [Google Scholar] [CrossRef]
- Whisner, C.M.; Maldonado, J.; Dente, B.; Krajmalnik-Brown, R.; Bruening, M. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: A cross-sectional study. BMC Microbiol. 2018, 18, 210. [Google Scholar] [CrossRef]
- Rosenberg, D.E.; Norman, G.J.; Wagner, N.; Patrick, K.; Calfas, K.J.; Sallis, J.F. Reliability and validity of the sedentary behavior questionnaire (SBQ) for adults. J. Phys. Act. Health 2010, 7, 697–705. [Google Scholar] [CrossRef]
- Vizcaino, M.; Buman, M.; Desroches, C.T.; Wharton, C. Reliability of a new measure to assess modern screen time in adults. BMC Public Health 2019, 19, 1386. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Eyth, E.; Naik, R. Hemoglobin A1C. StatPearls (Internet). StatPearls Publishing. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549816/ (accessed on 14 September 2023).
- Diet History Questionnaire III. Available online: https://epi.grants.cancer.gov/dhq3/index.html (accessed on 22 June 2023).
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute Food Frequency Questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, S.A.; Vella, C.A.; New, D.D.; Aunjum, A.; Antush, M.; Geidl, R.; Andrews, K.R.; Balemba, O.B. High-resolution taxonomic characterization reveals novel human microbial strains with potential as risk factors and probiotics for prediabetes and type 2 diabetes. Microorganisms 2023, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Graf, J.; Ledala, N.; Caimano, M.J.; Jackson, E.; Gratalo, D.; Fasulo, D.; Driscoll, M.D.; Coleman, S.; Matson, A.P. High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. mBio 2021, 12, e03656-20. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Sample Size Justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Owen, N.; Sugiyama, T.; Eakin, E.E.; Gardiner, P.A.; Tremblay, M.S.; Sallis, J.F. Adults’ sedentary behavior: Determinants and interventions. Am. J. Prev. Med. 2011, 41, 189–196. [Google Scholar] [CrossRef]
Variable | Central Tendency |
---|---|
Women a | 29 (61.7) |
Menstrual status a | |
Premenopausal | 7 (24.1) |
Perimenopausal | 1 (3.4) |
Menopausal | 1 (3.4) |
Postmenopausal | 20 (69.0) |
Race/Ethnicity a | |
Non-Hispanic White | 37 (78.7) |
Hispanic | 3 (6.4) |
African-American/Black | 1 (2.1) |
Asian/Pacific Islander | 4 (8.5) |
Other | 2 (4.3) |
Diabetes status a | |
Healthy | 29 (61.7) |
Prediabetes | 8 (17.0) |
Type 2 diabetes | 10 (21.3) |
Risk Factors | |
Age (years) b | 51.0 (16.1) |
BMI (kg/m2) b | 29.6 (7.2) |
Family history of type 2 diabetes a | 22 (46.8) |
Current smoker a | 3 (6.4) |
HbA1c (%) c | 5.5 (0.8) |
Glucose (mg/dL) c | 97 (14) |
Total cholesterol (mg/dL) b | 188.8 (37.9) |
LDL cholesterol (mg/dL) d | 100.5 (30.1) |
HDL cholesterol (mg/dL) b | 59.2 (19.2) |
Triglycerides (mg/dL) c | 117 (77) |
Physical Activity and Sedentary Behaviors | |
MVPA (MET·min/wk) c | 4020 (5541) |
Total sedentary behavior (min/day) b | 466.3 (175.2) |
Sedentary leisure time (min/day) c | 231 (191) |
Occupational sedentary behavior (min/day) b | 143.0 (108.2) |
Sedentary transportation (min/day) c | 39 (39) |
Total screen time (min/day) b | 418.9 (194.4) |
Television screen time (min/day) b | 82.0 (92.2) |
TV-connected device screen time (min/day) c | 0 (77) |
Computer screen time (min/day) b | 195.3 (157.0) |
Smartphone screen time (min/day) b | 84.9 (60.3) |
Tablet screen time (min/day) c | 0 (0) |
Gut Microbiome Alpha Diversity | |
Observed OTUs b | 169.0 (30.6) |
Shannon Index b | 3.2 (0.5) |
Chao 1 Index b | 213.9 (44.6) |
Fisher’s Alpha Index b | 27.6 (5.3) |
F/B ratio a | 3.1 (5.6) |
Total Sedentary Behavior | |||
---|---|---|---|
Model | B [95% CI] | St β | p |
Observed OTUs (1 SD = 30.6) | |||
1 | −0.080 [−0.131, −0.029] | −0.426 | 0.003 |
2 | −0.068 [−0.123, −0.012] | −0.360 | 0.018 |
3 | −0.063 [−0.117, −0.009] | −0.335 | 0.024 |
Sq Shannon Index (1 SD = 0.5) | |||
1 | −0.004 [−0.009, 0.001] | −0.241 | 0.102 |
2 | −0.003 [−0.008, 0.003] | −0.146 | 0.355 |
3 | −0.002 [−0.007, 0.003] | −0.118 | 0.416 |
Chao 1 Index (1 SD = 44.6) | |||
1 | −0.114 [−0.189, −0.040] | −0.418 | 0.003 |
2 | −0.092 [−0.172, −0.012] | −0.334 | 0.026 |
3 | −0.090 [−0.170, −0.010] | −0.329 | 0.028 |
Fisher’s Alpha Index (1 SD = 5.3) | |||
1 | −0.013 [−0.022, −0.004] | −0.404 | 0.005 |
2 | −0.010 [−0.020, −0.001] | −0.322 | 0.034 |
3 | −0.010 [−0.019, −0.001] | −0.314 | 0.028 |
Ln F/B ratio (1 SD = 96) | |||
1 | 0.002 [0.000, 0.005] | 0.284 | 0.053 |
2 | 0.002 [0.000, 0.005] | 0.309 | 0.059 |
3 | 0.003 [0.000, 0.005] | 0.331 | 0.044 |
Total Screen Time | |||
---|---|---|---|
Model | B [95% CI] | St β | p |
Observed OTUs (1 SD = 30.6) | |||
1 | −0.056 [−0.103, −0.010] | −0.343 | 0.018 |
2 | −0.054 [−0.104, −0.004] | −0.331 | 0.034 |
3 | −0.059 [−0.111, −0.007] | −0.359 | 0.026 |
Sq Shannon Diversity (1 SD = 0.5) | |||
1 | −0.005 [−0.010, −0.001] | −0.328 | 0.024 |
2 | −0.004 [−0.009, 0.001] | −0.240 | 0.131 |
3 | −0.002 [−0.007, 0.003] | −0.136 | 0.389 |
Chao 1 Index (1 SD = 44.6) | |||
1 | −0.064 [−0.134, 0.005] | −0.269 | 0.068 |
2 | −0.059 [−0.132, 0.014] | −0.245 | 0.112 |
3 | −0.067 [−0.145, 0.011] | −0.281 | 0.089 |
Fisher’s Alpha Index (1 SD = 5.3) | |||
1 | −0.009 [−0.017, 0.000] | −0.301 | 0.040 |
2 | −0.008 [−0.017, 0.001] | −0.279 | 0.072 |
3 | −0.008 [−0.017, −0.001] | −0.278 | 0.076 |
Ln F/B ratio (1 SD = 96) | |||
1 | 0.001 [−0.001, 0.003] | 0.181 | 0.224 |
2 | 0.001 [−0.001, 0.004] | 0.195 | 0.246 |
3 | 0.002 [−0.001, 0.004] | 0.280 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antush, M.T.; Balemba, O.B.; Hendricks, S.A.; Flynn, M.; Geidl, R.; Vella, C.A. Associations of Sedentary Behavior and Screen Time with Human Gut Microbiome Composition and Diversity. Life 2024, 14, 363. https://doi.org/10.3390/life14030363
Antush MT, Balemba OB, Hendricks SA, Flynn M, Geidl R, Vella CA. Associations of Sedentary Behavior and Screen Time with Human Gut Microbiome Composition and Diversity. Life. 2024; 14(3):363. https://doi.org/10.3390/life14030363
Chicago/Turabian StyleAntush, Maximilian T., Onesmo B. Balemba, Sarah A. Hendricks, Morgan Flynn, Rayme Geidl, and Chantal A. Vella. 2024. "Associations of Sedentary Behavior and Screen Time with Human Gut Microbiome Composition and Diversity" Life 14, no. 3: 363. https://doi.org/10.3390/life14030363
APA StyleAntush, M. T., Balemba, O. B., Hendricks, S. A., Flynn, M., Geidl, R., & Vella, C. A. (2024). Associations of Sedentary Behavior and Screen Time with Human Gut Microbiome Composition and Diversity. Life, 14(3), 363. https://doi.org/10.3390/life14030363