A Surface Hydrothermal Source of Nitriles and Isonitriles
Abstract
:1. Introduction
- Access to ultraviolet light at wavelengths between 200– [13] andshielding from ultraviolet light at wavelengths between 200– [8].
- near-boiling temperatures [17].
- Low pH [18] andneutral-to-high pH [18].
- Water activity∼1 as the conditions under which most nitrile-based prebiotic chemistry takes place andwater activity required for the phosphorylation of nucleosides and helpful for other condensation reactions [19].
2. The Scenario
3. The Model
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sensitivity Analysis
Species | Temperature (1300 /1700 ) | Pressure (10 /100 ) |
---|---|---|
References
- Islam, S.; Powner, M.W. Prebiotic Systems Chemistry: Complexity Overcoming Clutter. Chem 2017, 2, 470–501. [Google Scholar] [CrossRef]
- Sutherland, J.D. Opinion: Studies on the origin of life—The end of the beginning. Nat. Rev. Chem. 2017, 1, 0012. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Xu, J.; Thompson, S.J.; Gillen, E.; Sutherland, J.D.; Queloz, D. The origin of RNA precursors on exoplanets. Sci. Adv. 2018, 4, eaar3302. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic systems chemistry: New perspectives for the origins of life. Chem. Rev. 2014, 114, 285–366. [Google Scholar] [CrossRef]
- Benner, S.A.; Kim, H.J.; Biondi, E. Prebiotic Chemistry that Could Not Not Have Happened. Life 2019, 9, 84. [Google Scholar] [CrossRef]
- Sasselov, D.D.; Grotzinger, J.P.; Sutherland, J.D. The origin of life as a planetary phenomenon. Sci. Adv. 2020, 6, eaax3419. [Google Scholar] [CrossRef]
- Green, N.J.; Xu, J.; Sutherland, J.D. Illuminating life’s origins: UV photochemistry in abiotic synthesis of biomolecules. J. Am. Chem. Soc. 2021, 143, 7219–7236. [Google Scholar] [CrossRef] [PubMed]
- Mariani, A.; Russell, D.A.; Javelle, T.; Sutherland, J.D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 2018, 140, 8657–8661. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, L.F.; Xu, J.; Bonfio, C.; Russell, D.A.; Sutherland, J.D. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 2020, 12, 1–6. [Google Scholar] [CrossRef]
- Bonfio, C.; Russell, D.A.; Green, N.J.; Mariani, A.; Sutherland, J.D. Activation chemistry drives the emergence of functionalised protocells. Chem. Sci. 2020, 11, 10688–10697. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Liu, Z.; Sutherland, J.D. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem. Commun. 2021, 57, 73–76. [Google Scholar] [CrossRef]
- Benner, S.A. Paradoxes in the Origin of Life. Orig. Life Evol. Biosph. 2014, 44, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, R.; Ferris, J.; Orgel, L.E. Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures? Science 1966, 153, 72–73. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, S.; James Cleaves, H.; Miller, S.L. The Cold Origin of Life: A. Implications Based on the Hydrolytic Stabilities of Hydrogen Cyanide and Formamide. Orig. Life Evol. Biosph. 2002, 32, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, P.B.; Thompson, S.J.; Xu, J.; Russell, D.A.; Green, N.J.; Ritson, D.J.; Sutherland, J.D.; Queloz, D.P. Timescales for Prebiotic Photochemistry under Realistic Surface Ultraviolet Conditions. Astrobiology 2021, 21, 1099–1120. [Google Scholar] [CrossRef]
- Mansy, S.S.; Szostak, J.W. Thermostability of model protocell membranes. Proc. Natl. Acad. Sci. USA 2008, 105, 13351–13355. [Google Scholar] [CrossRef] [PubMed]
- Mariani, A.; Bonfio, C.; Johnson, C.M.; Sutherland, J.D. pH-Driven RNA strand separation under prebiotically plausible conditions. Biochemistry 2018, 57, 6382–6386. [Google Scholar] [CrossRef] [PubMed]
- Hulshof, J.; Ponnamperuma, C. Prebiotic condensation reactions in an aqueous medium: A review of condensing agents. Orig. Life 1976, 7, 197–224. [Google Scholar] [CrossRef] [PubMed]
- Cousins, C.R.; Crawford, I.A.; Carrivick, J.L.; Gunn, M.; Harris, J.; Kee, T.P.; Karlsson, M.; Carmody, L.; Cockell, C.; Herschy, B.; et al. Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. J. Volcanol. Geotherm. Res. 2013, 256, 61–77. [Google Scholar] [CrossRef]
- Ilanko, T.; Fischer, T.P.; Kyle, P.; Curtis, A.; Lee, H.; Sano, Y. Modification of fumarolic gases by the ice-covered edifice of Erebus volcano, Antarctica. J. Volcanol. Geotherm. Res. 2019, 381, 119–139. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl. Acad. Sci. USA 2020, 117, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.H.; Hall, J.; Lippmann-Pipke, J.; Ward, J.A.; Sherwood Lollar, B.; Deflaun, M.; Rothmel, R.; Moser, D.; Gihring, T.M.; Mislowack, B.; et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 2005, 6, Q07003. [Google Scholar] [CrossRef]
- Shibuya, T.; Yoshizaki, M.; Sato, M.; Shimizu, K.; Nakamura, K.; Omori, S.; Suzuki, K.; Takai, K.; Tsunakawa, H.; Maruyama, S. Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 C and 500 bar. Prog. Earth Planet. Sci. 2015, 2, 46. [Google Scholar] [CrossRef]
- Klein, F.; Bach, W.; McCollom, T.M. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 2013, 178, 55–69. [Google Scholar] [CrossRef]
- Rimmer, P.; Shorttle, O. Origin of Life’s Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents. Life 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Gold, T.; Soter, S. The Deep-Earth-Gas Hypothesis. Sci. Am. 1980, 242, 154–161. [Google Scholar] [CrossRef]
- Glasby, G.P. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol. 2006, 56, 83–96. [Google Scholar] [CrossRef]
- Kim, H.J.; Furukawa, Y.; Kakegawa, T.; Bita, A.; Scorei, R.; Benner, S.A. Evaporite Borate-Containing Mineral Ensembles Make Phosphate Available and Regiospecifically Phosphorylate Ribonucleosides: Borate as a Multifaceted Problem Solver in Prebiotic Chemistry. Angew. Chem. 2016, 128, 16048–16052. [Google Scholar] [CrossRef]
- Zahnle, K.; Schaefer, L.; Fegley, B. Earth’s earliest atmospheres. Cold Spring Harb. Perspect. Biol. 2010, 2, a004895. [Google Scholar] [CrossRef] [PubMed]
- Zahnle, K.J.; Gacesa, M.; Catling, D.C. Strange messenger: A new history of hydrogen on Earth as told by Xenon. Geochim. Cosmochim. Acta 2019, 244, 56–85. [Google Scholar] [CrossRef]
- Ranjan, S.; Todd, Z.R.; Sutherland, J.D.; Sasselov, D.D. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. Astrobiology 2018, 18, 1023–1040. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, S.; Abdelazim, K.; Lozano, G.G.; Mandal, S.; Zhou, C.Y.; Kufner, C.L.; Todd, Z.R.; Sahai, N.; Sasselov, D.D. Geochemical and photochemical constraints on S [IV] concentrations in natural waters on prebiotic Earth. AGU Adv. 2023, 4, e2023AV000926. [Google Scholar] [CrossRef]
- Genda, H.; Brasser, R.; Mojzsis, S.J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 2017, 480, 25–32. [Google Scholar] [CrossRef]
- Itcovitz, J.P.; Rae, A.S.P.; Citron, R.I.; Stewart, S.T.; Sinclair, C.A.; Rimmer, P.B.; Shorttle, O. Reduced Atmospheres of Post-impact Worlds: The Early Earth. Planet. Sci. J. 2022, 3, 115. [Google Scholar] [CrossRef]
- Zahnle, K.J.; Lupu, R.; Catling, D.C.; Wogan, N. Creation and Evolution of Impact-generated Reduced Atmospheres of Early Earth. Planet. Sci. J. 2020, 1, 11. [Google Scholar] [CrossRef]
- Wogan, N.F.; Catling, D.C.; Zahnle, K.J.; Lupu, R. Origin-of-life Molecules in the Atmosphere after Big Impacts on the Early Earth. Planet. Sci. J. 2023, 4, 169. [Google Scholar] [CrossRef]
- Trainer, M.G.; Pavlov, A.A.; Curtis, D.B.; McKay, C.P.; Worsnop, D.R.; Delia, A.E.; Toohey, D.W.; Toon, O.B.; Tolbert, M.A. Haze Aerosols in the Atmosphere of Early Earth: Manna from Heaven. Astrobiology 2004, 4, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Arney, G.N.; Meadows, V.S.; Domagal-Goldman, S.D.; Deming, D.; Robinson, T.D.; Tovar, G.; Wolf, E.T.; Schwieterman, E. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets. Astrophys. J. 2017, 836, 49. [Google Scholar] [CrossRef]
- Benner, S.A.; Bell, E.A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.J.; Mojzsis, S.J.; Omran, A.; Pasek, M.A.; Trail, D. When did life likely emerge on Earth in an RNA-first process? ChemSystemsChem 2020, 2, e1900035. [Google Scholar] [CrossRef]
- Ritson, D.J.; Mojzsis, S.J.; Sutherland, J.D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 2020, 13, 344–348. [Google Scholar] [CrossRef]
- Kadoya, S.; Krissansen-Totton, J.; Catling, D.C. Probable Cold and Alkaline Surface Environment of the Hadean Earth Caused by Impact Ejecta Weathering. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008734. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Cheadle, M.J.; Arndt, N.T.; Bickle, M.J. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites. Lithos 1993, 30, 291–307. [Google Scholar] [CrossRef]
- Burcat, A.; Ruscic, B. Third Millenium Ideal Gas and Condensed Phase Thermochemical Database for Combustion (with Update from Active Thermochemical Tables); Technical Report; Argonne National Laboratory (ANL): Argonne, IL, USA, 2005. [Google Scholar]
- Rimmer, P.B.; Helling, C. A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres. Astrophys. J. Suppl. Ser. 2016, 224, 9. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttle, O.; Hobbs, R.; Paschodimas, A. Hydroxide Salts in the Clouds of Venus: Their Effect on the Sulfur Cycle and Cloud Droplet pH. Planet. Sci. J. 2021, 2, 133. [Google Scholar] [CrossRef]
- Brewer, L.; Gilles, P.W.; Jenkins, F.A. The Vapor Pressure and Heat of Sublimation of Graphite. J. Chem. Phys. 1948, 16, 797–807. [Google Scholar] [CrossRef]
- Joseph, M.; Sivakumar, N.; Manoravi, P. High temperature vapour pressure studies on graphite using laser pulse heating. Carbon 2002, 40, 2031–2034. [Google Scholar] [CrossRef]
- Stock, J.W.; Kitzmann, D.; Patzer, A.B.C. FASTCHEM 2: An improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. Mon. Not. R. Astron. Soc. 2022, 517, 4070–4080. [Google Scholar] [CrossRef]
- Knight, J.; Freeman, C.; McEwan, M.; Adams, N.; Smith, D. Selected-ion flow tube studies of HC3N. Int. J. Mass Spectrom. Ion Process. 1985, 67, 317–330. [Google Scholar] [CrossRef]
- Coogan, L.; Saunders, A.; Wilson, R. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 2014, 368, 1–10. [Google Scholar] [CrossRef]
- Palmer, D.J. Reaction of Hydrogen with Graphite. Nature 1967, 215, 388–389. [Google Scholar] [CrossRef]
- Wogan, N.; Krissansen-Totton, J.; Catling, D.C. Abundant Atmospheric Methane from Volcanism on Terrestrial Planets Is Unlikely and Strengthens the Case for Methane as a Biosignature. Planet. Sci. J. 2020, 1, 58. [Google Scholar] [CrossRef]
- Herzberg, C.; Condie, K.; Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 2010, 292, 79–88. [Google Scholar] [CrossRef]
- Takahashi, E.; Scarfe, C.M. Melting of peridotite to 14 GPa and the genesis of komatiite. Nature 1985, 315, 566–568. [Google Scholar] [CrossRef]
- Campbell, I.H.; Griffiths, R.W.; Hill, R.I. Melting in an Archaean mantle plume: Heads it’s basalts, tails it’s komatiites. Nature 1989, 339, 697–699. [Google Scholar] [CrossRef]
- Nebel, O.; Campbell, I.H.; Sossi, P.A.; Van Kranendonk, M.J. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth. Earth Planet. Sci. Lett. 2014, 397, 111–120. [Google Scholar] [CrossRef]
- Walton, C.R.; Rigley, J.K.; Lipp, A.; Law, R.; Suttle, M.D.; Schönbächler, M.; Wyatt, M.; Shorttle, O. Cosmic dust fertilization of prebiotic chemistry on early Earth. Nat. Astron. 2023, accepted. [Google Scholar] [CrossRef]
- Rempfert, K.R.; Nothaft, D.B.; Kraus, E.A.; Asamoto, C.K.; Evans, R.D.; Spear, J.R.; Matter, J.M.; Kopf, S.H.; Templeton, A.S. Subsurface biogeochemical cycling of nitrogen in the actively serpentinizing Samail Ophiolite, Oman. Front. Microbiol. 2023, 14, 1139633. [Google Scholar] [CrossRef] [PubMed]
- Pastorek, A.; Ferus, M.; Čuba, V.; Šrámek, O.; Ivanek, O.; Civiš, S. Primordial radioactivity and prebiotic chemical evolution: Effect of γ radiation on formamide-based synthesis. J. Phys. Chem. B 2020, 124, 8951–8959. [Google Scholar] [CrossRef] [PubMed]
- Barge, L.M.; Price, R.E. Diverse geochemical conditions for prebiotic chemistry in shallow-sea alkaline hydrothermal vents. Nat. Geosci. 2022, 15, 976–981. [Google Scholar] [CrossRef]
Species | C(g) | CO | H2 | N2 | O2 | CH4 | CO2 | H2O |
---|---|---|---|---|---|---|---|---|
Mixing Ratio | * | 0.23 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimmer, P.B.; Shorttle, O. A Surface Hydrothermal Source of Nitriles and Isonitriles. Life 2024, 14, 498. https://doi.org/10.3390/life14040498
Rimmer PB, Shorttle O. A Surface Hydrothermal Source of Nitriles and Isonitriles. Life. 2024; 14(4):498. https://doi.org/10.3390/life14040498
Chicago/Turabian StyleRimmer, Paul B., and Oliver Shorttle. 2024. "A Surface Hydrothermal Source of Nitriles and Isonitriles" Life 14, no. 4: 498. https://doi.org/10.3390/life14040498
APA StyleRimmer, P. B., & Shorttle, O. (2024). A Surface Hydrothermal Source of Nitriles and Isonitriles. Life, 14(4), 498. https://doi.org/10.3390/life14040498