Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Maintenance of Target Pathogens
2.2. Preparation of Extracts
2.3. Determination of Minimum Inhibitory Concentration (MIC)
2.4. Screening for QSI Activity
2.5. Biofilm Biomass Quantification Assay
2.6. EPS Inhibition Assay
2.7. Antibacterial Assay
2.8. Gas Chromatography—Mass Spectrum (GC-MS) Analysis
2.9. Column Chromatography
2.10. Computational Studies
2.11. Fourier Transform—Infrared Spectra (FT-IR) Analysis
2.12. UV–Visible Spectrum Analysis
2.13. Confirmation of QSI Activity of Eugenol Using Universal Biomarker
2.14. Data Analysis
3. Results
3.1. Qualitative Screening for QSI Activity—Violacein Inhibition Assay
3.2. Determination of MIC
3.3. Biofilm Biomass Quantification Assay
3.4. Inhibition of Biofilm EPS
3.5. Antibacterial Assay
3.6. GC-MS Analysis
3.7. Computational Studies
3.8. FT-IR Analysis
3.9. UV Spectra Analysis
3.10. Confirmation of the QSI Activity of Eugenol
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Wu, H.; Moser, C.; Wang, H.; Hoiby, N.; Song, Z. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Potera, C. Antibiotic Resistance: Biofilm Dispersing Agent Rejuvenates Older Antibiotics. 2010. Available online: https://ehp.niehs.nih.gov/doi/10.1289/ehp.118-a288 (accessed on 1 April 2023).
- Le Roux, F.; Wegner, K.M.; Baker-Austin, C.; Vezzulli, L.; Osorio, C.R.; Amaro, C.; Ritchie, J.M.; Defoirdt, T.; Destoumieux-Garzón, D.; Blokesch, M.; et al. The emergence of Vibrio pathogens in Europe: Ecology, evolution, and pathogenesis. Front. Microbiol. 2015, 6, 830. [Google Scholar]
- Milton, D.L. Quorum sensing in Vibrios: Complexity for diversification. Int. J. Med. Microbiol. 2006, 296, 61–71. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Dobretsov, S.; Teplitski, M.; Paul, V. Mini-review: Quorum sensing in the marine environment and its relationship to biofouling. Biofouling 2009, 25, 413–427. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Givskov, M. Quorum-sensing blockade as a strategy for enhancing host defenses against bacterial pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1213–1222. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Givskov, M. Quorum sensing inhibitors: A bargain of effects. Microbiology 2006, 152, 895–904. [Google Scholar] [CrossRef]
- Vattem, D.A.; Mihalik, K.; Crixell, S.H.; McLean, R.J.C. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 2007, 78, 302–310. [Google Scholar] [CrossRef]
- Bai, A.J.; Rai, V.R. Bacterial quorum sensing and food industry. Compr. Rev. Food Sci. Food Saf. 2011, 10, 183–193. [Google Scholar] [CrossRef]
- Choo, J.H.; Rukayadi, Y.; Hwang, J.K. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol. 2006, 42, 637–641. [Google Scholar] [CrossRef]
- Abraham, S.V.P.I.; Palani, A.; Ramaswamy, B.R.; Shunmugiah, K.P.; Arumugam, V.R. Anti-quorum sensing and antibiofilm potential of Capparis spinosa. Arch. Med. Res. 2011, 42, 658–668. [Google Scholar] [CrossRef]
- Packiavthy, I.A.S.V.; Agilandeswari, P.; Musthafa, K.S.; Pandian, S.K.; Ravi, A.V. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res. Int. 2012, 45, 85–92. [Google Scholar] [CrossRef]
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard, 7th ed.; Clinical and Laboratory Standards Institute Document M7-A7; Clinical and Laboratory Standards Institute: Berwyn, IL, USA, 2006.
- McClean, R.J.C.; Pierson, I.; Leland, S.; Fuqua, C. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods 2004, 58, 351–360. [Google Scholar] [CrossRef]
- Annapoorani, A.; Umamageswaran, V.; Parameswari, R.; Pandian, S.K.; Ravi, A.V. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J. Comput. Aided Mol. Des. 2012, 26, 1067–1077. [Google Scholar] [CrossRef]
- Devendran, G.; Balasubramanian, U. Qualitative phytochemical screening and GC-MS analysis of Ocimum sanctum L. leaves. Asian J. Plant Sci. Res. 2011, 1, 39–43. [Google Scholar]
- Mondal, S.; Mirdha, B.R.; Mahapatra, S.C. The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian J. Physiol. Pharmacol. 2009, 53, 291–306. [Google Scholar]
- Annous, B.A.; Fratamico, P.M.; Smith, J.L. Quorum sensing in biofilms: Why bacteria behave the way they do. J. Food Sci. 2009, 74, 24–37. [Google Scholar] [CrossRef]
- Meena, A.K.; Kumar, S.P.B. Plants-herbal wealth as a potential source of ayurvedic drugs. Asian J. Tradit. Med. 2009, 4, 152–170. [Google Scholar]
- Huerta, V.; Mihalik, K.; Crixell, S.H.; Vattem, D.A. Herbs, spices and medicinal plants used in Hispanic traditional medicine can decrease quorum sensing dependent virulence in Pseudomonas aeruginosa. Int. J. Appl. Res. Nat. Prod. 2008, 1, 9–18. [Google Scholar]
- Truchado, P.; Lopez-Galvez, F.; Gil, M.I.; Tomas-Barberan, F.A.; Allende, A. Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chem. 2009, 115, 1337–1344. [Google Scholar] [CrossRef]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Neu, T.R.; Wozniak, D. The EPS matrix: The “House of biofilm cells”. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [PubMed]
- Rubini, D.; Banu, S.F.; Subramani, P.; Hari, V.; Gowrishankar, S.; Pandian, S.K.; Wilson, A.; Nithyanand, P. Extracted chitosan disrupts quorum sensing mediated virulence factors in urinary tract infection causing pathogen. Pathog. Dis. 2019, 1, 77. [Google Scholar] [CrossRef]
- Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv. 2013, 31, 224–245. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Cheng, W. Determination of cinnamaldehyde, thymol and eugenol in essential oils by LC–MS/MS and antibacterial activity of them against bacteria. Sci. Rep. 2024, 14, 12424. [Google Scholar] [CrossRef]
- Chatterjee, D.; Ghosh, P.K.; Ghosh, S.; Bhattacharjee, P. Supercritical carbon dioxide extraction of eugenol from tulsi leaves: Process optimization and packed bed characterization. Chem. Eng. Res. Des. 2017, 118, 94–102. [Google Scholar] [CrossRef]
- Kaushik, S.; Kaushik, S.; Dar, L.; Yadav, J.P. Eugenol isolated from supercritical fluid extract of Ocimum sanctum: A potent inhibitor of DENV-2. AMB Express 2023, 21, 105. [Google Scholar] [CrossRef]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2010, 76, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Devi, K.R.; Kannappan, A.; Pandian, S.K.; Ravi, A.V. Piper beetle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. J. Ethnopharmacol. 2016, 193, 592–603. [Google Scholar] [CrossRef] [PubMed]
Target Pathogen | O. sanctum (mg/mL) |
---|---|
E. coli | 25.0 |
PAO1 | 12.5 |
P. mirabilis | 12.5 |
S. marcescens | 12.5 |
V. harveyi | 25.0 |
V. parahaemolyticus | 25.0 |
V. vulnificus | 25.0 |
S. No. | Peak Name | Retention Time | %Peak Area |
---|---|---|---|
1. | 1-(4-Hydroxymethylphenyl) ethanone | 14.09 | 1.2087 |
2. | Eugenol | 14.97 | 21.0757 |
3. | Phenol, 2,4-bis(1,1-dimethylethyl)- | 19.75 | 6.7635 |
4. | D-Allose | 20.36 | 0.6397 |
5. | 1,2-Benzenediol, 4-(1,1-dimethylethyl)- | 22.17 | 0.2880 |
6. | Z-2-Dodecenol | 24.00 | 1.6557 |
7. | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 25.92 | 1.3831 |
8. | 2-Pentadecanone, 6,10,14-trimethyl- | 26.08 | 1.6786 |
9. | 1,2-Benzenedicarboxylic acid, butyl octyl ester | 27.23 | 1.4609 |
10. | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester | 27.39 | 2.8220 |
11. | 1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester | 27.92 | 11.8857 |
12. | n-Hexadecanoic acid | 28.06 | 13.7495 |
13. | Octadecanoic acid | 30.58 | 4.3143 |
14. | Benzene, 6-heptynyl- | 32.02 | 2.2544 |
15. | 16-Heptadecenal | 32.36 | 2.3497 |
16. | Acetyl eugenol | 36.08 | 26.4706 |
Protein | Compound | Glide Gscore Kcal/mol | Glide Energy Kcal/mol | Glide Emodel Kcal/mol | H Bond Interaction |
---|---|---|---|---|---|
RhlR | Acetyl eugenol | −6.192 | −27.812 | −34.097 | Trp68(NH...O;1.70Å) |
Eugenol | −5.805 | −28.081 | −37.237 | Trp68(NH...O;2.23Å); (NH...O;2.14Å) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issac Abraham, S.V.P.; Arumugam, V.R.; Mary, N.I.; Dharmadhas, J.S.; Sundararaj, R.; Devanesan, A.A.; Rajamanickam, R.; Veerapandian, R.; John Bosco, J.P.; Danaraj, J. Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens. Life 2024, 14, 785. https://doi.org/10.3390/life14070785
Issac Abraham SVP, Arumugam VR, Mary NI, Dharmadhas JS, Sundararaj R, Devanesan AA, Rajamanickam R, Veerapandian R, John Bosco JP, Danaraj J. Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens. Life. 2024; 14(7):785. https://doi.org/10.3390/life14070785
Chicago/Turabian StyleIssac Abraham, Sybiya Vasantha Packiavathy, Veera Ravi Arumugam, Nancy Immaculate Mary, Jeba Sweetly Dharmadhas, Rajamanikandan Sundararaj, Arul Ananth Devanesan, Ramachandran Rajamanickam, Raja Veerapandian, John Paul John Bosco, and Jeyapragash Danaraj. 2024. "Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens" Life 14, no. 7: 785. https://doi.org/10.3390/life14070785
APA StyleIssac Abraham, S. V. P., Arumugam, V. R., Mary, N. I., Dharmadhas, J. S., Sundararaj, R., Devanesan, A. A., Rajamanickam, R., Veerapandian, R., John Bosco, J. P., & Danaraj, J. (2024). Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens. Life, 14(7), 785. https://doi.org/10.3390/life14070785